PHYSICAL REVIEW D 83, 066016 (2011)
Massive superstring scatterings in the Regge regime
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We calculate four classes of high-energy massive string scattering amplitudes of fermionic string theory
at arbitrary mass levels in the Regge regime (RR). We show that all four leading order amplitudes in the
RR can be expressed in terms of the Kummer function of the second kind. Based on the summation
algorithm of a set of extended signed Stirling number identities, we show that all four ratios calculated
previously by the method of decoupling of zero-norm states among scattering amplitudes in the Gross
regime can be extracted from this Kummer function in the RR. Finally, we conjecture and give evidence
that the existence of these four Gross regime ratios in the RR persists to subleading orders in the Regge
expansion of all high-energy fermionic string scattering amplitudes.
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L. INTRODUCTION

The high-energy, fixed angle limit of string scattering
amplitudes [1-3] had been used to probe the fundamental
space-time symmetry of string theory [2]. In this ap-
proach, one needs to calculate an infinite number of
massive string scattering amplitudes. By taking the
high-energy limit of the calculation, a lot of mathemati-
cal simplifications result and many interesting character-
istics of high-energy behavior of the theory can be
obtained. There are two fundamental regimes of high-
energy string scattering amplitudes. These are the fixed
angle regime or Gross regime (GR), and the fixed mo-
mentum transfer regime or Regge regime (RR). These
two regimes represent two different high-energy pertur-
bation expansions of the scattering amplitudes, and
contain complementary information of the theory. The
high-energy string scattering amplitudes in the GR [1-3]
were recently intensively reinvestigated for massive
string states at arbitrary mass levels [4—-13]. See also
the developments in [14-16]. An infinite number of
linear relations, or stringy symmetries, among string
scattering amplitudes of different string states were ob-
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tained. Moreover, these linear relations can be solved for
each fixed mass level, and ratios TW-279) /TN.0.0) among
the amplitudes can be obtained. An important new in-
gredient of these calculations is the decoupling of zero-
norm states (ZNS) [17-19] in the old covariant first
quantized (OCFQ) string spectrum.

Another fundamental regime of high-energy string
scattering amplitudes is in the RR [20-25]. See also
[26-28]. An interesting breakthrough of the subject was
made in 2008 [29] through the calculation of high-energy
string scattering amplitudes for arbitrary mass levels in
the RR. It turns out that both the saddle-point method and
the method of decoupling of high-energy ZNS adopted in
the calculation of GR do not apply to the case of RR.
However, a direct calculation to get the complete form of
the amplitudes is achievable and the general formula for
the high-energy scattering amplitudes for each fixed mass
level in the RR can be written down explicitly. It was
found that the number of high-energy scattering ampli-
tudes for each fixed mass level in the RR is much more
numerous than that of GR calculated previously. In con-
trast to the case of scatterings in the GR, there is no linear
relation among scatterings in the RR. Moreover, it was
discovered that the leading order amplitudes at each fixed
mass level in the RR can be expressed in terms of the
Kummer function of the second kind. Furthermore, for
those leading order high-energy amplitudes A4 in
the RR with the same type of (N, 2m, g) as those of GR,
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we can extract from them the ratios 7W-2m4) /TWN.00) jp
the GR by using this Kummer function. Mathematically,
the proof was based on a set of summation algorithms for
signed Stirling number identities derived by Mkauers in
2007 [30].

This new development of high-energy behavior of
string theory enables one to express the ratios
TW2m9) /TN00) (or symmetry) of string theory in terms
of the Kummer function and thus may shed light on a
deeper understanding of algebraic structure of stringy
symmetries. Mathematically, the realization of the
Stirling number identities by string theory brings an
interesting bridge between string theory and combinato-
rial theory. It is thus important to probe the structure of
more high-energy string scattering amplitudes in this
context, and relate it to the Kummer function and more
Stirling number identities.

In this paper, we will calculate four classes of high-
energy massive string scattering amplitudes of fermionic
string theory in the RR. We show that, as in the case of
bosonic string, the leading order amplitudes in the RR
can be expressed in terms of the Kummer function of the
second kind. Based on the summation algorithm of a set
of extended Stirling number identities (among them, one
remains to be proved mathematically), we show that all
four ratios calculated previously among scattering ampli-
tudes in the GR can be extracted from this Kummer
function in the RR. We point out that we failed to prove
one of the Stirling number identities we used in the text.
This identity will be taken as an identity predicted by
string theory. We will also provide some numerical evi-
dence in Appendix B to support our prediction.
Hopefully a rigorous proof of it will be given in the
near future. Finally, we conjecture and give evidence
that the existence of these four GR ratios in the RR
persists to all subleading orders in the Regge expansion

of all four high-energy string scattering amplitudes for

M

the even mass level with (N + 1) = 72 = odd. For the

odd mass levels with (N + 1) = MTg = even, the existence
of the GR ratios will be terminated and shows up only in
the first % + 1 terms in the Regge expansion of the
amplitudes. This paper is organized as follows. In Sec. I,
we briefly review the previous calculation of high-energy
string scatterings in the GR. In Sec. III, we calculate four
classes of fermionic string scatterings in the Regge limit.
Section IV is devoted to the extraction of the ratios of
high-energy amplitudes in the GR from the scattering
amplitudes in the RR. We also give proofs of a set of
Stirling number identities we used in the text. In Sec. V,
we calculate the subleading order amplitudes and ratios.
A conclusion is presented in Sec. VI. The exact kine-
matic relations of the Regge scatterings used in Sec. V
are collected in Appendix A. In Appendix B, we give a
numerical proof of the master identity Eq. (4.7) we used
intensively in the text.
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II. REVIEW OF FIXED ANGLE SCATTERINGS

In this section, we begin with a brief review of high-
energy string scatterings in the fixed angle regime. That is
in the kinematic regime

t 6
S, —t— 00, — = —sin2§ = fixed (but 8 # 0) 2.1)
S
where s, f and u are the Mandelstam variables and 6 is the
CM scattering angle. It was shown [7,8] that for the 26D
open bosonic string the only states that will survive the
high-energy limit at mass level M%(B) =2(N — 1) are of

the form
|N; 2m, Q> = (az])NfszZq(aI:l)2m(a£2)q|0> (2.2)

where the polarizations of the 2nd particle with momen-
tum k, on the scattering plane were defined to be

P=_1 = _k o
e Mo (E,, ky, 0) Mry 35 the momentum polariza
tion, e* = —le(m (ky, E5, 0), the longitudinal polarization,

and e” = (0,0, 1) the transverse polarization. Note that

e’ = el in the GR, (2.3)
and the scattering plane is defined by the spatial compo-
nents of eX and e”. Polarizations perpendicular to the
scattering plane are ignored because they are kinematically
suppressed for four-point scatterings in the high-energy
limit. One can use the saddle-point method to calculate
the high-energy scattering amplitudes. For simplicity, we
choose k|, k3 and k4 to be tachyons. It turns out that all
scattering amplitudes at each fixed mass level are propor-
tional to each other, and the final result for the ratios
of high-energy, fixed angle string scattering amplitude
are [7,8]

TWN.2m.q) _ ( 1

7000\ Myp

)zmw(%)wq(zm — DL 24

The precise definition of T™-2"9) is as follows:

T(N,Qm,q) — <Vl (an)N72m72q(aX2L)2m(62X2L)qeik'xz V3 V4>
(2.5)

In the above equation, vertices V|, V3 and V, can be
arbitrary but fixed string states and their tensor indices
are omitted. We use labels 1 and 2 for incoming particles
and 3 and 4 for outgoing particles. In the center of mass
frame, the scattering angle @ is defined to be the angle
between 121 and 133. The ratios in Eq. (2.4) can also be
obtained by using the decoupling of two types of ZNS in
the spectrum

Typel: L_,|x), where L;|x) = L,|x)=0,  Lylx)=0;

(2.6)

066016-2



MASSIVE SUPERSTRING SCATTERINGS IN THE REGGE ... PHYSICAL REVIEW D 83, 066016 (2011)

Type II: ( = L )Ix) where L|%) = L,|X) = 0, (Ly + DIx) = 0. 2.7)
While Type I states have zero-norm at any space-time dimension, Type II states have zero-norm only at D = 26. As

examples, for M%(B) =4, 6, we get [4,5]

TTTT:TLLT:T(LT):T[LT] = 8:1: - 1: - 1, (28)
TTTTT TTTLL TLLLL TTTL TLLL 7“;LT,T 7iLP,P : TLL : 7MwLL 2.9
. 4 . 1 .o_a . 6. 2k . .2 : (2.9)

6 - F . L ose . B 2k g 2

In the above two equations, the authors of [4,5] had used another basis (corresponding to states listed by Young diagrams)
to define the amplitudes. For example

T or = (V102X 0XD ek X V3V, T = (Vi(@2XEax2 ek %)y, v,), (2.10)

These amplitudes are linear combination of 7™W-2"9) defined previously. We give one specific example here. One choice of

the vertex of the spin three state at M2(B) 4is

3

(ew)‘a"_“l”\ + €una’ a”,)|0, k); €(ur) = _EkAEMV)" kMk" €\ =0, N* €0 =0 (2.11)

which is conformal invariant. In the high-energy limit, all components perpendicular to the scattering plane are of

subleading order in energy and can be neglected. By using the helicity decomposition, and writing €,,, =

anﬁ,geﬁegefuaﬁg; a, 8,8 =P, L, T, we can get [4,5]

A
(€uma™” + €uma’ a”,)|0, k) =

where 7" = a” a” a? |, etc. It can be shown that the

ratios and amplitudes calculated in these two bases (one
with Young tableaux and the other one no) were consistent
with each other. However, the calculation for general mass
levels is much easier to perform in the basis defined in
Eq. (2.2). Note that Eq. (2.12) is valid also in the RR.

We now consider the fermionic string case. In this paper,
we will only consider high-energy scattering amplitudes of
string states with polarizations on the scattering plane.
Some high-energy scatterings of string states with polar-
izations orthogonal to the scattering plane in the GR were
discussed in [9]. It was shown that there are four types of
high-energy string scattering amplitudes for states in the
NS sector with even GSO parity which can be written down
explicitly for the mass level M% = 2(N + 1) as (here we
have replaced all e in [9] by e” for the purpose of the
following discussion in Secs. III and IV)

IN +1,2m,q)®|b" | )= (al YN 72" =20* 1 (aF )2m

X (af )17 )I0,k),  (2.13)

Typel: G_(1/2)|x),

Type II: (G_3/2) + 2G—(1/5L-1)I%),

where G ,|x) =

where G, |%) =

[uppr(6aPET + 6a(Lla 2) + uprp(3af — 3Ll + 3a(T T) — 3a! laL)2

+ MTTL(3(17;71‘L - CYI:liL) + MTTT(CYZY;T - 3allliT):||0, k>

2.12)

I
IN+1,2m+1,9)® |bf(1/2)>
(aT )N 2m— Zq(aP )2m+1(a )q(bP(l/z))IO k>
(2.14)

|Nr Zm; Q> ® |b’i(3/2)> = (a];1)N_2m_2q(a€1)2m(a’iz)q

IN = 1,2m, g = @bl 5" 06050
= (az1)N_2m_2q(a71)2m(a72)q_1(b5(1/2))
X (b}:(l/z))(b}:g/z))lo; k). (2.16)

Note that the number of a” | operator in Eq. (2.14) is odd.
In the OCFQ spectrum of open superstring, the solutions of
physical state conditions include positive-norm propagat-
ing states and two types of zero-norm states. In the NS
sector, the latter are [31]

Gsplx) =0, Lolx) = 0; (2.17)

Gipl® =0,  (Ly+ DI =0. (2.18)

While Type I states have zero-norm at any space-time dimension, Type II states have zero-norm only at
D = 10. It was shown that [9], for each fixed mass level, all high-energy scattering amplitudes corresponding to states
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in Egs. (2.13), (2.14), (2.15), and (2.16) are proportional to each other, and the ratios can be determined from the method of
decoupling of two types of zero-norm states, Eqs. (2.17) and (2.18), or the method of Virasoro constraints in the high-

energy limit. These ratios were calculated to be [9]

IN, 2m, g) ® [B ;) = (_ 2;42)q+m (2(TM2;31 IN,0,0) @ |6 5 ). (2.19)
IN+1,2m+ 1, ) @b ) = (— ZMZ)"W Ez";;)i)ﬂ IN,0,0) @ |5, ). (2.20)

IN +1,2m,q)® |b" | ) = (_ 2;42 gtm Eznjw )m) LIN.0,0) ® [B” ;) 2.21)
IN—1,2m,q —1)® |bT /b (1/2)bf(3/2)> - <_ 2;42)4“" (2(TM2;’)" IN,0,0)® |bP(3/2)> (2.22)

Note that, in order to simplify the notation, we have only
shown the second state of the four-point functions to
represent the scattering amplitudes on both sides of each
equation above. This notation will be used throughout the
paper whenever is necessary. Equations (2.19) to (2.22) are
thus the SUSY generalization of Eq. (2.4) for the bosonic
string. In the next section, in contrast to the ZNS method
used in the GR, we will used a direct calculation method to
calculate the scattering amplitudes for general mass levels
in the RR. Furthermore, we can use these amplitudes to
extract the ratios in Egs. (2.19) to (2.22) calculated above.

II1. FOUR CLASSES OF REGGE SCATTERINGS

We now turn to the discussion on high-energy string
scatterings in the Regge regime. That is in the kinematic
regime

s — OO

) V=1 = fixed (but/—¢ # 00). (3.1)

Instead of using (E, #) as the two independent kinematic
variables in the GR, we choose to use (s, ) in the RR. One
of the reasons has been that ¢t ~ E6 is fixed in the RR, and it
is more convenient to use (s, ) rather than (E, 8). In the
RR, to the lowest order, Egs. (A13) to (A18) reduce to

1
P . _ _ 2 2 2 2 2) ~ —
k= =y (Jp + MAp? + M3 + p )_ TR (3.22)
L-k=—£< 2 M2+ 2+M2)z——s , 3.2b
L VA VPP + M3 P+ M o, (3.2b)
ek =0 (3.20)
and
1 i t— M3 — M?
el ky = V(\/cf - M;f\/p2 + M3 — pq cosa) SV 212‘4 3 (3.32)
2 2 2
1 7 t+ M2 — M
el - ky = ﬁ(p\/qz + M2 — gy p* + M3 cose) A (3.3b)
2 2 2
el - ky = —gsing = —/—t. (3.3¢c)

Before we proceed to calculate the fermionic string scatter-
ings for the general mass levels in the RR, we first use a
simple example of bosonic string scattering [29] to illus-
trate a subtle difference between scatterings in the GR and
RR. In the mass level M 2p — 4 (MI(B) M%(B)

M 2 ® = —2), one of the (conformal invariant) hi gh energy
amphtudes in the RR is for the state (a?57 + a! aT)2)|0>
This can be seen from the first lme of Eq (2.12).

For simplicity and for illustration here, we will only cal-
culate amplitude corresponding to the state a” | at,]0). We
stress that in order to recover the conformal invariance, one
needs to calculate the amplitude corresponding to the
state (4T + ot o 2)|0> For the general mass levels, see
the dlscusswn on the paragraph after Eq. (3.7) below. The
s — t channel of this amplitude (the + — u channel ampli-
tudes can be similarly discussed) can be calculated
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to be [29] (we use A to represent RR amplitudes
and T to represent GR amplitudes, respectively, in this

paper)

ATL = /Ol dx - xkrke (1 — xylks <ieT)C' k_ ijT_' ’;3)
[T
) ey
[ -2 --3)]
(3.4)

From the above calculation, one can easily see that the term
~/—1£2s? is in the leading order in the GR, but is in the
subleading order in the RR. On the other hand, the
term ~\/—_ts3 is in the subleading order in the GR, but is
in the leading order in the RR. This observation suggests
that the high-energy string scattering amplitudes in
the GR and RR contain information complementary to
each other.
By Eqgs. (3.3a) and (3.3b), it is important to note that
e? # el in the RR. (3.5)
This is very different from the case of GR. In the
discussion of this section and Sec. IV of this paper,
we will calculate the amplitudes for the polarization e”
and e”. For the additional e’ amplitudes, the results
can be trivially modified. There is another important dif-
ference between the high-energy scattering amplitudes in
the RR and in the GR. It was found [29] for the bosonic
string case that the number of high-energy scattering
J

PHYSICAL REVIEW D 83, 066016 (2011)

amplitudes for each fixed mass level in the RR is much
more numerous than that of GR. In fact, instead of states in
Eq. (2.2) for the GR, a class of high-energy string states at
each fixed mass level N =3,  np, + mgq, for the
RR are [29]

1P qm) = [ () TT (@) 10, k). (3.6)

n>0 m=>0

At this point, we note that there are other high-energy
vertices for the RR which were not considered previously
for the bosonic string case [29], namely

|pm qm> rl> = l_[(azn)p" l_[ (agm)q"xn(alil)rllo’ k>

n>0 m>0 >0

3.7

where N =Y, np,+ mgq, + Ir,. However, for the
purpose of recovering the GR ratios, the vertex in
Eq. (3.6) is good enough. All the results in [29] including
Kummer functions and ratios, etc. remain the same if
Eq. (3.7) was used. However, in order to get the conformal
invariant RR amplitudes, one needs to consider the
most general vertex in Eq. (3.7). The calculation is similar
to the one for Eq. (3.6). For example, for the vertex in
Eq. (2.12), one needs to calculate, in addition to others, the
amplitude corresponding to a?.7|0) = a” | al,a” |0) in
the RR.

Now we come back to the discussion for the vertex in
Eq. (3.6). It seems that both the saddle-point method and
the method of decoupling of high-energy ZNS adopted in
the calculation of GR do not apply to the case of RR.
However a direct calculation is still manageable due to
the following rules to simplify the calculation for the
leading order amplitudes in the RR:

a’,: 1term (contraction of iky - X with g4 - 9"X), (3.8)
P.{n>1, 1 term (3.9)
Y 1ln=1 2terms (constraction of ik - X and iky-X with g - 3"X). )

For our purpose in this paper, we will only calculate four
classes of scattering amplitudes corresponding to states in
Eq. (2.13) to Egs. (2.16) in the RR. There are much more
high-energy fermionic string scattering amplitudes other
than states we will consider in this paper. We stress that, in
addition to high-energy scatterings of string states with
polarizations orthogonal to the scattering plane considered
previously in the GR [9], there are more high-energy string
scattering amplitudes with more worldsheet fermionic op-
erators bf’(Tn /2) in the vertex.

A. Amplitude |N, 2m, q) ® |b1:(3/2)>

The first scattering amplitude we want to calculate cor-
responding to state in Eq. (2.15) is
A(IN,Zm,q) _ <w’{"le—¢leik1X1 . (axg)N72m72q
X (aX5)?m(92XL)19 e
X el kg pge™ N ke X) - (3.10)

where we have dropped out an overall factor. In Eq. (3.10),
the first vertex is a vector state in the (—) ghost picture,
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and the last two states are tachyons in the (0) ghost picture. The second state is a tensor in the (—) ghost picture, so that the
total superconformal ghost charges sum up to —2. The s — ¢ channel of the amplitude can be calculated to be

A(Nqu) _f dxxk kz(l _x)k2 k3|: _l;_«,:lN 2m—2q G.11)
NG G Y G TG S
[ —x * l—x] [ x2 +(1—x)2] x (3-12)
AT ey — T Ao dT ) + (T Y IXawE p ek (3.13)
f dxxkik(1 — )k kg[ lj::lN 2m—2q (3.14)
. eP . kl €P . k3 2m eP . k3 q . 11 . (€T . k4)(k2 . k3)
[ xMz[ - ] G-1)

In Eq. (3.12), e;kl is of subleading order in the RR and % is the ghost contribution. The second term of Eq. (3.13) vanishes
due to the SL(2, R) gauge fixing x; =0, x, = x, x3 = 1 and x4 = co. The first term of Eq. (3.13) vanishes due to

e™ - ¢P” = 0. The amplitude then reduces to

(\/_—)N 2m— 2q+1(

(N.2m,q) .,
A
)

oM,

7 m+ 2m
__(\/_)N 2m— 2q+1<2At/12)2 ?Z( ; )( 1)1( )B(kl ky = jky ks — N+ j—1).

j=0

The Beta function above can be approximated in the large
s, but fixed ¢ limit as follows

B(kl 'kz_j,kQ'k3+j_N_1)
=B<1—5+N—j, 1—fﬂ)
2 2 2
CT(1 =3+ N=)I(—1=1+))
- LE—1)

(3.17)

(55503 6) "(59),
(1550 ()

where
(@;=ala+1)a+2)...(a+tj—1) (3.18)

is the Pochhammer symbol. The leading order amplitude in
the RR can then be written as

i It 1 \2mtq
B 1__’ - /_HV-Zm-Zq-Fl( >
T 2M, ( 22 2) 2M,

&(2m\2\i( 1 t
S0
]ZO J t 2 2/
which is UV power-law behaved as expected. The summa-

tion in Eq. (3.19) can be represented by the Kummer
function of the second kind U as follows,

A(N 2m, q)

(3.19)

f dxxkirk=1(] — y)krks—N+2m=2 .

7 o) G =)™

(3.16)
|
(), - e(n 3
<\ \i)\ 2" 2), PR P ya)
J
(3.20)
Finally, the amplitudes can be written as
(N,2m,q) S om—2q+1f 1 )2’"“1“
A ~B(1-2, =N
1 ( 2 ) <2M2
37
- 22m(fyatt (—2 ,=—2m+ ) 21
@O U( —2m, 5T Imt oo (3.21)

In the above, U is the Kummer function of the second kind
and is defined to be

_ T M(a, C,X)
Ua, ¢, x) = sinwc[(a —o)l(c—1)!
_xlfcM(a +1-¢2—-0¢x)
(a—1)(1 = o) ](07&2,3,4.,,)

(3.22)

where M(a, ¢, x) = 20 8’ J]", is the Kummer function of

the first kind. U and M are the two solutions of the
Kummer equation

xy"(x) + (¢ = x)y'(x) = ay(x) = 0. (3.23)

It is crucial to note that ¢ =% —2m +3, and is not a
constant as in the usual case, so U in Eq (3.21) is not a
solution of the Kummer equation. This will make our
analysis in Sec. IV more complicated.
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There are some important observations for the high-
energy amplitude in Eq. (3.21). First, the amplitude gives
the universal power-law behavior for string states at all
mass levels

A(lN,Zm,q) ~ 520 (in the RR) (3.24)

where

a(t) = ay + a't, a =% and o =1/2. (3.25)
This generalizes the high-energy behavior of the four
massless vector amplitude in the RR to string states at
arbitrary mass levels. Second the amplitude gives the
correct intercept ag = 5 of fermionic string. Finally, the
amplitude can be used to reproduce the ratios in Egs. (2.19)

calculated in the GR as we will see in Sec. IV.
|

A(N+l 2mt1,q) _ f drxbie(1 — x)k k3[ 1
—X

eP'k] eP'k3 2m+1 E?P'k]
. 4+
—X 1—x x2

k3]N 2m—2q

€P'k3 ]q 1
+ P
(1—-x)*] x

PHYSICAL REVIEW D 83, 066016 (2011)

B. Amplitude [N + 1,2m + 1,¢9) ® |bl_’(1/z)>

Note that this is the only case with odd integer 2m + 1.
The scattering amplitude corresponding to state in
Eq. (2.14) can be written as

A(N+12m+1q) <¢Te ¢lezk X . (aXT)N 2m—2q

X (aXZL)2m+ 1 (62xé)q
X l/jge_‘ﬁzeikzxz k3 l//é‘eik3x3 kyy l//gei/uX«t)
(3.26)

where we have dropped out an overall factor. The ampli-
tude can be calculated to be

-{<¢{ WX — (T Ay + (T wzxw‘;w]kmkﬂ

ol - m—2q P -
—/ dxxkrke (1 — x)k k%I: kg:lN : qu: kl—i—

X

[(1—];;2]“ 1 [(e

~ (_ 1)N[\/__—;:|N72m72q+1 <_W
2

T k) (ky - ky) —

1 >2m+q+2

eP-k3]2m+l
—X 1—x

(eTl “ky)(ky - k3)

]

2m+1 2m+1 $\J
P2m+q+1 s
5077

-[—(s-i— t+ 1)[1dxxkl'k2_j_1(1 —x)leksmNF~ +f[ dxxhik=i=1(] —x)kz'k3_N+j_2]
0

2m+1

1 \2m+q+2 2m+1 s\/
~ N—2m—2g+1 “2 m+q+1 _
e () > ( )(- ;)

We then do an approximation for beta function similar to the calculation for A(N 2m4) and end up with
1 \2m+qg+2
A(N+l,2m+l,q) (1 _ E’ _ - ) [ IN—2m— 2q+1< ) pPm+q+1
2 2 N 2M,
S N 6-2), 53]
Z +0(Z)(z—-=) —43)(-=—=
=0 t)\2 2 j t 2 2 j
) 1 1 \2m+q+2
~ B 1__’__ N—2m— 2q+1< ) 22m+1 Il
(13 )w— ] T o
[(1 4 t)U( 1 —om = om f) iu( 1 -2 o+ t)] (3.28)
. —1—2m,=-—2m—=,=|— -1 - m, —2m .
2 2°2 2 2°2
Note that there are two terms in Eq. (3.28), and the first argument of the U function @ = —1 — 2m is odd. These differences

will make the calculation of the ratios in Sec. IV more complicated. Finally, the amplitude gives the universal power-law
behavior for string states at all mass levels with the correct intercept a, = % of fermionic string.
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C. Amplitude [N + 1,2m, q) ® [b” ;| )
The third scattering amplitude corresponding to state in Eq. (2.13) is

A(BN‘*'LZ"NI) — <l/j{'e—¢leik1X1 . (axg)N—Zm—2q+1(axé‘)Zm(aZ)(é‘)q wge_‘bzeikaZ . k/Bwé\eith . ka’4 l/jzeik4x4> (3.29)

where we have dropped out an overall factor. The scattering amplitude can be calculated to be

A(N+12m ) _[ drxbika(] — yye k;I: k3]N m=2q+1
1—x

ek el ket k| €f ks e 0
[ —x +1—x] [ x2 +(l—x)2] x
AT DA — T DT D) + T v i oskoa

T m— P . P, m P .
j dxxha(1 — x)k kxI: k3]N ? quI: — ke _k3]2 [ e - k32]q
X X 1 —x (1—1x)

‘_I:(eTl : eT)(k3 : k4)
X

b d)(eT k) - )]

—X : 1—x
o [N 2 2q+l< 1 )zm“’izmw 2Zm(2m)(_ f)’
M PACNANE

. I:—% [1 dxxkrke=i=2(] — y)keks=NFi=1 4 t/l dxxkrk=i(1 — X)kz'krNﬂ_z]
0 0
1 \2m+q 2m (2m s\/
~ N—2m—2q+1 thm+q _ -
e g ) S ()()
J
'[—%B(kl “ky—j—Lky ks =N+ j)+tBlk; - ky—j+ Lky ky—N+j— 1)]- (3.30)

We then do an approximation for beta function similar to the calculation for A(IN 2m4) and end up with

~ _B< _E _ 1 _ t)[\/_]N 2m— 2q+l( 1 )2m+q22m+q

27 2 oM,

ST O6-, -0 )]

~ —B<1 _i _%_% [\/__]N 2m— 2q+1< 1 )2m+q22m—lfq

2’ 2M,
[U+ﬂU(2 ) +lf) mU(z ) +3tﬂ (3.31)
. —Zm, - — zm —, < —zm — zm .
2 2°2 "2 2°2
In this case there are again two terms as in the amplitude A, but with an even argument a = —2m. Finally, the amplitude

gives the universal power-law behavior for string states at all mass levels with the correct intercept ay = % of fermionic
string.

D. Amplitude [N — 1,2m,q — 1) ® [b" , , b* ; , b 3 ,)
The fourth scattering amplitude corresponding to state in Eq. (2.16) is

AEN—I,Zm,q—l) _ <¢1T‘e—¢>leiklxl . (axg)N—Zm—Zq(axé)2m(82xé)q—llpglpga ¢§e—¢zeikzxz _kA3¢§eik3x3 kg ¢geik4x4>
(3.32)

where we have dropped out an overall factor. The scattering amplitude can be calculated to be
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T m— P, P, ml P .
AN 12mg=D) _[ dxxkika(] — y)l k}[ kg:lN 2m-2g I:e k, L€ k3:|2 I:e k,
1 —X 1 —x xZ

- X

YT YIXPE PO OYE i krsks

f dxxk k’(l _ x)k2 k3|: k3]N 2m— Zq[
1—x

PHYSICAL REVIEW D 83, 066016 (2011)

eP . k3 ]q—l 1
+ —
(1 —x)? x

el -k, +e”-l<3]2m

—X 1—x

Tl

1 \2m+g+1 2m [ 2m
~[\/_]N 2m— 2q( ) 2m+qg . < . )<_
m 2m
Y s 3
2M, j=o\ J

~ [ \/_ ]N 2m— 2{/(
With a similar approximation for the beta function, we get

AN B(l - % -
S

— B 1——,—
(-3

Again the amplitude gives the universal power-law behav-
ior for string states at all mass levels with the correct
intercept ag = % of fermionic string. In the next section
we are going to use the four amplitudes calculated in this
section to extract ratios of Egs. (2.19) to (2.22) calculated
in the fixed angle regime.

) G s

— (o

IV. REPRODUCING THE GR RATIOS IN THE RR

In the bosonic string calculation [29], we learned that the
relative coefficients of the highest power ¢ terms in the
leading order amplitudes in the RR can be used to repro-
duce the ratios of the amplitudes in the GR for each fixed
mass level. Here we present an explicit example. An ex-
plicit calculation of the high-energy string scattering
amplitudes to some subleading orders in the RR for
M3 = 4 are

1 3
Arpr ~ g\/—tts3 + R\/—tt(t + 6)s?
313 + 841> — 681 — 864
+ J=is+0(1), 4.1)
64
Appr ~ L«/—t(l —6)s? + i\/—t(tz — 20t — 12)s2
LET 64 128

N 38 — 34272 — 921 + 5016 + 1728(—1)~1/2
512

X /=15 + O(1), (4.2)

2m+q+1 22 a(1 U
“22m(Ha(1 + U( -
5r) (0901 + 0U(~2m

e (ky k) (ks - k3):|
(1 —x)?

~| ©

i 1 . .
) f dxxk1~k2—](1 _ x)kz'k3—N+j—l
0

;)]B(kl hy—j+ Lk ks =N+,  (333)

)2m+q+1;2m+q (1 +71) jzi( 2}41 )(_ %)/(% B 9}

t

17
—=2m+-, =) :
2 2m X 2) (3.34)

1
Agr) ~ —a\/—_t(t +10)s% —

3[4 + 307 + 761 — 1080 — 960(—1)"1/?]
512

1 2
N + 52t + 60)s?
58 1(3#> + 52t + 60)s

X /=15 + 0(1), (4.3)

i Vi i g Vil + 2%

(3:—8)(r+6)521[; —2( D) s + o),

A[LT] ~ - 2)S3 -

4.4)

We have ignored an overall irrelevant factors in the above
amplitudes. Note that the calculation of Egs. (4.3) and (4.4)
involves amplitude of the state (al,)(al))|0, k)
which can be shown to be of leading order in the RR
[29], but is of subleading order in the GR as it is not in
the form of Eq. (2.2). However, the contribution of the
amplitude calculated from this state will not affect the
ratios 8:1: — I: — 1 in the RR [29]. One can now easily
see that the ratios of the coefficients of the highest
power of ¢ in these leadzng order (s®) coefficient
functions é 614 614 5z in the RR agree with the ratios
in the GR calculated in Eq (2.8) as expected. Moreover,
one further observation is that these ratios remain
the same for the coefficients of the highest power

of t in the subleading orders (s*) &3z — pg: — 135 and
() &is35: —3515: — 55. More examples can be found
in [29].
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In this section, we are going to generalize the calculation
to four classes of fermionic string states for arbitrary mass
levels. We will first calculate the leading order results in this
section and postpone the subleading order calculation to the
next section. We begin with the first amplitude of Eq. (3.21).

A. Ratios for |N, 2m, q) ® |b* 3/2)

It is important to note that there are no linear
relations among high-energy string scattering amplitudes,
Eq. (3.21), of different string states for each fixed mass
level in the RR. In other words, the ratios A\ /AN.00
are 7-dependent functions and can be calculated to be

) o e

-1-
)

where we have used Eq. (3.3a) to replace 7 by 7. If the leading
order coefficients in Eq. (4.5) extracted from the amplitudes
in the RR are to be identified with the ratios calculated
in the GR in Eq. (2.19), we need the following identity

S (1=3)(5) (D G B

j=0 Jj=0

2m
=>|:Z(—2m)js(j

j=m

A(IN,Zm,q) B (_ 1
A(IN’O’O) 2M,

. Zz'"(_z,n)j(_

j=0

(=2/1/ @.5)
J!

n 2m
=2’"E —1)/tm
=1) (j—i—m

j=0

m

+2m Y (1)

j=1

where we have used the signed Stirling number of the first
kind s(n, k) to expand the Pochhammer symbol. The defi-
nition of s(n, k) is
(x), = Z(— 1) *s(n, k)x*. 4.9)
k=0
Thus the nontrivial leading order identity of Eq. (4.7) can
be written as (m = 0)

F(m) = Z( 1)’( )[S(] +m—1,j—1)

+s(]+m— 1, )] = Q2m— 1! (4.10)
where we have used the convention that
_ 0, form=1 B .
sm—1,-1) = { Pz s =0,
4.11)

2m . . o
(,- A m)so Fm= 1= D)

PHYSICAL REVIEW D 83, 066016 (2011)

Z( 2m )( )( 3/5) (4.6)
=080+ 0D + ...+ (=t + By
A

where L = N + 1 and is an integer. The coefficients of the
terms O{(1/)"*'} in Eq. (4.7) are irrelevant for string
amplitudes. If the identity of Eq. (4.7) obtained from super-
string theory calculation is correct, this implies that the
value of L affects only the subleading order terms
O{(1/7)"*1} in Eq. (4.7). We will show that this is indeed
the case mathematically and numerically. In fact, we will
show numerically that the identity is valid for arbitrary
real L.

We will first show the cases of L = 0, 1, and then try to
generalize the proof to arbitrary integers L. For L = 1, we
rewrite the nontrivial leading term of the above summation
in Eq. (4.6) as (we have replaced 7 by 7 here for simplicity)

;)JZ](— ks — 1, k)(_ %)k<_ %)j%

Lj—m )—f S (—2m)s( - m—l)%](—r)-m

j=m+1

)s(j +m—1,)(=0)™"

(4.8)

and 2m — 1)!! =0 for m = 0. To apply the algorithm
developed by Mkauers in 2007 [30], we need to introduce
an auxiliary variable u and define

mz”< 1),<

+s(]+m—1,])]
= fi(u, m) + fr(u, m)

where f, and f, are the two summations, each with
one Stirling number, and F(0, m) = F(m). By the algo-
rithm, both f, f, satisfy the following recurrence relation
(30]

F(u, m) = )[s(]+m—1 j—1)

4.12)

-+ 2m~+u)f(u,m)+ Q2m+ u)f(u+1,m)

(4.13)
+ fu,m+1) =0,
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hence, so is F. Equation (4.13) is the most nontrivial step to
prove Eq. (4.10). Now, note that

(YL u=0

o= $(3) [} 258
j=0

Using the recurrence relation Eq. (4.13) and substituting

(u, m) = (1,0),(2,0) - - -, one can prove that
F(u,1)=0, VY u>0.

Similarly, by substituting (1, m) = (1, 1), (2, 1), (3, 1) - - -,
one gets F(u,2) = 0, V u > 0. In general, we have

(4.14)

(4.15)

F(u,m)=0, VY u>0. (4.16)

Finally we substitute # = 0 in the Eq. (4.13) to obtain

—(14+2m)FO,m)+2mF(1,m)+ FOom+1)=0, (4.17)

which implies

Fm+1)=Q2m+ 1)F(m). (4.18)
Equation (4.10) is thus proved by mathematical induction.
Note that the case for L = 0 corresponds to f, = 0 in the
above calculation. We thus have proved the nontrivial part
of Eq. (4.7) for L =0, 1.

2m
> (~2m)(-
j=0

Thus the nontrivial leading order identity of Eq. (4.7) can
be written as

m 2 jtmy -
f(m,L)Ez<. " )Z(jtm>(—l)”'"
jf

—o\J T m /5

X S(l, j)(_L)jﬁ»m*l

= (2m — D!, (4.23)

which is independent of L! We will again use mathematical
induction to prove the identity. Firstly, we note that, for
L=0 and L=1, FmL=0)=2m-—1)!! and

PHYSICAL REVIEW D 83, 066016 (2011)

For L =1, the vanishing of the coefficients of
=00 (=H7 ', ...,(-H™™! terms on the LHS of
Eq. (4.7) means, for 1 =i = m,

) mii . 2m ) o
G(m, i) = /ZO(—I)’ ’(]. e l.)[S(J +m—1-1ij)
+s(G+m—1—1ij—1)]
= 0. (4.19)
Note that for the case of L = 0, the second term of

Eq. (4.19) vanishes. To prove the identity Eq. (4.19), we
need the recurrence relation of G(m, i) [30]

—2(1+m)?(1 +2m)G(m, i) + 2+ Tm + 4m*)G(m + 1, 1)
—2m(1+m)(1+2m)Gm+1,i+1)—mG(m+2,i)=0.
(4.20)

Putting i = 0, 1, 2.., and using the fact we have just proved,
ie. Gm + 1,0) = 2m + 1)G(m, 0), one can show that

G(m, i) =0 forl=<i=<m. 4.21)

Equation (4.7) is finally proved for the case of L = 0, 1.

We now proceed to prove Eq. (4.7) for L =
2,3,4,....To do so, we rewrite the nontrivial leading
term of Eq. (4.6) in another form as

oo (0

(
)3 ())en s ersao(-5) (-3
()

)( L), lz< () - )
i( )( L)1/ s(t = )~ 2)’"

=0

)(_1)1+m(—L)j+mls(l, j)(—%)m. (4.22)

F(m,L=1)=2m—1)!! as have been proved
previously, so Eq. (4.23) is true. Secondly, we notice that
F(m, L) satisfies the following recurrence relation [30]

20 + m)(1 +2m)F(m, 1 — L)
—2(1 +m)(1 +2m)F(m,2 — L)
+Q2+2m+N)F(1+m —L)
—-QB+2m+2N)F1 +m,1—1L)

+(1+NFA+m2—L)=0. (4.24)
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Equation (4.24) gives a recurrence relation for A(N 2m,q) 1 \2m+q
F(m, L) with three consecutive values of L. One thus tl_'rglow t;m(—m) 22m(—pymt2a
can solve the equation and get the final solution F(m, L) = Ay 2

— 1N t 3¢
.(Zm 1)!. We thus have proved Eq. (4.23) for any XU( 2m——2m+—,—>
integer L. 2 22

To complete the proof of Eq. (4.7), we need to

—_ 1\ (N,2m,q)

show the vanishing of the coefficients of = (— ! )q+m(2m lzn" = i TR (4.25)
=0% (=H"", ..., (=D terms on Eq. (4.6) for 2M, (—M,) T% 00)
L=234... At this stage, the authors are unable
to do the exact proof for this case. Instead, we give B. Ratios for [N + 1,2m + 1,¢) ® |b” , )

. . . s > q —(1/2)
numerical calculation of Eq. (4.6) for some values of m. ] (N+12mtLq) 1 A (N.00)
The results support the identity Eq. (4.6) and can The ratios A, """ /AT can be calculated to be
be found in Appendix B. Moreover, the identity seems to (N+1,2m+1,9)

i ; : . A ’ ’ 1 \2m+g+1
be valid for arbitrary real values L not just integer. So we 2 = (_ ) (—pm- [(1 +1)
will take Eq. (4.6) as an identity in combinatorial theory A(IN’O’O) 2M,
predicted by string theory calculations. We thus have w1+ 2m\ Nl o
shown that high-energy superstring scattering amplitudes X Z ( . ) (:) (5_5)
A(IN’zm"’) of Eq. (3.19) in the RR can be used to extract the j=0 J ! i
ratios TiN’Zm’q) / T{N’O’O) of Eq. (2.19) in the GR by using the 2l 14+ 2m\/2\Nif 1t
Stirling number identities. That is ! < j (?) ( 2 2) :| (4.26)

=

The bracket in the above equation can be simplified by
dropping out the subleading order terms in the calculation,
and one obtains

o - o ()

B 2m+1 B B B _z (_2/tj_~2m+l B B o _z (—Z/f)j
=(1+1) j;)( 2m 1)j( N ) _ t; (—2m 1)]( N-—1 2)j

2 J ]‘ j=0 ]'
o (— 2/5)’ & n 2/
=~ —2 - 1 il — 2 B 1 2
7 ,Zo( m )]< 2), Z (=2m —1) ( 2),~ J!
- ' 2m+1 N 7 ﬂ
=2(2m + 1) ; ( zm)]_l( N Q)j] (G — 1!

(4.27)

2m ~ _ .
=22m+1)- Z(_zm)j(_N _ %)( 5'/5)1
=0 i !

where we have dropped out the subleading order terms in the second equality of the calculation. Finally, the ratios can be

calculated to be

A(N+1,2m+1,q)

= () e e S (OG-, E (O )

- _L 2m+q+1 o _ (_ _ _z (—2/27)1
_< 2M2) (—1) 2(2m+1)jgo( 2m)j( N-1 2),- F (4.28)

By using the identity Eq. (4.7), one can show that the leading order coefficients in Eq. (4.28) can be identified with the
ratios calculated in the GR in Eq. (2.20). That is

(N+1,2m+1,q) T(N+l,2m+l,q)

. 2 _ 2
lim ANO0) = oo (4.29)
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In the calculation for this case, it is crucial to reduce the
upper limit of the summation 2m + 1 to 2m. Otherwise, the
identity Eq. (4.7) will not be applicable. It is remarkable to
see that the leading order coefficients of Eq. (4.28) can be
identified with ratios of Eq. (2.20) in the GR.

C. Ratios for |N + 1,2m, q) ® |bf(1/2)>

The ratios ALY 729 /AN can be calculated to be

A:(),N+l,2m,q) 1 1 2m+q*l( ~)m
—_— = B _t
A0 o)

2m 7 (_2/lt)j
—2m),(-N—1-> :
<2 2 2),- jt

By using the identity Eq. (4.7), one can show that the
leading order coefficients in Eq. (4.30) can be identified
with the ratios calculated in the GR in Eq. (2.21). That is

(4.30)

(N+1,2m,q) (N+1,2m,q)

A T
lim =3 =3 4.31)
00 (N,0,0) (N,0,0)
¢ Al T,

D. Ratios for |[N — 1,2m,q — 1) ® |bT L (1/2)b}_’(3/2))

The ratios A 12471 /AN00) can be calculated to be

(N+1,2m+1,q)

A 1 2m+

4 :<_ ) q(_i)m
oM,

2m
X Z(—Zm)](—N
=0

By using the identity Eq. (4.7), one can show that the
leading order coefficients in Eq. (4.32) can be identified
with the ratios calculated in the GR in Eq. (2.22). That is

W00
A 1

(- N?’
—1- 2)] - (432)

(N+1,2m+1,q)
lim 24 =
1—00 (N,0,0)

Al

T‘(‘N+1,2m+1,q)

o (4.33)
1

We thus have succeeded in extracting the ratios of high-
energy superstring scattering amplitudes in the GR from
the high-energy superstring scattering amplitudes in the
RR. In the next section, we will study the subleading order
amplitudes.

V. SUBLEADING ORDER AMPLITUDES

In this section, we calculate the next few subleading
order amplitudes in the RR for the mass levels M3 =
2(N + 1) =4, 6, 8. Some results for the bosonic string
calculation were presented in Eq. (4.7) to Eq. (4.7) in the
last section. The relevant kinematic can be found in
Appendix A. We will see that the ratios derived in

Sec. IV persist to subleading order amplitudes in the RR.

For the even mass levels with (N + 1) = % = odd, we

conjecture and give evidence that the ex1stence of these

PHYSICAL REVIEW D 83, 066016 (2011)

ratios in the RR persists to all orders in the Regge expan-

sion of all high-energy string scattering amplitudes. For the
odd mass levels with (N + 1) = —2 = even, the existence
of these ratios will show up only i 1n the first ¥ ; L+ 1 terms
in the Regge expansion of the amplitudes. For the mass
level M? = 4, there are three states for Eq. (2.13), and we

obtain the subleading order expansions as follows.

1 1 1 9 7 5
T N _ 0 a3, 72000 Yo
[2,0,0)|bT (1/2)> ( 12 4t)€+<4t +4t +4t 4)s

5 39
+ (EIS +187 + St 4)s—1 +0[s7?]

(5.1

(iz2+lr+1—9)s+<it3+2—3t2+351 19)
32 8 32 32 32 32 32
(3 , 13, 39 23

+ (28— = —

P, ) 14 o[,

4 4 47 4 (5-2)

( La lt+5) +< Lp Dp 27 29)
16" 4" 16)° 6 16 16 16

3 17 45 31
+(——t3——t2— ) 1+ 0[s7?) (5.3)

L R R

In order to simply the notation in the above equations, we
have only shown the second state of the four-point func-
tions in the correction functions to represent the scattering
amplitudes on the left-hand side of each equation. We find
that the ratios of the leading order coefficients of st*> are
%:%: - %, and it is easy to check that these are the
same as the ratios in the fixed angle limit. Moreover, the
ratios persist in the second subleading order terms s°# as
17351 — 1g- The ratios terminate to this order. We can also
compare the ratios among different worldsheet fermionic
states but with the same mass level M3 = 4. We have the

expansions:

(Ltz - lt)s + (Lﬁ - §t2 - 49t 35)
16 16 16 16 16 16

7 67 117 57
e e 1+ 0[s7? )
( 4l 4t 4t 4) Ols 2], (5.4)

1 5 1 17 33 25
N L B P ——t3——t2——t——)°
( 8 8)s ( g 8 T3 R)
73 612 109 55
+{—=B——2-

PR P -2
1 7 7 t 4)s +0[s7?%], (5.5
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10,0, 005 1 /2)b% 12y D% )

(1 , . 3 5) (1 . 15, 27 13)0
— (=P +—t+ =P+ =P+ =+
32 16 32 32 32 32 32
1 7 11 5
+ (= + 2+—+>—1+ —2]. :
(21‘ 2t 2t 3 O[s~?] (5.6)

The ratios of the leading order -coefficients are
proportional to that of state |2, 0, O}lbf(l /2)>, and can be

calculated to be

12,0, 0>|bi(1/2)>:|2; 1, 0>|bE(1/2)>:|1» 0, O>|bli(3/2)>
11 1

1
T —
10,0, 0016% ) b% bl 3y0) = 7167 ~ 532

(5.7)

They again match with the ratios in the fixed angle limit.
One can also find that the second subleading order ratios
are the same }:7: — £:55. Again the ratios terminate to
this order.

For the mass level M% = 6, there are three states in
Eq. (2.13). We again calculate the subleading order expan-
sions. Interestingly, in this case the ratios of the coefficients
seem to be the same in all orders as can be seen in the

following:

13,0,00[67 , )
25 . 25 21
— /= +-l =P =P+ ——)
( )s ( 6 16 16)°

197 . 625, 743 411
R A e e e ety T )
( Y R U

+0[s7 1], (5.8)

13.2,0067 )

—>\/_< ! +E)s2+\/—_t<it3+l—3t—§)s

48 3R 64 32 8
1 9 925 . 729 1481
+ — . 4 + - 3 —_ 2 —
v t(256t 128" "256" el 256)
+0[s™ 1], (5.9)
13,0, DIb", 1))
t( 3 t+ 7 ) 2
b )
16\/_ 86 166
3 51 19
+\/_< —tz——t——)s
32\/’ 2.6 166 446
111 1841 1209
+ J_( - r— 2 - t
128\/_ 64/6 1286 3246
- ﬂ)so + 0[s7']. (5.10)
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We find that the ratios of the leading order coefficients of

2 are k- ﬁ-, and they agree with the ratios in the

fixed angle limit. The ratios of the second and the third

7/2 9/2 3.1 3
order coefficients of s¢t7/2 and s°7°/2 are 603" T B and
3.1 .

&35 WE’ respectively. We find that these two sets of

ratios are the same with one another. We predict that the
ratios persist to all orders in the expansions.

The expansions among different worldsheet fermionic
states but with same mass level M3 = 6 are

Bomwzmp

151 295 119
— =t == +/= — 1=
( 48 ) (32 96 96 32 )

1 249 . 1317, 2883 3831
it =P~ ?— 1— )
<128 128 64 64 128
+0[s™ 1], (5.11)
12,0, 0>|bL(3/2>>
7
— t——t2 —t)s2
( 8\/_ &/6
57 129 147
+\/__< P — t— )s
16\/_  16v6 166 166
285 1289
+ [ ( 4 t3_ t2
64\/_ 64+/6 3246
2 1 4011
83 0 )s0+0[s_1], (5.12)
32[ NG
L
1,0,0)[b ;)b (1/z>b—<3/2>>
7
— 72 ——{—
VT ( STy 96)
31 61
+—tl =7 —2+— +—)
( A U TN R
77 . 2531, 643 3569
ottt P P 1+ )
(256 192 768 9% = 768
+0[s7']. (5.13)

The ratios of the leading order coefficients are given by

13,0,00[B7 , 1)):13, 1, OIBE | ,):12, 0, 0)bE 5 )

11 11
L — . . .
11,0, 00D, 1) B 1) B 312)) = 57 55 /e %6
(5.14)

We have checked that they agree with the ratios in the fixed
angle limit The second and the third subleading order

ratios are ;1551 — 16\/- gand 2 e ﬁgzzs%’ respec-
tively. Again they agree with the ratios in the fixed angle
limit. We expect that the ratios persist to all orders in the
expansions.

For the mass level M% = 8, there are six states in

Eq. (2.13)
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1 5 9
T 3 _ 213 4 3 _ 2
|4,0,0>|b_(1/2)>—>\/ (—t 16t> + /= ( 4t 41‘ 8t>s

16
45, 139, 91, 137 8
+-tl =P+t P+ P+ —
t<16t T TR 16)
7. 193, 2013 . 2899 . 1381 171
+\/—_z(fr5 +——r+ £+ 2+ +7) O+ 0[s7'], (5.15)
4 8 8 8 8
1 3 51 49 7 251 459
PP IRENC AUV P BRVC AIIE PRI P\
14,2, 0)1bL 1)) (256 oa’ T 256')" 128" " 256" T256" " 256" " 256
63 . 9. 893 . 1465 1797
+ /= — PP -1~ )
(256 2560 2" " 64 256 ' 256
1273 , 6419 . 15167 , 26093 5801
+ 5 4 3 _ 2 _ _ 0 + —1 1
v ( 28" T8 T e T Tes U s ' 1o )s OLs™') (5.16)

3 129 979 2895 3 327 5899 , 8917 2235
4,4,0)|p" \/—t< £ - - ) + J—t( - £ — r t+ )
| d -/ 2)> 4096 4096 4096 4096 2048 2048 2048 2048 512

. \/-——( 5 1017 A 23853 A 18573 2 76519 23133)
4096 4096 2048 2048 4096 4096

19031 , 24895 10657 109321 81701
+ V- £ — 4 — 3+ 2+ + O+ Ofs! .
< 1024 124" T sz D s P T T0oa T 1024 )s Ols™'] .17)
1 1 9 1 35 83 161 81
14,0, DIbT | ) — \/—_t(— £——+ t)s3 + J—_t(— - £ - - t+ )s2
o) 64\/_ 8v2 642 322 6442 642 642 642
53 125 181 1187 891
+ \/—< 5 t4 _ t3 _ t2 _ )
64\/_ 642 1632 82 64\/_ 642
401 1665 , 4397 , 8401 2165
+ =7 ( £ — - )0+0s-1, 5.18
32f 32J§ 16\/_ 16\/_ 32\/' YN L= (5.18)

| 17 . 63 8l i 27 . 163, 89 45
4,0,2)|p" — /= S+ ——12 4+ ) +\/—(—4+—3+—2+—+ )
14,0 2165 2)) (512t st s s 256" "256" 256" T 256" " 16

53 365 1413 5685 2095
+ [ 5 4 + = 3 + 2 +
(512t 512t 256 256 ! 512 r- 512)

29 . 547 . 1893 945
R | P e et A e t+—)A0+ s 1
(32 32 3 32 0+ g )¢+ Ol (5.19)

1 3 57 459
|4,2,1 |bi —M/—t(— £+ 2+ r— )33
NOZ 12 102442 10242 10242 102442

+\/__t(_ 1 . 33 5y 421 a_ 309 297)
5122 5122 5122 512J' 64+/2
J—_( | 159, 2139 , 3983 , 27419 1043 )1

- P+ *+ £+ ?+ r+
10242 10242 51242 51242 102442 102442 g
\/—_( 3 ., 1073 a 1203 11931 1913 13569

1 P+ t+
322 128\/5 32[ 64\/_ gﬁ 128/2.

)so + 0[s7']. (5.20)

1.1 .3 . 1 _.1.__1
1672564096 © 6442 °512° 102442
and they agree with the ratios in the fixed angle limit. The ratios of the second and the third order coefficients

24 1,5 1.1 .3 . 1 _.1.__1 1.1 .3 . 1 _ .1.__1 :
of 7" and s are giigisgm: $5356" T 30h and ¢ 556" 7506 - Gl sE T T respectively. We find

that the above three ratios are the same with one another. One can see that the ratios terminate at the order s°7°
as expected.

We find that the ratios of the leading order coefficients of s°f° are
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The expansions among different worldsheet fermionic states but with the same mass level M3 = 8 are

1 31 19, 41, 219
4,0, 0)|p- ——tl—7F - t2) + /= ( —tz——t) 2
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4,2,0)|b" —M/—t( £ — P+ t) S+ V- < = £+ 2+ t+ )
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1282 642
The ratios of the leading order coefficients are given by
14,0, O}IbT(1/2)> 4, 0, 0)| L (1/2)> 4,2, 0y|pL (1/2)) 4,0, 1)|p" (1/2)) 14,2, 1)|pE (1/2)>
13,0, O}IbLG/z)) 3,2, O)IbL<3/2)) 3,0, l)lbL(3/2)> 12,0, 0)|bT

12,2, 0)bL )5y DL 0yt (37212, 0, DIDT ) BE (1 10\ b (55
— 1 . 1 . 3 CR— 1 CR— 3 . 1 . 1 CR— 1 . 1 . 1 CR— 1
16712872048 51242 819242 3242 512427 2567256 4096 10242

5 _ 3 _

L
1P amblien)

(5.31)

They agree with the ratios in the fixed angle limit. It can be
checked that the second and the third subleading order
coefficients of s> and s'#> have the same ratios. The
ratios terminate in the fourth subleading order s°#° coef-
ficients as expected.

VI. CONCLUSION

In this paper, we calculate high-energy massive super-
string scattering amplitudes in the Regge regime (RR).

We explicitly calculate four classes of high-energy Regge
scattering amplitudes. As an application, we demonstrate
the universal power-law behavior for all massive string
scattering amplitudes in the RR. In particular, the ampli-
tude gives the correct intercept ay = % of fermonic string
theory. These results generalize the well-known results for
the case of high-energy four-point tachyon scattering
amplitudes. Moreover, as in the bosonic string case con-
sidered previously [29], these amplitudes can be used to
extract ratios among high-energy superstring scattering
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amplitudes in the fixed angle regime. The calculation relies
on a set of Stirling number identities, which we are able to
give only partial proofs of them. For this reason, we give a
numerical “proof” of the whole identities. Hopefully, the
complete mathematical proof of these identities suggested
by string theory calculation can be worked out in the
future.

In addition to the leading order calculation, we also
study the subleading order amplitudes in the Regge regime
for the first few mass levels. In particular, we conjecture
and give evidence that the existence of the GR ratios in the
RR persists to all orders in the Regge expansion of all

string amplitudes for the even mass level with (N + 1) =

IVI2 o . . M2 -
—* = odd. For the odd mass levels with (N + 1) = =2 =

2

even, the existence of the GR ratios shows up only in the
first 21 + 1 terms in the Regge expansion of the ampli-
tudes. It will be an interesting challenge to further study

this subleading order effect.
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APPENDIX A: KINEMATIC RELATIONS
IN THE RR

In this appendix, we list the expressions of the kinematic
variables we used in the evaluation of 4-point functions in
this paper. For convenience, we take the center of momen-
tum frame and choose the momenta of particles 1 and 2 to
be along the X'-direction. The high-energy scattering
plane is defined to be on the X! — X? plane. (See Fig. 1.)

The momenta of the four particles are

ky = (ﬂ/pz MR —p, 0), (A1)
ky = (ﬂ/pz T2 4 p, 0), (A2)

PHYSICAL REVIEW D 83, 066016 (2011)
e’(3)

T

FIG. 1.

ks = (-,/qZ + M3, —gcosf, —q Sinﬁ’)’

Kinematic variables in the center of mass frame.

(A3)

k, = (_1/q2 + Mﬁ, +qcosh, +¢q sinﬂ) (A4)

where p = |pl, ¢ = |¢| and k? = —M?. In the calculation
of the string scattering amplitudes, we use the following
formulas

_kl'k2=Jp2+M%'Jp2+M%+p2

1
= E(S - M} — M3), (A5)
—ky k3 = —\/p2 + M%-\/q2 + M3 + pgcosf
1
= 5(1 - M3 — M3), (A6)
—ky - ky = —\/p2 ~I—M%-\/q2 + M2 — pgcosf
1
= 5(u - M3 — M3) (A7)

where the Mandelstam variables are defined as usual with

s+t+u=YM=2N-1. (A8)

The center of mass energy E is defined as
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E= %(J,ﬂ + M3+ P2+ M%)
— %(\/cf + M+ g + Mg).

We define the polarizations of the string state on the
scattering plane as

(A9)

1

P __ 2 2

y —E(\/p T M3 p, 0), (A10)
1

b = —(p, 02+ M, 0), (A11)
2
e = (0,0, 1). (A12)

The projections of the momenta on the scattering plane can
be calculated as (here we only list the ones we need for our
calculations)

1
eF k= —E<Jp2 + Mip? + M3 + pZ), (A13)
el - k, =—M£2(J 2+M%+\/p2+M§), (Al14)
e’ ki =0 (A15)
and

1
el ky = E(qu + Mg\/pz + M2 — pq cosc‘)), (A16)

1
el - ky = E(p\/qz + M3 — q\/p2 + M3 cos@), (A17)

el - ky = —gsinf. (A18)

We now expand the kinematic relations to the subleading
orders in the RR. We first express all kinematic variables
in terms of s and #, and then expand all relevant quantities
in s:

s — (M3 +2)

22

E, (A19)

PHYSICAL REVIEW D 83, 066016 (2011)

+ (M3 +2
, = M, (A20)
2.2
kol =E} 42, Kl = 1E+2; (A21)

1 1 M,
k= s+ (- —+=2), t) (A22
€p Ky 2”23 ( M, 2) (exact) ( )
1 1 M _
eL~k1=——2M2s+(—M—2+—22>—2M2s !

— 2M, (M2 — 2)s7% — 2my(M5 — 6M3 + 4)s73
— 2M,(MS — 12M5 + 24M3 — 8)s™* + O(s ™),
(A23)

er -k = 0. (A24)

A key step is to express the scattering angle 6 in terms of s
and ¢. This can be achieved by solving

2
1= ~(~(& - f) + (el — Ikl cost)? + IksPsin’ )
(A25)

to obtain

s+2t—M3+6

6 = arccos = —
\/E—_F'g‘/(s+2) —2(s—2)M5+M;

N

). (exact) (A26)

One can then calculate the following expansions which we
used in the subleading order calculation in Sec. V

1 s t+2— M?
€ép " k3 = E(Eé% - |k2||k3|COS(9) = _271”22,

(A27)

1 2
e k3 :E<k2§_ E2k3C050)

t+2+ M2 B
o 2— Myts™ ' = M,[—4(t+ 1)
+M2(t—2)]s7% — M,[4(4 + 31) — 12tM?
+(t—=4)M3]s 73 — M,[—16(3 +21) +24(2 + 31)M3
—24(=1+t)M35+ (=6 +)MS]s~*+ O(s ),

(A28)
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er - k3 = _|k3| sinf

1 1
=—/—1— 5\/—1‘(2 + 1+ M3sT! — ——=[32 + 52t + 201> + 2 + (32 + 20t — 612)M5 + (8 — 3)M3]s 2

8=t

1
[320 + 4561 + 1881% + 2213 + t* — (=224 + 36t + 132> + 58)M3. + (=16 — 1221 + 15*) M5

16/—1

+ (=24 + 50)M§]s 3 +

+

W[1024 + 120321 + 16080¢> + 7520¢° + 1432t* + 136> + 510

— 4(—=512 — 8961 + 22321% + 184413 + 1701* + 717)M3 + 2(768 — 2240t — 2372¢ + 117283 + 35t*)M3
— 4(—128 + 288t — 45072 + 35)M$ + (64 + 240t — 352)M5]s™* + O(s ). (A29)

which we used intensively in Sec. IV to rederive
the ratios among high-energy scattering amplitudes
APPENDIX B: NUMERICAL IDENTITIES in the fixed angle regime from the Regge scattering am-
plitudes. The nontrivial identity of Eq. (B2) has been

In_this appendix, we give a numerical proof of the proved for arbitrary integers L by using Stirling

identity number identities. However, the “0 identities” were ex-
2m 7\ (=2/7/ actly proved only for L =0, 1. We conjecture
Z(—2m) j<_L - E) y (BI)  that all identities in Eq. (B2) are valid for arbitrary real
=0 i L L. We have done the numerical proof of the identity
for m up to m = 10. Here we give only results of m = 3

=0(—D)°+0(—) ' +...+0(—p) ! and 4

LS 0{@)’"“}, (B2)
m! t

i( om) ( f) (=2/1/ 120 n 720a? + 2640a + 2080 N 480a* + 41604 + 12000a> + 12928a + 3840
—2m):la — — =
j=0 ! 2 ]' (_i)3 (_i)4 (_f)S
64a® + 960a’ + 5440a* + 14400a> + 17536a> + 7680a
" =7° : (B3)
8 7\ (=2/8)/ 1680 134404 + 67200a + 76160
> (=2m)la— TR i 5
j=0 2 J: (_i) (_i)
13440a* + 152320a® + 5958404 + 930048a + 467712
+ BhE (B4)
N 3584a8 + 68096a> + 501760a* + 1802752a* + 32363524 + 2608128a + 645120
7
256a® + 7168a” + 82432a° + 501760a° + 1732864a* + 33617924 + 33454084 + 12902404
+ =7 (BS)
where a = —L. We can see that a shows up only in the subleading order terms as expected. For m =5,
the nontrivial leading order term is 320 as expected. For m = 10, the nontrivial leading order term is 670442572800 54

(7 0"

expected.
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