
行政院國家科學委員會專題研究計畫 成果報告

量子計算理論之研究(I)

計畫類別：個別型計畫

計畫編號： NSC93-2213-E-009-117-

執行期間： 93 年 08 月 01 日至 94 年 07 月 31 日

執行單位：國立交通大學資訊工程學系(所)

計畫主持人：蔡錫鈞

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 94 年 10 月 27 日

行政院國家科學委員會補助專題研究計畫
■ 成 果 報 告
□期中進度報告

量子計算理論之研究(I)

計畫類別：■ 個別型計畫 □ 整合型計畫
計畫編號：NSC93-2213-E009-117
執行期間： 93 年 8 月 1 日至 94 年 7 月 31 日

計畫主持人：蔡錫鈞

共同主持人：

計畫參與人員： 吳信龍。

成果報告類型(依經費核定清單規定繳交)：□精簡報告 ■完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：

中 華 民 國 94 年 10 月 25 日

 ii

中文摘要

本計畫將從計算理論(computational complexity)的角度研究量子計算(quantum
computation)的計算能力。吾人期望找尋一般量子計算中的複雜度等級(complexity class),即
BQP，相對應於一般傳統計算機之隨機演算法(probabilistic computation)之複雜度等級,即
BPP，之間的集合包含關係。若能找出一問題屬於 BQP，但不屬於 BPP，則將可確定量子

計算確實優於傳統計算機模型。反之，若可證明 BQP=BPP，則顯示量子計算將失去價值。
以現有之計算理論對於量子計算之初步研究結果顯示，對於大多數的布林函數，量子計算

均無法如同「質因數分解」問題一般給出指數倍加快(exponential speed-up)，由於實現量子

計算之成本極鉅，吾人希望藉由計算理論之角度，仔細探討量子計算之真實能力。

研究方向將包括:
1. 以通訊複雜度(communication complexity)角度，研究多台量子電腦間合作解決問題時傳

輸所需耗費的資料量大小，其中吾人將著重於研究「指紋法(fingerprinting method)」及
相關問題之通訊協定所能處理的範圍。

2. 以計數複雜度(counting complexity)角度，並配合「相對化(relativized)」的證明技巧，
吾人期望能定義新的複雜度等級(complexity class)使 BQP之位階能被更加確定。並將

試圖發掘「非相對化(unrelativized)」之結果，以便更加真實描繪 BQP與其餘複雜度等

級之包含關係。
3. 以決策樹複雜度(decision tree complexity)角度，了解一般布林函數轉化為決策樹後之查

詢複雜度(query complexity)，並試圖改進現有理論之下限邊界值(lower bounds)。
在後半部的計畫，我們探討了排列之嵌合問題(permutation array embedding)，並給出相對應
之演算法與結果。
關鍵詞: 量子計算、計算理論、通訊複雜度、計數複雜度、決策樹複雜度、排列嵌合問題

 iii

英文摘要

This research will study the computational power of quantum computation, from the
computational complexity-theoretic point. We want to find the set relationship among the
common complexity class of quantum computation, BQP, and its probabilistic counterpart in
classical computation, BPP. It we could find a problem, which resides in BQP, but not in BPP,
then quantum computation is really a superior computation model than traditional computers. On
the other hand, if we could show that BQP = BPP. Then quantum computation would be of not
much use since it could be done in classical ways.
The results to date show that for most of Boolean functions, quantum computer could not give
exponential speed-ups as it does on the integer prime-factoring problem. Due to the high cost of
realizing quantum computers physically, we want to study the true power of quantum
computation in order to predict its usefulness.

Our research would focus on:
1. Communication complexity: we want to study the communication resources required on

data transmission between quantum computers. We would especially focus on the
“fingerprinting method”, and find the set of problem, which it could be applied to.

2. Counting complexity: with the prove method of relativization, we would like to define a new
complexity classes in which the role of BQP with existing classes could be understood better.
We will also pursuit unrelativized results in which more accurate relationships could be
devised.

3. Decision tree complexity: we would want to more of the query complexities of general
Boolean functions under the quantum computation model, and study on the possibilities of
improving the existing bounds.

In the rest of part of this project, we studied the problem of permutation array embedding.
Moreover, we have obtained some results for its lower bounds.

Keywords: quantum computation, computational complexity, communication complexity,

counting complexity, decision tree complexity, permutation array embedding

 iv

目錄

1 研究目的與文獻探討 1

2 研究方法 11
3 結果 12

3.1 排列之嵌合問題之下限Quantum Computation 12
4 參考文獻 23

1 Background

1.1 Overview

This research studies the power of quantum computation in the eye of compu-
tational complexity. We examine the set inclusion relation of one complexity
class in quantum computation, BQP , with its classical counter part in prob-
abilistic computation, BPP . If one could devise a computational problem
which resides in BQP but not in BPP , then we could conclude that quan-
tum computation is surely a superior model than traditional Turing Ma-
chine. On the other hand, quantum computation would lose its advantage if
BQP = BPP .

During the eighties of the 20th century, physicists encountered various
computational problem in statistical physics of which efficient algorithms
could not been found. What’s worse, classical computers seemed not be-
ing able to simulate quantum physics in a reasonble speed. Therefore the
concept of building computers in the light of quantum physics, the so-called
“quantum computers”, began to emerge. It had been shown that quantum
computers outperform traditional computers in the problem of integer fac-
toring and database search [14][18] and it could provide exponential speedup
in the integer factoring problem, which is unlikely in classical case. Therefore
researches on the computational power of quantum computation become a
interesting topic in the society of theoretical computer science from the nities.

One of the main topic of theoretical computer science is to classify the
different computational resource requirements between different models of
computer architectures [6] [19] [13]. On the model of deterministic Turing
Machine, many common problems lie in the class of “NP -complete”, in which
efficient algorithms do not exist yet.

We will use three different approaches (not strictly restricted in them) for
studying the computational complexity properties of quantum computation.
They are:

1. Counting complexity

2. Communication compleixty

3. Decision Tree complexity

Below we give short introduction to each of these approaches.

1

1.2 Counting complexity

In computational complexity, we usually ask two related styles of problems:
One asks whether a desired solution exists; the other requires that a solution
be produced. But there is a third important, natural, and fundamentally dif-
ferent kind of problem: Th one that asks how many solutions exist. Counting
complexity [11] is the general name for this kind of problems. Usually we
want to find its relation to the complexity of nondeterministic and proba-
bilistic computation.

Counting complexity won’t do much help in designing algorithms. The
main influence of it is to classify existing computational problems in that we
could gain more insights on the relationships between them. Many complex-
ity classes were defined in counting complexity to describe various compu-
tational ability. Among them, #P [21] and GapP [9] are the most studied
ones.

1.2.1 #P and GapP

We first give the definitions of #P and GapP . Before this we should give
definitions of counting machines (CM). Simply put, a counting machine is
an NP machine. It runs in polynomial time and moves nondeterministically
with two halting states: accepting and rejecting. And we insists that any
computation path of a CM must end in one these two states. We emphasize
that the machine’s acceptance criterion is based on the number of accepting
and/or rejecting paths.

Definition 1 Let M be a CM. We define the function #M : Σ∗ → Z+ to
be such that for all x ∈ Σ∗, #M(x) is the number of accepting computation
paths of M on input x. Similarly, TotalM : Σ∗ → Z+ is the total number of
computation paths of M on input x. The CM M is the machine identical to
M but with the accepting and rejecting states interchanged (thus M rejects
whenever M accepts and vice verse).

We observe that for all x ∈ Σ∗:,

#M(x) + #M(x) = TotalM(x) = TotalM(x)

and #M(x) is the number of rejecting paths of M on input x.

Definition 2

#P ≡ {#M |M is a CM}

.

2

Definition 3 If M is a CM, define the function gapM : Σ∗ → Z as follows:

gapM ≡ #M −#M

.

The function gapM represents the “gap” between the number of accepting
and the number of rejecting paths of M .

Definition 4

GapP ≡ {gapM |M is a CM}

.

#P was developed in measuring the complexity of computing permanent
of a matrix. This problem was proved to be #P -complete. Some natural
decision problems with simple answers have their counting counterparts being
#P -complete, while some of the counting problems related to NP -complete
problems are fairly easy.

GapP holds many closure properties in that it could be used to simplify
many existing proofs on the set inclusion/exclusion relationships among com-
plexity classes. The following are some of the most important closure prop-
erties of it.

Property 1 GapP � FP = GapP and FP ⊆ GapP .

Property 2 If f ∈ GapP then −f ∈ GapP .

Property 3 If f ∈ GapP and q is a polynomial, then the function below is
in GapP .

g(x) ≡
∑

|y|≤q(|x|)

f(< x, y >)

Property 4 If f ∈ GapP and q is a polynomial, then the function below is
in GapP .

g(x) ≡
∏

0≤y≤q(|x|)

f(< x, y >)

Property 5 If f ∈ GapP , k ∈ FP , and k(x) is bounded by a polynomial in
|x|, then the function below is in GapP .

g(x) ≡
(

f(x)
k(x)

)

3

Property 6 If f, g ∈ GapP and 0 ≤ g(x) ≤ q(|x|) for some polynomial q,
then the function below is in GapP .

h(x) ≡ f(< x, g(x) >)

We could view existing complexity classes, especially the ones in prob-
abilistic computation, in a “counting” fashion, and derive results using the
closure properties above. In particular, one of the most important proba-
bilistic complexity class, BPP , could be defined as:

Definition 5 A language L is in BPP if there is a P predicate R and a
polynomial p such that for all x ∈ Σ∗ and for m = p(|x|),

x ∈ L ⇒ ‖{y ∈ Σ∗ : |y| = m ∧R(x, y)}‖ ≥ 2

3
· 2m,

x 6∈ L ⇒ ‖{y ∈ Σ∗ : |y| = m ∧R(x, y)}‖ ≤ 1

3
· 2m

1.2.2 Toda’s Theorem

One of the most celebrated result of counting complexity is Toda’s Theorem.
With this theorem, we could understand that either #P or GapP is pretty
big. And they might be big enough to swallow the entire polynomial hierarchy
(PH).

Theorem 1 Toda’s Theorem: PH = P#P

The GapP version is a little different in which the result below is with
respect a random oracle.

Property 7 With respect to a random oracle, PH is low for GapP , i.e.,

PrR[GapP PHR

= GapPR] = 1

Note the above results use the so-called “oracle” technique. An oracle
Turing machine is a Turing machine with an additional “oracle” to query for
the answer to a decisional problem. The query always return in a single step.
Often a computational problem is very hard to find an exact solution or algo-
rithm to it, so in times we manage to construct an useful oracle and with the
help of this oracle we might be able to solve the problem. This kind of tech-
nique is called “relativization”. It does not really solve the problem, because
an oracle might be physically realizable, but it do help us in determining
the relative difficulty between problems. The oracle we choose should not
be too powerful. Generic oracle [7] is a good choice. Several computational
limitations of quantum computation were shown in this method.

4

1.2.3 Counting Complexity on Quantum Computation

We here use a simplified model of quantum computation due to [2]. While
simple, this model captures all of the power of quantum computation.

Consider the transition function of a Turing machine that maps current
state and content s under the tape heads to a new state, new values to write
under the tape heads and a direction to move the heads. A deterministic
Turing machine’s transition function has a single output. A probabilistic
Turing machines’ transition maps to a distribution on outputs with nonneg-
ative probabilities that add up to one.

A quantum Turing machine’s transition function maps to a superposi-
tion of the outputs where each output gets an amplitude which may be a
complex value. We can assume these amplitudes take on of the values in
{−1,−4

5
,−3

5
, 0, 3

5
, 4

5
, 1}, this is proved by [SY96]. The quantum Turing ma-

chines we consider here all run in polynomial time and thus have an expo-
nential number of possible configurations. Suppose that before a transition
each configuration Ci has a real amplitude αi. Consider the L2 norm of the
amplitudes √∑

i

α2
i

A quantum Turing machine is required to preserve this L2 norm. This is
equivalent to the transition matrix U of the configurations being unitary.
For real U , U is unitary if the transpose of U is the inverse of U .

To compute the probability of acceptance consider an initial configuration
amplitude vector ~α where α0 = 1 for the initial configuration C0 and αi = 0
for every other configuration. Let ~β = U t · ~α where t is the running time
of the Turing machine. The probability of acceptance is β2

i where Ci is the
accepting configuration.

We can now define several complexity classes of quantum computation.

Definition 6 A language L is in BQP if there is a quantum Turing machine
M such that for all x ∈ Σ∗,

• If x ∈ L, then M(x) accepts with probability at least two-thirds.

• If x 6∈ L, then M(x) accepts with probability at most one-third.

The class EQP has the same definition as BQP except that we require
zero error. The class NQP has the definition the same definition as BQP
except that we require the accept probability be larger than zero iff the input
is in the language.

In [12], several complexity theoretic results were given:

5

Theorem 2 BQP ⊆ AWPP , while AWPP is defined as those languages L
such that for all polynomials q there is a GapP function f and a polynomial-
time computable function g such that for all x ∈ Σ∗ and m ≥ |x|, 0 <
f(x, 1m) < g(1m) and

• If x ∈ L, then f(x, 1m) ≥ (1− 2−q(m))g(1m)

• If x 6∈ L, then f(x, 1m) ≤ 2−q(m)g(1m)

Theorem 3 BQP is low for PP .

After applying techniques of generic oracles, we have:

Theorem 4 There exists a relativized world where P = BQP and the polynomial-
time hierarchy is infinite.

In [10], the following results were given:

Theorem 5 NQP = coC=P .

Theorem 6 For any f ∈ GapP , there is a polynomial-time quantum Turing
machine Q and a polynomial p such that for all x of length n,

Pr[Q(x) accepts] =
f(x)2

2p(x)

Since coCP ⊆ GapP , by applying Toda’s Theorem, [10] concludes that
determining acceptance probability for a quantum computation is hard for
the polynomial hierarchy. On the quantum computation models above, we
only consider the transition matrix with rational numbers. However, in [22],
this restriction was broadened to the set of complex numbers.

In summary, [8] [10] [12] [22] gave different results on the problem of
BPP = BQP?. [8] summarizes these papers and gave two opposite con-
clusions. In one positive way, quantum computation is more powerful than
classical computers under relativization. On the negative side, the complex-
ity classes of quantum computation is a subset of AWPP and PP , which
were defined in probabilistic computation. The conclusions hint that the
current mathmetical proof methods of theoretical computer science seem not
being able to solve the problem directly. Therefore we might need some new
non-relativized proof methods.

6

1.3 Decision Tree complexity

A decision tree of a Boolean function f is binary tree whose internal vertices
are labeled by variables, leaves are labeled by 0 and 1, and edges are labeled
also by 0 and 1 such that

• every pair of edges from an internal vertex to its two children are labeled
by 0 and 1, respectively; and

• any variable appears at most once in any path from the root to a leaf.

The goal here is to compute a Boolean function f : {0, 1}n → {0, 1} using
queries to the input. In the most simple form a query asks for the value of
the bit xi and the answer is the value. The algorithm is adaptive, that is
the, the kth query may depend on the answers of the k− 1 previous queries.
The algorithm can therefore be described by a binary tree, whence its name
“decision tree”. A Boolean function may have a number of different decision
trees, each defining a different procedure to compute the function. We denote
D(f) the minimum depth of decision tree computing f . D(f) is called the
decision tree complexity of f . A sample decision tree is shown in the figure
above. This measures correspondes to the minimum number of queries that
an optimal determinsitic algorithm for f need to make on any input. We can
extend this notion to more powerful modes of query algorithms. This results
in randomized and even quantum decision trees.

In order to get a handle on the computational power of decision trees,
other measures of the complexity of Boolean functions have been defined
and studied. Some prime examples are certificate complexity, sensitivity,
block sensitivity, the degree of a representing polynomial, and the degree of
an approximating polynomial. In [4] and [1]

1.3.1 Decision Tree Models

A deterministic decision tree is defined above. D(f), the decision tree com-
plexity of f , is the depth of an optimal decision tree that computes f .

In randomized decision tree, the tree may contain internal nodes by a bias
p ∈ [0, 1], and when the evaluation procedure reaches such a node, it will flip
a coin with bias p and will go to the left child on outcome ‘heads’ and to
the right child on ‘tails’. A probability distribution is induced over the set of
all leaves. We say a randomized decision tree computes f with bounded-error
if its output equals f(x) with probability at least 2/3, for all x ∈ {0, 1}n.
R2(f) denotes the complexity of the optimal randomized decision tree that
computes f with bounded error.

7

A quantum decision tree has the following form: we start with an m-qubit
state |~0〉 where every bit is 0. Then we apply a unitary transformation U0

to the state, then we apply a query O, then another unitary transformation
U1, etc. A T -query quantum decision tree thus corresponds to a big unitary
transformation A = UT OUT−1 . . . OU1OU0. Ui are fixed unitary transforma-
tions, independent of the input x. The final state A|~0〉 depends on the input
x only via the T applications of O. The output isobtained by measuring the
final state and outputting the rightmost bit of the observed biasis state.

We say that a quantum decision tree computes f exactly if the output
equals f(x) with probability 1, for all x ∈ {0, 1}n. The tree computes f with
bounded-error if the output equals f(x) with probability at leasta 2/3, for
all x ∈ {0, 1}n. QE(f) denotes the number of queries of an optimal quantum
decision tree that computes f exactly, Q2(f) is the number of queries of an
optimal quantum decision tree that computes f with bounded-error. Note
we just count the number of queries.

1.3.2 Complexity Measures

Certificate complexity measures how many of the n variables have to be given
a value in order to fix the value of f .

Definition 7 Let C be an assignment C : S → {0, 1} of values to some
subset S of the n variables. We say that C is consistent with x ∈ {0, 1}n if
xi = C(i) for all i ∈ S.

For b ∈ {0, 1}, a b-certificate for f is an assignment C such that f(x) = b
whenever x is consistent with C. The size of C is |S|, the cardinality of S.

The certificate complexity Cx(f) of f on x is the size of a smallest
f(x)-certificate that is consistent with x. The certificate complexity of f
is C(f) = maxx Cx(f). The 1-certificate complexity of f is C(1)(f) =
maxx|f(x)=1 Cx(f), and similarly we define C(0)(f).

Sensitivity and block sensitivity measure how sensitive the value of f is
to changes in the input.

Definition 8 The sensitivity sx(f) on x is the maximum number of vari-
ables xi for which f(x) 6= f(xi). The sentivity of f is s(f) = maxx sx(f).

The block sensitivity bsx(f) of f on x is the maximum number b such
that there are disjoint sets B1, . . . , Bb for which f(x) 6= f(xBi). The block
sensitivity of f is bs(f) = maxx bsx(f). (If f is contant, we define s(f) =
bs(f) = 0.)

8

Each Boolean function, there are some ways to view them as polynomials
in terms of their inputs. We’re especially interested in understanding the
degree of these polynomials.

Definition 9 A polynomial p : Rn → R represents f if p(x) = f(x) for all
x ∈ {0, 1}n.

The degree deg(f) of f is the degree of the multilinear polynomial that
represents f .

Definition 10 A polynomial p : Rn → R approximates f if |p(x)− f(x)| ≤
1/3 for all x ∈ {0, 1}n.

The approximate degree ˜deg(f) of f is the minimum degree among all
multilinear polynomials that approximate f .

1.3.3 Relationships for Classical and Quantum Complexity

In [1] (and the later survey [4]), the authors found that the above measures are
all polynomially related. This implies that for every Boolean total function,
exponential speedup doesn’t exist in quantum computers computing these
problems. To be more specific:

Theorem 7 If f is a Boolean function, then D(f) ≤ 4096Q2(f)6.

Theorem 8 If f is a Boolean function, then D(f) ≤ 32QE(f)4.

Grover’s search algorithm [14], which could be viewed as computing an
OR function on the quantum computer, is only quadratically faster than
a classical counterpart, with the theorem above, we could understand that
there won’t be much improvement on this algorithm.

1.4 Communication complexity

The need for communication arises whenever two or more computers, compo-
nents, systems, or humans need to jointly perform a task that none of them
can perform alone. The increasing importance of distributed computing, net-
working, VLSI and the use of computers in telecommunication have pointed
out the significance of communication as a resource. In many devices, com-
munication is significantly slower and costlier than local computation, and it
is the real bottleneck in solving certain problems. What we will be studying
here is how much communication is necessary to solve a given problem. The
amount of communication needed is what we will call the communication
complexity of the problem. Please refer to [15] and [17] for more complete
survey.

9

1.4.1 Basic Model, Simultaneous Message Model

Let X,Y, Z be arbitrary finite sets and let f : X × Y → Z be an arbitrary
function. There are two players, Alice and Bob, who wish to evaluate f(x, y),
for some inputs x ∈ X and y ∈ Y . Alice only knows x and Bob only knows y.
Thus to evaluate the function, they will need to communicate with each other.
The communication will be carried out according to some fixed protocol P
(which depends only on f). The protocol consists of the players sending bits
to each other until the value of f can be determined.

At each stage, the protocol P (for the function f) must determine whether
the run terminates; if the run has terminated, the protocol mush specify the
answer given by the protocol (that is, f(x, y)); and if the run has not termi-
nated, the protocol must specify which player sends a bit of communication
next. This information must depend solely on the bits communicated so far
during this run of the protocol, because this is the only knowledge common
to both Alice and Bob. In addition, if it is Alice’s turn to speak, the protocol
must specify what she sends; this depends on the communication so far as
well as on x, the input visible to Alice. The similar things goes to Bob, too.
We are only interested in the amount of communication between Alice and
Bob, and we wish to ignore the question of the internal computations each
of them makes. Thus, we allow Bob and Alice to have unlimited computa-
tion power. The cost of a protocl P on input (x, y) is the number of bits
communicated by P on input (x, y). The cost of a protocol P is the worst
case (maximal) cost of P over all inputs (x, y). The complexity of f is the
minimum cost of a protocol that computes f .

On using communication complexity to measure the resources required for
quantum computers to compute a particular function, we are more interested
in a more restricted model, the simultaneous message model. In this model,
two parties, Alice and Bob, receive inputs x and y respectively, and are not
permitted to communicate with one another directly. Rather they each send a
message to a third party, called the referee, who determines the output of the
protocol based solely on the messages sent by Alice and Bob. The collective
goal the three parties is to cause the protocol to output correct value of some
function f(x, y) while minimizing the amount of information that Alice and
Bob send to the referee. Denote by D‖(f) the deterministic communication
complexity of computing the function f using simultaneous protocols and
R‖(f) the randomized communication complexity of computing the function
f using simultaneous protocols.

10

1.4.2 Quantum Fingerprinting

As described with more detail in [18], we understand that quantum entangle-
ment is a invaluable tool for usage in communication. As was demonstrated
in [20], the game “Guess my number”, which cannot be solved classically,
could be easily solved in a quantum fashion withe the help of GHZ triplets
|000〉+ |111〉.

For the equality problem, the function is simply asking if x = y, and
return 1 if so, 0 or else. The problem can be trivially solved if Alice sends
x and Bob sends y to the referee, who can then simply compute f(x, y).
However, the cost of this protocol is high; if x and y are n-bit strings, then a
total of 2n bits are communicated. If Alice and Bob instead send fingerprints
of x and y, which may each be considerably shorter than x and y, the cost
can be reduced significantly.

If Alice and Bob share a random O(log n)-bit key then the fingerprints
need only be of constant length. But the disadvantage of the above scheme
is that it requires overhead in creating and maintaining a shared key. In [3],
the authors gave the remarkable result that, under the setting of no shared
key (or quantum entanglement) between Alice and Bob but the fingerprints
can consist of quantum information, O(log n)-qubit fingerprints are sufficient
to solve the equality problem. This is an exponential improvement over
the

√
n-bound for the comparable classical case. The method proposed by

the authors was to set the 2n fingerprints to quantum states whose pairwise
inner-products are bounded below 1 in absolute value and to use a test that
identifies identical fingerprints and distinguishes distinct fingerprints with
good probability.

In [23], the author further showed that short quantum fingerprints can be
used to solve the problem for a much larger class of functions. Let R‖,pub(f)
denote the number of bits needed in the classical case, assuming in addition
a common sequence of random bits known to all parties (the public coin
model). Yao showed that, if R‖,pub(f) = O(1), then there exists a quantum
protocol for f using only O(log n) bits.

2 Research Methodology and Agenda

Doing research of theoretical computer sciences involves mainly on reading
research papers and giving mathematical proofs. This research propose a
term of three years. We propose the following agenda:

1. In the first year, we will put focus on using methods from communi-
cation complexity to design protocols or find lower/upper bounds for

11

computational problems on quantum computers.

2. In the second year, we will put focus on counting complexity to view
computational problems as Boolean functions and discuss their com-
putational bounds.

3. In the third year, we will put focus on decision tree complexity and
try to find relativized worlds (oracles) that could help us gaining more
insights of quantum computation. And we would collect the research
results of these three years and compile a complete report for lecture
uses.

3 Results

The original proposal is a three-year project. However, we only get a one-
year support. In this year, we spend most time in reading related papers.
Despite the shortage of time, we still have some results about lower bounds
for permutation arrays.

3.1 Lower Bound for Permutation Arrays

3.1.1 Introduction

In this note we study the construction of mapping from binary vectors of
dimension n to permutations of {1, 2, · · · , n + 1} that increase the minimum
Hamming distance at least 2, for n ≥ 7. A permutation array is a subset
of these permutations that satisfies some distance constraints. With our
construction, we improve the lower bounds on the size of permutation arrays.
For the motivation for studying related mappings, we refer to the paper [16].

A systematic study of DPMs (distance-preserving mappings) can be found
in [16]. Then, Chang [5] improved a result by Lee [?] and gave a construction
of DIMs (distance-increasing mappings). In both of the papers [16, 5], a lower
bound on the size of permutation arrays is given, i.e. P (n, r) ≥ A(n, r − 1),
where P (n, r) denotes the maximal size among all permutation arrays of
length n with minimum distance r, and A(n, r) denotes the maximal size
among all binary codes of length n and minimum distance r . Here, we prove
that P (n, r) ≥ A(n − 1, r − 2). It is well-known that for all possible n and
r, A(n− 1, r − 2) ≥ A(n, r − 1). Furthermore A(n− 1, r − 2) is much larger
than A(n, r − 1) when n is even.

In this note, we give explicit constructions for n = 7, 8, 9 and 10. Then,
for n ≥ 11, we show how to construct from a mapping for n− 4.

12

3.1.2 Notations

Let Sn denote the set of all permutations of Zn = {1, 2, · · · , n} and the set
Zn

q denote the set of all q-ary vectors of length n. For a permutation π =
(π1, · · · , πn) ∈ Sn, let π(i) = πi and π[i..j] denote that sub-array (πi, · · · , πj)
of π. For i ∈ {1, 2, · · · , n}, π−1(i) denotes the position of i in π, i.e. if
π(j) = i then π−1(i) = j. The Hamming distance dH(a, b) between two n-
tuples a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) is the number of positions
where they differ, i.e.

dH(a, b) = |{j|aj 6= bj}|.

We now define a class of distance-increasing mapping from binary vectors to
permutations. For d ≤ n + k, let f : Zn

2 → Sn+k be a mapping such that
for all x, y ∈ Zn

2 , dH(f(x), f(y)) ≥ dH(x, y) + d, if dH(x, y) ≤ (n + k) − d;
dH(f(x), f(y)) = n + k, if dH(x, y) > (n + k)− d.

Let F(d, n, k) denote the collection of all such function f . Clearly, the
collection of DPMs equals to F(0, n, 0) and the collection of DIMs in [5] is
F(1, n, 0).

3.1.3 Construction of F(2, n, 1)

We give a systematic study on the construction of F(2, n, 1). Once we have
a mapping in F(2, n, 1), the corresponding permutation arrays would be
retrieved easily. First we will give the basic constructions: g7 ∈ F(2, 7, 1),
g8 ∈ F(2, 8, 1), g9 ∈ F(2, 9, 1), g10 ∈ F(2, 10, 1). Then , we can inductively
construct gn+4 ∈ F(2, n + 4, 1) from a map gn ∈ F(2, n, 1). Thus finally we
have a family of mappings that increase the minimum distance at least 2, for
n ≥ 7.

We will first show the construction of g7 as in the following and the
other three constructions in the appendix. Consider two auxiliary mappings
A7 ∈ F(2, 3, 2) and B7 ∈ F(2, 4, 2). We construct g7 with these two map-
pings. Similarly, for each of g8, g9 and g10, we will use two auxiliary mappings
for the constructions. Note that in the image of A7, 5 only appears in co-
ordinate 1 or 2 . Similarly, in the image of B7 the value 1 only appears in
coordinate 1 or 2, and the value 2 only appears in coordinate 3 or 4. With
this observation, we can construct a mapping g7 ∈ F(2, 7, 1) by the following
algorithm:

13

Algorithm g7:
Input: (x1, x2, · · · , x7) ∈ Z7

2

Output: (π1, · · · , π8) = g7(x1, · · · , x7)
begin
0 ρ = A7(x1, x2, x3); τ = B7(x4, x5, x6, x7);
1 τi = τi + 2 for 1 ≤ i ≤ 6;
2 ρρ−1(5) = τ6;
3 ττ−1(3) = ρ4;
4 ττ−1(4) = ρ5;
5 (π1, π2, π3) = ρ[1..3];
6 (π4, π5, π6, π7, π8) = τ[1..5];
7 if x1 = 1 then swap (π3, π8);
end

x A7(x) x A7(x)
000 (1, 5, 3, 4, 2) 100 (5, 2, 1, 4, 3)
001 (1, 5, 4, 2, 3) 101 (5, 3, 2, 4, 1)
010 (2, 5, 3, 1, 4) 110 (5, 4, 1, 3, 2)
011 (2, 5, 4, 3, 1) 111 (5, 1, 2, 3, 4)

x B7(x) x B7(x)
0000 (1, 3, 2, 4, 5, 6) 1000 (3, 1, 2, 5, 4, 6)
0001 (1, 3, 2, 5, 6, 4) 1001 (3, 1, 2, 4, 6, 5)
0010 (1, 3, 5, 2, 4, 6) 1010 (3, 1, 4, 2, 5, 6)
0011 (1, 3, 4, 2, 6, 5) 1011 (3, 1, 5, 2, 6, 4)
0100 (1, 4, 2, 6, 5, 3) 1100 (5, 1, 2, 6, 4, 3)
0101 (1, 5, 2, 6, 3, 4) 1101 (4, 1, 2, 6, 3, 5)
0110 (1, 5, 6, 2, 4, 3) 1110 (4, 1, 6, 2, 5, 3)
0111 (1, 4, 6, 2, 3, 5) 1111 (5, 1, 6, 2, 3, 4)

Similar to [5], given g ∈ F(2, n, 1), let Dn×(n+1) denote the distance ex-
pansion matrix where Dij represents the number of all unordered pairs {x, y},
x, y ∈ Zn

2 such that dH(x, y) = i and dH(g(x), g(y)) = j. Our D is a little
bit different from those in previous works. Our D is an n× (n + 1) matrix,
instead of n × n matrix. Since the permutations in the range of g is one
dimension larger than the domain of g. We show the distance expansion
matrix D for g7 as follows:

14

Algorithm gn+4:
Input: (x1, · · · , xn, · · · , xn+4) ∈ Zn+4

2

Output: (π1, · · · , πn+5) = gn+4(x1, · · · , xn+4)
begin
0 ρ = gn(x1, · · · , xn); τ = B7(x1, x2, x3, x4);
1 τi = τi + n− 1, for 1 ≤ i ≤ 6;
2 ττ−1(n) = ρn;
3 ττ−1(n+1) = ρn+1;
4 (π1, · · · , πn−1) = ρ[1..n−1];
5 (πn, · · · , πn+5) = τ[1..6];
6 if x1 = 1 then swap (π1, πn+4);
7 if x2 = 1 then swap (π2, πn+5);
end

0 0 320 64 32 32 0 0
0 0 320 336 464 144 80

0 0 288 624 992 336
0 0 320 992 928

0 0 384 960
0 0 448

0 64

For g8, g9 and g10, the constructions are similar and we reuse some of the
auxiliary mappings. We show the details in the appendix.

Next we show how to construct a mapping gn+4 ∈ F(2, n + 4, 1) induc-
tively from a mapping gn ∈ F(2, n, 1). To do that, we reapply the auxiliary
mapping B7 : Z4

2 → S6. The construction is shown in Algorithm gn+4. We
prove the correctness as follows.

Theorem 1 gn+4 ∈ F(2, n + 4, 1), for n ≥ 7.

Proof 1 First note that after line 1, ρi ∈ {1, · · · , n + 1}, for i = 1 to n + 1
and τi ∈ {n, · · · , n + 5}, for i = 1 to 6. But at line 2 and 3, the value n in
τ is replaced by ρn and the value n + 1 in τ by ρn+1. The other values in τ
range from n + 2 to n + 5.

Let (x, w) and (y, z) ∈ Zn+4
2 , where x, y ∈ Zn

2 , and w, z ∈ Z4
2 . Let

gn(x) = ρ = (ρ1, · · · , ρn+1), gn(y) = ρ′ = (ρ′1, · · · , ρ′n+1), B7(w) = τ =
(τ1, · · · , τ6), and B7(z) = τ ′ = (τ ′1, · · · , τ ′6). And gn+4(x, w) = π = (π1, · · · , πn+5),
gn+4(y, z) = π′ = (π′

1, · · · , π′
n+5). We illustrate the transforms of these two

strings in the following diagram.

15

n 4

y z

x w

=⇒
line 0

n + 1 6

ρ′ τ ′

ρ τ

=⇒
line 1,2,3

n− 1 6

ρ′[1..n−1] new τ ′

ρ[1..n−1] new τ

=⇒
line 4,5

n + 5

π′

π

Let’s first observe the change of the distance due to the swap step in line
6. If both x1 = 1 and y1 = 1 or both x1 = 0 and y1 = 0, the distance of these
two coordinates remains the same. If exact one of x1 and y1 equals to 1, then
the distance of these two coordinates won’t decrease, since we know that the
range of the values of π1 and π′

1 is from {1, · · · , n+1} and the values of πn+4

and π′
n+4 is from {n + 2, · · · , n + 5}. Similarly, it holds for the swap step at

line 7. Therefore after the swap steps the distance of these four coordinates
does not decrease. While in some cases, the distance does increase.

Now we explain the effect of the operation at line 2. Since the values of ρn

and ρ′n are from {1, · · · , n+1}, after the substitution, if τ−1(n) = τ ′−1(n) then
ρn and ρ′n are still in the same coordinate and the distance of this coordinate
is preserved, else ρn and ρ′n correspond to a value from {n + 2, · · · , n + 5}
(note that n + 1 is impossible, since value n + 1 is in coordinate 3 or 4).

16

Thus after substituting operation at line 2, the distance won’t decrease. Same
argument holds for the operation at line 3. Therefore, after line 5, we have
dH(π[n..n+5], π

′
[n..n+5]) ≥ dH(τ, τ ′).

Next we consider the following cases:

• Case [dH(x, y) = 0]: We know that dH(w, z) 6= 0, otherwise (x, w) and
(y, z) are identical. Let dH(w, z) = t ≤ 4. Since B7 ∈ F(2, 4, 2), we
have dH(τ, τ ′) ≥ t+2. Therefore d(π, π′)) ≥ t+2 = dH((x, w), (y, z))+
2.

• Case [0 < dH(x, y) = s < n]: It is clear that dH(ρ, ρ′) ≥ s + 2.
If 0 < dH(w, z) = t, then dH(τ, τ ′) ≥ t + 2. Thus, by the above
mentioned observation, we have dH(π, π′) = dH(π[1..n−1], π

′
[1..n−1]) +

dH(π[n..n+5], π
′
[n..n+5]) ≥ s+(t+2) = dH((x, w), (y, z))+2. For dH(w, z) =

0, it is easy to see dH(π, π′) ≥ s + 2.

• Case [dH(x, y) = n]: In this case, it is clear that dH(ρ, ρ′) = n +
1. Let dH(w, z) = t. Again by earlier observation, we know that
dH(π[1..n−1], π

′
[1..n−1]) = dH(ρ[1..n−1], ρ

′
[1..n−1]) = n−1 and dH(π[n..n+5], π

′
[n..n+5]) ≥

dH(τ, τ ′) ≥ t+2 (even when t = 0). Thus dH(π, π′) ≥ n+t+1. We ar-
gue that this lower bound is indeed at least n+ t+2, except when t = 4.
There are two subcases on the value of dH(w, z), which is denoted as t.

1. Subcase [t = 4]: Then dH(τ, τ ′) = 6. It is easy to see dH(π, π′) =
n + 5.

2. Subcase [0 ≤ t ≤ 3]: If dH(τ, τ ′) = 6, then dH(π, π′) = n + 5 ≥
n + t + 2 = dH((x, w), (y, z)) + 2. If dH(τ, τ ′) ≤ 5, there must
be one coordinate i such that τi = τ ′i . Note that x1 6= y1 and
x2 6= y2, since dH(x, y) = n. If τ5 = τ ′5 or τ6 = τ ′6, then after the
swap steps in line 6 and line 7, dH(π[n..n+5], π

′
[n..n+5]) ≥ t + 3. So

dH(π, π′) ≥ n+t+2. If τ1 = τ ′1 (or τ2 = τ ′2), then after line 2 (line
3) the difference between ρn and ρ′n (ρn+1 and ρ′n+1) is preserved
respectively. Thus we have dH(π[n..n+5], π

′
[n..n+5]) ≥ t + 3. Same

argument holds for τ3 = τ ′3 or τ4 = τ ′4.

This completes our proof on the correctness of construction.

17

3.1.4 Applications to Permutation Arrays

As shown in [16] and [5], we know that distance-increasing mappings are quite
helpful for constructing permutation arrays. Let P (n, r) denote the maximal
size among all permutation codes of length n and minimum distance r, and
A(n, r) the maximal size among all binary codes of length n and minimum
distance r.

Theorem 2 For n ≥ 8 and 3 ≤ r ≤ n, P (n, r) ≥ A(n− 1, r − 2).

Proof 2 Let C be a binary code of length n−1 with minimum distance r−2.
By the construction in Section 3, we have a mapping gn−1 ∈ F(2, n − 1, 1).
From the definition, we know that gn−1(C) is a permutation array of length
n with minimum distance r. Thus P (n, r) ≥ |C|. Therefore P (n, r) ≥
A(n− 1, r − 2).

Note that when r is odd, A(n−1, r−2) = A(n, r−1). But when r is even,
A(n− 1, r − 2) > A(n, r − 1). Thus, we improve the bound for permutation
arrays when n is even.
Appendix

3.1.5 Construction of g8

For g8 we use A8 and B8 as the auxiliary mappings, where A8 : Z4
2 → S6 is

defined as follows and B8 is the same as B7. The mapping g8 ∈ F(2, 8, 1) is
constructed by algorithm g8.

x A8(x) x A8(x)
0000 (1, 6, 3, 4, 5, 2) 1000 (6, 2, 1, 4, 5, 3)
0001 (1, 6, 3, 5, 2, 4) 1001 (6, 2, 3, 1, 5, 4)
0010 (1, 6, 4, 2, 5, 3) 1010 (6, 4, 5, 1, 2, 3)
0011 (1, 6, 4, 3, 2, 5) 1011 (6, 2, 4, 3, 1, 5)
0100 (2, 6, 5, 4, 3, 1) 1100 (6, 3, 2, 4, 5, 1)
0101 (2, 6, 3, 5, 4, 1) 1101 (6, 3, 2, 5, 1, 4)
0110 (3, 6, 1, 2, 4, 5) 1110 (6, 4, 1, 2, 3, 5)
0111 (3, 6, 5, 2, 1, 4) 1111 (6, 1, 2, 3, 4, 5)

18

Algorithm g8:
Input: (x1, x2, · · · , x8) ∈ Z8

2

Output: (π1, · · · , π9) = g8(x1, · · · , x8)
begin
0 ρ = A8(x1, · · · , x4), τ = B8(x5, · · · , x8);
1 τi = τi + 3, for 1 ≤ i ≤ 6;
2 ρρ−1(6) = τ6;
3 ττ−1(4) = ρ5;
4 ττ−1(5) = ρ6;
5 (π1, · · · , π4) = ρ[1..4];
6 (π5, · · · , π9) = τ[1..5];
7 if x1 = 1 then swap (π3, π9);
end

3.1.6 Construction of g9

For g9 we use two auxiliary mappings A9 and B9, where A9 is the same
as A8 and B9 : Z5

2 → S7 is defined as follows. We construct a mapping
g9 ∈ F(2, 9, 1). It follows from algorithm g9. We show the algorithm as
follows.

x B9(x) x B9(x)
00000 (1, 3, 2, 4, 5, 6, 7) 10000 (3, 1, 2, 4, 6, 5, 7)
00001 (1, 3, 2, 4, 6, 7, 5) 10001 (7, 1, 2, 5, 3, 4, 6)
00010 (1, 3, 2, 5, 7, 6, 4) 10010 (4, 1, 2, 3, 7, 5, 6)
00011 (1, 3, 2, 5, 4, 7, 6) 10011 (5, 1, 2, 4, 3, 7, 6)
00100 (1, 3, 4, 2, 6, 5, 7) 10100 (3, 1, 4, 2, 5, 6, 7)
00101 (1, 3, 7, 2, 5, 4, 6) 10101 (4, 1, 7, 2, 3, 6, 5)
00110 (1, 3, 6, 2, 7, 5, 4) 10110 (7, 1, 3, 2, 5, 6, 4)
00111 (1, 4, 3, 2, 5, 7, 6) 10111 (7, 1, 3, 2, 4, 5, 6)
01000 (1, 5, 2, 3, 6, 4, 7) 11000 (3, 1, 2, 6, 7, 4, 5)
01001 (1, 4, 2, 7, 6, 3, 5) 11001 (6, 1, 2, 7, 3, 4, 5)
01010 (1, 4, 2, 6, 7, 5, 3) 11010 (5, 1, 2, 6, 7, 3, 4)
01011 (1, 5, 2, 6, 3, 7, 4) 11011 (5, 1, 2, 7, 4, 3, 6)
01100 (1, 6, 4, 2, 7, 3, 5) 11100 (4, 1, 5, 2, 6, 3, 7)
01101 (1, 6, 5, 2, 3, 4, 7) 11101 (5, 1, 7, 2, 6, 4, 3)
01110 (1, 5, 6, 2, 4, 3, 7) 11110 (6, 1, 5, 2, 7, 3, 4)
01111 (1, 6, 5, 2, 4, 7, 3) 11111 (5, 1, 6, 2, 4, 7, 3)

19

Algorithm g9:
Input: (x1, x2, · · · , x9) ∈ Z9

2

Output: (π1, · · · , π10) = g9(x1, · · · , x9)
begin
0 ρ = A9(x1, · · · , x4); τ = B9(x5, · · · , x9);
1 τi = τi + 3, for 1 ≤ i ≤ 6;
2 ρρ−1(6) = τ7;
3 ττ−1(4) = ρ5;
4 ττ−1(5) = ρ6;
5 (π1, · · · , π4) = ρ[1..4];
6 (π5, · · · , π10) = τ[1..6];
7 if x1 = 1 then swap (π3, π9);
8 if x5 = 1 then swap (π4, π10);
end

3.1.7 Construction for g10

In this construction, we use A10 and B10 as the auxiliary mappings, where
A10 : Z5

2 → S7 is defined as follows and B10 is the same B9. We construct a
mapping g10 ∈ F(2, 10, 1) follows from algorithm g10.

x A10(x) x A10(x)
00000 (1, 7, 3, 4, 5, 6, 2) 10000 (7, 2, 3, 4, 6, 5, 1)
00001 (1, 7, 3, 4, 6, 2, 5) 10001 (7, 2, 3, 4, 5, 1, 6)
00010 (1, 7, 3, 5, 2, 6, 4) 10010 (7, 3, 2, 4, 1, 5, 6)
00011 (1, 7, 3, 5, 4, 2, 6) 10011 (7, 2, 4, 5, 1, 3, 6)
00100 (1, 7, 4, 3, 6, 5, 2) 10100 (7, 3, 4, 2, 6, 5, 1)
00101 (1, 7, 4, 6, 5, 2, 3) 10101 (7, 2, 1, 6, 5, 3, 4)
00110 (1, 7, 4, 2, 3, 5, 6) 10110 (7, 3, 4, 1, 2, 6, 5)
00111 (1, 7, 4, 6, 2, 3, 5) 10111 (7, 2, 4, 3, 1, 6, 5)
01000 (2, 7, 3, 1, 6, 5, 4) 11000 (7, 3, 2, 5, 6, 1, 4)
01001 (2, 7, 3, 6, 5, 4, 1) 11001 (7, 4, 6, 5, 1, 2, 3)
01010 (2, 7, 5, 4, 3, 6, 1) 11010 (7, 4, 2, 5, 3, 6, 1)
01011 (2, 7, 3, 5, 1, 4, 6) 11011 (7, 5, 2, 1, 4, 3, 6)
01100 (2, 7, 5, 3, 6, 1, 4) 11100 (7, 3, 6, 1, 5, 4, 2)
01101 (2, 7, 6, 3, 4, 1, 5) 11101 (7, 4, 5, 2, 6, 1, 3)
01110 (2, 7, 5, 1, 4, 6, 3) 11110 (7, 3, 5, 2, 1, 6, 4)
01111 (2, 7, 4, 6, 3, 1, 5) 11111 (7, 4, 5, 1, 3, 2, 6)

20

Algorithm g10:
Input: (x1, x2, · · · , x10) ∈ Z10

2

Output: (π1, · · · , π11) = g10(x1, · · · , x10)
begin
0 ρ = A10(x1, · · · , x5); τ = B10(x6, · · · , x10);
1 τi = τi + 4, for 1 ≤ i ≤ 7;
2 ρρ−1(7) = τ7;
3 ττ−1(5) = ρ6;
4 ττ−1(6) = ρ7;
5 (π1, · · · , π5) = ρ[1..5];
6 (π6, · · · , π11) = τ[1..6];
7 if x1 = 1 then swap (π3, π10);
8 if x6 = 1 then swap (π4, π11);
end

21

3.1.8 Distance expansion matrices

g8:

0 0 560 256 144 48 16 0 0
0 0 752 624 872 864 424 48

0 0 592 1032 2704 2088 752
0 0 400 2080 4016 2464

0 0 496 2928 3744
0 0 720 2864

0 0 1024
0 128

g9:

0 0 672 704 560 240 128 0 0 0
0 0 1088 1428 1480 2122 1628 1094 376

0 0 944 1402 4370 6478 5590 2720
0 0 270 2522 8390 11998 9076

0 0 134 4284 12118 15720
0 0 474 5884 15146

0 0 976 8240
0 0 2304

0 256

g10:

0 0 1184 1472 1248 672 416 128 0 0 0
0 0 2656 2924 3054 3854 4152 3454 2230 716

0 0 2784 2976 8208 14300 15108 12388 5676
0 0 1028 4764 18704 31298 32360 19366

0 0 104 9554 31850 49270 38246
0 0 774 15388 42838 48520

0 0 2136 19760 39544
0 0 3424 19616

0 0 5120
0 512

22

4 Bibliography

References

[1] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum
lower bounds by polynomials. In IEEE Symposium on Foundations of
Computer Science, pages 352–361, 1998.

[2] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J.
Computing, 26(5):1411–1473, oct 1997.

[3] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fin-
gerprinting. Los Alamos Lab preprint library (http://xxx.lanl.gov),
2001(quant-ph/0102001), 2001.

[4] H. Buhrman and R. de Wolf. Complexity measures and decision tree
complexity: A survey. Theoretical Computer Science, 288:21–43, 2002.

[5] J. Chang. Distance-increasing mappings from binary vectors from binary
vectors to permuations. IEEE Transactions on Information Theory,
51(1).

[6] D.-Z. Du and K.-I. Ko. Theory of Computational Complexity. Wiley
Interscience, 2000.

[7] S. Fenner, L. Fortnow, S. A. Kurtz, and L. Li. An oracle builder’s toolkit.
In {SCT}: Annual Conference on Structure in Complexity Theory, 1993.

[8] S. A. Fenner. Counting Complexity and Quantum Computation, chapter
8: Mathematics of Quantum Computation, pages 171–219. CRC Press,
2002.

[9] S. A. Fenner, L. Fortnow, and S. A. Kurtz. Gap-definable counting
classes. Journal of Computer and System Sciences, 48(1):116–148, 1994.

[10] S. A. Fenner, F. Green, S. Homer, and R. Pruim. Determining ac-
ceptance possibility for a quantum computation is hard for the poly-
nomial hierarchy. Electronic Colloquium on Computational Complexity
(ECCC), 6(03), 1999.

[11] L. Fortnow. Counting Complexity, chapter 2: Complexity Theory Ret-
rospective II, pages 81–107. Springer Verlag, 1997.

23

[12] L. Fortnow and J. D. Rogers. Complexity limitations on quantum com-
putation. In IEEE Conference on Computational Complexity, pages
202–209, 1998.

[13] L. A. Hemaspaandra and M. Ogihara. The Complexity Theory Compan-
ion. Springer Verlag, 2002.

[14] M. Hirvensalo. Quantum Computing. Springer Verlag, 2001.

[15] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1997.

[16] K. Lee. New distance-preserving maps of odd length. IEEE Transactions
on Information Theory, 50(10).

[17] L. Lovasz. Communication complexity: A survey, 1989.

[18] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[19] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[20] A. M. Steane and W. van Dam. Physicists triumph at guess my number.
Physics Today, pages 35–39, February 2000.

[21] L. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, pages 189–201, 2001.

[22] T. Yamakami and A. C.-C. Yao. nqp = co− c=p. Electronic Colloquium
on Computational Complexity (ECCC), 5(073), 1998.

[23] A. C.-C. Yao. On the power of quantum fingerprinting. Electronic
Colloquium on Computational Complexity (ECCC), 9(02), 2002.

24

