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Abstract

We construct an exact connection between the
quantum wave functions and the classical periodic
orbits to analyze the relation between classical
nonlinear dynamics and quantum theory for the
mesoscopic  systems with quantum Fermi
resonance. In particular, the high efficiency of
wave extension within the classical caustics is
found to be an intriguing coherent phenomenon in
mesoscopic  systems with nonlinear coupling
resonances. Furthermore, we give a first
verification that the laser cavity is a promising
analogous experiment for visualizing the quantum
wave functions associated with Fermi resonance.
This verification also indicates that the laser
resonator can be designed to simulate a wide range
of physical phenomena.
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The exploration of the relation between classical
nonlinear dynamics and quantum theory is a
central problem in modern physics. The
phenomenon of the Fermi resonance [1] plays a
significant role  for  understanding  this
quantum-to-classical transition because this type
of resonance has been observed to be important in
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experimental studies of molecular excitations,
tunneling effect, stellar trajectories, as well as
other experimental and theoretical works [2-6].
Deeper understandings of the Fermi resonance are,
therefore, strongly desired. Recently, Cushman
et al. [5,6] show that the singularities introduce
defects into the ensemble of quantum eigenstates,
Qutythey also organize the structure of those
defects. As suggested by the authors [5], it is
now tempting to find feasible experiments for
visualizing the quantum manifestations of Fermi
resonances.

On the other hand, the theoretical studies [2]
reveal that a single trajectory in the coupled Fermi
resonance system often sweeps out a region similar
to that described by an ensemble of periodic orbits
in the uncoupled system. This finding signifies
that the quantum effect of classical nonlinear
resonance can be manifested with the quantum
wave functions related to classical periodic orbits
in the zero-order systems. Accordingly, the
connection between the quantum wave functions
and the simple classical periodic orbits in the
zero-order systems is not only important for
understanding the quantum-to-classical transition
but also informative for revealing the quantum
features of nonlinear classical dynamics [7,8].

In this work, we provide analytic insights into
the quantum Fermi resonance based on the
construction of the correspondence between the
quantum wave functions and the classical periodic
orbits for two dimensional harmonic oscillators
with commensurate frequencies. We employ this
analytical connection to make an important
verification that a degenerate laser resonator with
an intracavity saturable absorber can be utilized as
an analogous system for simulating the physical
phenomena of the Fermi resonance in quantum
mesoscopic systems.

The conventional eigenstates of a 2D harmonic
oscillator with commensurate frequencies do not
reveal the characteristics of classical periodic
orbits even in the correspondence limit of large



quantum number. Even though the numerical
analysis has been performed to investigate the
wave functions localized on the periodic orbits [9],
a clear quantum-classical connection has not been
constructed as yet. Here we analytically derive
the quantum wave functions related to the classical
periodic orbits for 2D harmonic oscillators with
commensurate frequencies.  The exact wave
functions can be straightforwardly applicable to
the analysis of the quantum systems with Fermi
resonance.

Since the Hamiltonian is separable, the
Schrédinger coherent state [10] for a 2D harmonic
oscillator can be expressed as:
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It is clear that the center of the wave packet
follows the motion of a classical 2D isotropic
harmonic oscillator, i.e.,

x(t)=\/§a cos(w, t-¢,) (2)
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It is clear that the Schrédinger coherent state for a
2D harmonic oscillator with commensurate
frequencies is a wave packet with its center
generally moving along a Lissajous trajectory.
Consider the general case of the ratio
w, 1w, =q: p, where p and g are coprime integers,
the set of states with indices (nx,ny) can be
divided into subsets characterized by a pair of
indices (Ux,Uy) given by n =u, (modp) and
n, =u, (modg). In terms of these subsets, the
Schrédinger coherent state in Eq. (1) can be
rewritten as
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With the representation of the

product [11], the terms

| PN, +u,)

pNy+uy> in Eq. (3) can be arranged

diagonally by grouping together those terms for
which N, +N, =N:
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Eq. (5) indicates that the Schrodinger coherent
state for a 2D harmonic oscillator with
commensurate frequencies can be expressed as a
superposition of the quantum stationary states
‘A’@N,ux,uy' Since the Schrddinger coherent

state is a wave packet with its center moving along

a classical trajectory, the quantum stationary states

AQ are expected to be associated with the
N, Uy, Uy

classical periodic orbit.  The amplitude factor A
and the phase factor @ in the quantum stationary
state are explicitly related to the amplitude ratio
and the phase difference between two independent
oscillators, respectively. Since U, and u,

X

essentially do not affect the intensity distribution
of ‘A¢>N , the condition of u = u, =0 1s used

for the following analysis unless otherwise
specified. Figure 1 depicts the dependence of the
wave pattern ‘<X ) * on the parameter A for

the frequency of 1:2, N =20, and ¢=7/2. For
comparison, the corresponding classical periodic
orbits are also shown in Fig. 1. The characteristic
patterns can be found to reveal a clear
quantum-classical correspondence.  Since the
stationary coherent states | A’¢>N,ux,u are well
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localized on the periodic orbits, we call them
“localized states”.

As mentioned earlier, a classical trajectory in
the weakly perturbed systems can be characterized
by an ensemble of the unperturbed periodic orbits.
The quantum features of classical nonlinear
resonance can be manifested with a coherent
superposition of an ensemble of the localized
states. Figure 2 displays the variation of the
coherent wave patterns with the number of
participant localized states. It is found that only a
few localized states are already sufficient to form a
well extended pattern within the classical caustics,
similar to a kaleidoscopic pattern. The high
efficiency of the wave extension comes from the
fact that the encompassing region of each localized
state covers a width of several de Broglie
wavelengths. Since the de Broglie wavelength is
inversely proportional to /N, the critical number
of localized states for a well extended pattern is of
order N . In other words, the highly efficient
extension of the wave pattern is a salient quantum
phenomenon in mesoscopic systems  with
nonlinear resonances. Accordingly, it is tempting
to find feasible experiments for visualizing the
wave patterns in mesoscopic systems with Fermi
resonances.

In recent years, microwave cavities have been
used to perform analog studies of transport in open
quantum dots [12-14]. On the other hand, we
demonstrated that it is promising to explore the
high-order quantum wave function from the
pattern formation of the laser resonators [15,16].
This demonstration is based on the fact that the
wave equation for the transverse mode of the laser
resonators in the paraxial approximation is in
analogy with the Schrédinger equation for the 2D
quantum confined systems [17,18]. More
recently, we have observed the kaleidoscope of
laser patterns in a near-hemispheric microchip
laser with an intracavity saturable absorber [19].
However, the origin of the salient pattern
formation was not clearly understood at that
moment. Here we confirm that the quantum
coherent states in a 1:2 bend-stretch Fermi
resonance can be analogously observed from laser
pattern formation.

The experimental configuration in Ref. [19] is a
near-hemispheric cavity in which the transverse
mode spacing and the longitudinal mode
spacing  are very close to be commensurable,
ie. : =I1:2. The inherent commensurability

between and have a dramatic effect on the
formation of laser patterns, as shown in the
internal nonlinear resonances. In other words,
the coupling of a 1:2 transverse-longitudinal
resonance is identical in form to the well-known
phenomenon of Fermi resonance in molecular
systems. As shown in Fig. 3, the formation of the
kaleidoscopic laser patterns can be well explained
with the quantum coherent states of a 1:2 intrinsic
Fermi resonance. Note that the bright spot near
the center of the kaleidoscopic patterns arises from
the quantum-classical correspondence that all
figure-cight classical orbits pass through the focal
point near origin. The excellent agreement
between the experimental and theoretical patterns
confirms that the coupling of a 1:2
transverse-longitudinal resonance in a
near-hemispheric laser resonator is analogous to
the well-known phenomenon of Fermi resonance
in molecular systems. The present analysis also
provides a further indication that laser resonators
can be designed to demonstrate the quantum
phenomenon in mesoscopic physics.

In conclusion, the quantum manifestations of
classical nonlinear resonance have been clearly
demonstrated by making the connection between
the quantum wave functions and the classical
periodic orbits for the unperturbed systems.
Intriguingly, it is found that the high efficiency of
wave extension within the caustics is a significant
quantum phenomenon in mesoscopic systems with
nonlinear coupling resonances. Furthermore,
we have theoretically and experimentally verified,
for the first time to our knowledge, that a
degenerate laser resonator with an intracavity
saturable absorber forms a wuseful analogous
system for visualizing the quantum wave functions
associated with Fermi resonance. This
verification indicates that the modern laser
resonator now provides a concrete optical system
which simulates a wide range of physical
phenomena.
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