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一、中文摘要 

 

本計畫設計各式雷射系統，研究其同調

波(coherent waves)的特性。其研究主題包

含(1)同調波與古典周期軌道間的關聯性，

(2)同調波與腔體邊界的相關性，(3)介觀系

統系統中同調波的選擇法則(selection 

rules)。另外，我們也將進行理論分析與實

驗做一比較並找出其基本機制。 

 

關鍵詞：雷射、橫模形態、量子系統 
 

Abstract 
We construct an exact connection between the 
quantum wave functions and the classical periodic 
orbits to analyze the relation between classical 
nonlinear dynamics and quantum theory for the 
mesoscopic systems with quantum Fermi 
resonance.  In particular, the high efficiency of 
wave extension within the classical caustics is 
found to be an intriguing coherent phenomenon in 
mesoscopic systems with nonlinear coupling 
resonances.  Furthermore, we give a first 
verification that the laser cavity is a promising 
analogous experiment for visualizing the quantum 
wave functions associated with Fermi resonance.  
This verification also indicates that the laser 
resonator can be designed to simulate a wide range 
of physical phenomena. 
 
Keywords: laser, transverse pattern, pattern 
formation, classical-quantum correspondence 
 
二、緣由與目的 
 
The exploration of the relation between classical 
nonlinear dynamics and quantum theory is a 
central problem in modern physics.   The 
phenomenon of the Fermi resonance [1] plays a 
significant role for understanding this 
quantum-to-classical transition because this type 
of resonance has been observed to be important in 

experimental studies of molecular excitations, 
tunneling effect, stellar trajectories, as well as 
other experimental and theoretical works [2-6].  
Deeper understandings of the Fermi resonance are, 
therefore, strongly desired.  Recently, Cushman 
et al. [5,6] show that the singularities introduce 
defects into the ensemble of quantum eigenstates, 
but they also organize the structure of those 
defects.  As suggested by the authors [5], it is 
now tempting to find feasible experiments for 
visualizing the quantum manifestations of Fermi 
resonances.  

On the other hand, the theoretical studies [2] 
reveal that a single trajectory in the coupled Fermi 
resonance system often sweeps out a region similar 
to that described by an ensemble of periodic orbits 
in the uncoupled system.  This finding signifies 
that the quantum effect of classical nonlinear 
resonance can be manifested with the quantum 
wave functions related to classical periodic orbits 
in the zero-order systems.   Accordingly, the 
connection between the quantum wave functions 
and the simple classical periodic orbits in the 
zero-order systems is not only important for 
understanding the quantum-to-classical transition 
but also informative for revealing the quantum 
features of nonlinear classical dynamics [7,8].         

In this work, we provide analytic insights into 
the quantum Fermi resonance based on the 
construction of the correspondence between the 
quantum wave functions and the classical periodic 
orbits for two dimensional harmonic oscillators 
with commensurate frequencies.  We employ this 
analytical connection to make an important 
verification that a degenerate laser resonator with 
an intracavity saturable absorber can be utilized as 
an analogous system for simulating the physical 
phenomena of the Fermi resonance in quantum 
mesoscopic systems.     

The conventional eigenstates of a 2D harmonic 
oscillator with commensurate frequencies do not 
reveal the characteristics of classical periodic 
orbits even in the correspondence limit of large 
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quantum number.  Even though the numerical 
analysis has been performed to investigate the 
wave functions localized on the periodic orbits [9], 
a clear quantum-classical connection has not been 
constructed as yet.  Here we analytically derive 
the quantum wave functions related to the classical 
periodic orbits for 2D harmonic oscillators with 
commensurate frequencies.  The exact wave 
functions can be straightforwardly applicable to 
the analysis of the quantum systems with Fermi 
resonance.   

Since the Hamiltonian is separable, the 
Schrödinger coherent state [10] for a 2D harmonic 
oscillator can be expressed as: 
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It is clear that the center of the wave packet 
follows the motion of a classical 2D isotropic 
harmonic oscillator, i.e.,  
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It is clear that the Schrödinger coherent state for a 
2D harmonic oscillator with commensurate 
frequencies is a wave packet with its center 
generally moving along a Lissajous trajectory.  
Consider the general case of the ratio 

pqyx :: =ωω , where p and q are coprime integers, 
the set of states with indices ( )yx nn ,  can be 
divided into subsets characterized by a pair of 
indices ( )yx uu ,  given by ( )pun xx mod≡  and 

( )qun yy mod≡ .  In terms of these subsets, the 
Schrödinger coherent state in Eq. (1) can be 
rewritten as 
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where ω is the common factor of the frequencies 
by xω  and yω .   With the representation of the 
Cauchy product [11], the terms 

yyxx upNupN ++  in Eq. (3) can be arranged 

diagonally by grouping together those terms for 
which NNN yx =+ :  
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After some algebra, Eq. (4) can be written as 
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qpA βα= , yx qp φφφ −= .         (8) 

 
Eq. (5) indicates that the Schrödinger coherent 
state for a 2D harmonic oscillator with 
commensurate frequencies can be expressed as a 
superposition of the quantum stationary states 

yx uuN
A

,,
,φ .   Since the Schrödinger coherent 

state is a wave packet with its center moving along 
a classical trajectory, the quantum stationary states 

yx uuN
A

,,
,φ are expected to be associated with the 

classical periodic orbit.   The amplitude factor A 
and the phase factor φ in the quantum stationary 
state are explicitly related to the amplitude ratio 
and the phase difference between two independent 
oscillators, respectively.  Since xu  and yu  
essentially do not affect the intensity distribution 
of 

yx uuN
A

,,
,φ , the condition of 0== yx uu  is used 

for the following analysis unless otherwise 
specified.  Figure 1 depicts the dependence of the 
wave pattern 2

,,
,,

yx uuN
Ayx φ  on the parameter A for 

the frequency of 1:2, 20=N , and 2πφ = .  For 
comparison, the corresponding classical periodic 
orbits are also shown in Fig. 1.  The characteristic 
patterns can be found to reveal a clear 
quantum-classical correspondence.  Since the 
stationary coherent states 

yx uuN
A

,,
,φ are well 
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localized on the periodic orbits, we call them 
“localized states”.   

  As mentioned earlier, a classical trajectory in 
the weakly perturbed systems can be characterized 
by an ensemble of the unperturbed periodic orbits.  
The quantum features of classical nonlinear 
resonance can be manifested with a coherent 
superposition of an ensemble of the localized 
states.  Figure 2 displays the variation of the 
coherent wave patterns with the number of 
participant localized states.  It is found that only a 
few localized states are already sufficient to form a 
well extended pattern within the classical caustics, 
similar to a kaleidoscopic pattern.  The high 
efficiency of the wave extension comes from the 
fact that the encompassing region of each localized 
state covers a width of several de Broglie 
wavelengths.  Since the de Broglie wavelength is 
inversely proportional to N , the critical number 
of localized states for a well extended pattern is of 
order N .  In other words, the highly efficient 
extension of the wave pattern is a salient quantum 
phenomenon in mesoscopic systems with 
nonlinear resonances.  Accordingly, it is tempting 
to find feasible experiments for visualizing the 
wave patterns in mesoscopic systems with Fermi 
resonances.  
 
 
三、結果與討論 
   
   In recent years, microwave cavities have been 
used to perform analog studies of transport in open 
quantum dots [12-14].  On the other hand, we 
demonstrated that it is promising to explore the 
high-order quantum wave function from the 
pattern formation of the laser resonators [15,16].  
This demonstration is based on the fact that the 
wave equation for the transverse mode of the laser 
resonators in the paraxial approximation is in 
analogy with the Schrödinger equation for the 2D 
quantum confined systems [17,18].   More 
recently, we have observed the kaleidoscope of 
laser patterns in a near-hemispheric microchip 
laser with an intracavity saturable absorber [19].  
However, the origin of the salient pattern 
formation was not clearly understood at that 
moment.  Here we confirm that the quantum 
coherent states in a 1:2 bend-stretch Fermi 
resonance can be analogously observed from laser 
pattern formation.   
  The experimental configuration in Ref. [19] is a 
near-hemispheric cavity in which the transverse 
mode spacing   and the longitudinal mode 
spacing   are very close to be commensurable, 
i.e.  : ≈1:2.  The inherent commensurability 

between   and   have a dramatic effect on the 
formation of laser patterns, as shown in the 
internal nonlinear resonances.  In other words, 
the coupling of a 1:2 transverse-longitudinal 
resonance is identical in form to the well-known 
phenomenon of Fermi resonance in molecular 
systems.  As shown in Fig. 3, the formation of the 
kaleidoscopic laser patterns can be well explained 
with the quantum coherent states of a 1:2 intrinsic 
Fermi resonance.  Note that the bright spot near 
the center of the kaleidoscopic patterns arises from 
the quantum-classical correspondence that all 
figure-eight classical orbits pass through the focal 
point near origin.  The excellent agreement 
between the experimental and theoretical patterns 
confirms that the coupling of a 1:2 
transverse-longitudinal resonance in a 
near-hemispheric laser resonator is analogous to 
the well-known phenomenon of Fermi resonance 
in molecular systems.  The present analysis also 
provides a further indication that laser resonators 
can be designed to demonstrate the quantum 
phenomenon in mesoscopic physics.   
   
 
四、 結論 
  In conclusion, the quantum manifestations of 
classical nonlinear resonance have been clearly 
demonstrated by making the connection between 
the quantum wave functions and the classical 
periodic orbits for the unperturbed systems.  
Intriguingly, it is found that the high efficiency of 
wave extension within the caustics is a significant 
quantum phenomenon in mesoscopic systems with 
nonlinear coupling resonances.    Furthermore, 
we have theoretically and experimentally verified, 
for the first time to our knowledge, that a 
degenerate laser resonator with an intracavity 
saturable absorber forms a useful analogous 
system for visualizing the quantum wave functions 
associated with Fermi resonance.  This 
verification indicates that the modern laser 
resonator now provides a concrete optical system 
which simulates a wide range of physical 
phenomena. 
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