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行政院國家科學委員會專題研究計劃成果報告 

 
介觀結構的量子傳輸: (一) 應力感應與自旋流耦合產生之奈米機械震盪；(二) 對電子式
Mach-Zehnder 干涉儀和電子式 Hanbury Brown Twiss 干涉儀作電流及雜訊干涉度的分
析；(三) 產生直流自旋流透過量子點之傳輸特性；(四) 在 Rashba-type窄通道中雜質效應
對於產生直流自旋流之影響；(五)量子點在雙頻率下的傳輸特性與量子點中 sideband 的不
對稱性；(六)非同調量子接點串聯之電導率； (七)在兩接頭的介觀環中對 Fano共振傳輸的
解析分析。 
 
The quantum transport in mesoscopic structure: [ I ] Strain induced coupling of spin 
current to nanomechanical oscillations; [ II ] Visibility of current and shot noise in electrical 
Mach-Zehnder and Hanbury Brown Twiss interferometers; [ III ] Transport characteristics 
of the dc spin current generation involving a quantum dot; [IV] Effects of impurity on the 
dc spin current generation in a Rashba-type channel; [V] Dual-frequency modulation and 
sideband asymmetry characteristics in quantum transport through quantum dot; [ VI ] The 
conductance of double quantum point contacts under de-phase process; [VII ] The analytic 
analysis of Fano resonance transport through a mesoscopic two-lead ring. 

 
一、中文摘要: 
 
在本計劃中，我們研究了介觀系統的自旋抽運與電荷抽運，其中包括(一) 應力感應與

自旋流耦合產生之奈米機械震盪；(二) 對電子式 Mach-Zehnder 干涉儀和電子式 Hanbury 
Brown Twiss干涉儀作電流及雜訊干涉度的分析； (三) 產生直流自旋流透過量子點之傳輸
特性；(四) 在 Rashba-type 窄通道中雜質效應對於產生直流自旋流之影響；(五) 量子點在
雙頻率下的傳輸特性與量子點中 sideband 的不對稱性； (六)非同調量子接點串聯之電導
率；(七)在兩接頭的介觀環中對 Fano共振傳輸的解析分析。 

 
(一) 我們提出不用靠鐵磁材料而達到電子自旋與奈米機械系統之機械運動耦合之效

應。 這種方法會在 narrow gap半導體材料中，因應力而感應出自旋軌道交互作用而這種方
式可透過奈米機械元件所形成的懸空棒狀結構以去偵測和操控自旋流。 (二)利用 ac閘極來
產生和量測自旋流：我們研究在 III-V族窄能隙的量子阱或量子線中，可以利用一個時變的
閘極去影響 Rashba自旋軌道耦合係數來產生自旋流。我們也提出對此交流自旋流的整流方
法，以及利用電性量測去測量在二維電子氣中帶有交流自旋流的閘極附近的電壓以達到偵

測自旋流之目的；我們提出一種不需要使用光學或磁性材料來達到”產生”和”偵測”自旋流
的方法。 

 
    (二) 本研究針對電子式Mach-Zehnder干涉儀和電子式 Hanbury Brown Twiss干涉儀作
電流及雜訊干涉度的分析。此電子式干涉儀是利用高磁場下電子沿著導体的邊通道(edge 
states)運動特性所做成。傳輸的特性可藉由 Aharonov-Bohm flux來調整。我們研究環境溫度
及外加偏壓對電流及雜訊干涉度的影響。Dephasing效應是由虛探針模型來模擬。比較兩電



子式干涉儀是有趣的，因為Mach-Zehnder干涉儀是電子振幅(單粒子)干涉儀，然而 Hanbury 
Brown Twiss干涉儀是電子強度（雙粒子）干涉儀。若要做直接的比較，只能經由量測雜訊。
我們發現 Hanbury Brown Twiss干涉儀中的雜訊干涉度對環境溫度、外加電壓及 dephasing
的反應是大約相似於Mach-Zehnder干涉儀的第一諧波雜訊干涉度。相對的，Mach-Zehnder
干涉儀的第二諧波雜訊干涉度被環境溫度、外加偏壓及 dephasing rate的影響高於第一諧波
雜訊干涉度。 
 

(三) 我們已經研究過在 Rashba-type的量子窄通道中，利用時變調制的指狀閘極結構去
產生直流自旋流(dc spin current)的機制；當我們考慮一個量子點結構被侷限在兩個時變指狀
閘極中間時，因為量子點具有共振的能階( resonance level )，自旋向上( spin-up)與向下
( spin-down)的電子由於時變閘極的調制而產生自旋相關的共振非彈性散射( resonant 
inelastic scattering )，使得透過量子點共振能階會讓自旋相關的穿透係數( transmission 
coefficient )產生不對稱性( asymmetry )，接近共振能階的 main peak對於自旋向上的電子有
較低的穿透係數，而對於因為時變閘極的調制而產生 inter-sideband躍遷，使距離 main peak
左右兩邊 n Ωh 地方產生 satellite peaks，自旋向上的電子反而有較高的穿透係數，這種機制

會造成直流自旋流在 main peak中心點的左右兩邊的自旋相關的穿透係數差( RL RLT T↑ ↓− )會反

號而造成自旋極化方向相反的直流自旋流。 
 
(四) 我們探討在 Rashba-type窄通道中雜質對直流自旋流的影響，此直流自旋流可由單

一交流指狀閘極所產生。雜質對直流自旋流傳輸的影響與窄通道中橫方向的位置以及強度

有關。當雜質位於偏離窄通道邊緣的位置時，自旋相關的 dip 結構會變寬。而當雜質再通
道邊緣時，這種效應會減小。而當雜質位於交流指狀閘極外面時，雜質對傳輸的影響變小。

當窄通道上橫方向的對稱性被破壞時我們可以觀察到在 subband bottom 附近出現
inter-subband躍遷的結構。 

 
(五) 量子點在雙頻率的電場調變下，因為時變的位能使空間產生不對稱性而造成左右

兩邊reservoir的電子產生不對稱的傳輸現象;因此系統產生淨電流。我們也發現電子經由

量子點的傳輸現象存在sideband的不對稱；在某些情況之下，電子藉由吸收光子而躍遷到

量子點的共振態而傳輸的能力比其釋放光子藉由共振態傳輸的能力來得強；因此，共振態

上、下兩個sideband存在很明顯的不對稱性。量子點的寬度逐漸變寬到某個極限的時候，

情況卻會倒反過來。 

 

(六) 一般的研究中假設元件的大小遠小於同調長度，因此不需要考慮電子因為散射而

失去相位所造成的非同調的情形。我們引用常用的一維非同調的方法，對每個次能帶做非

同調的數值模擬計算，觀察同調性對於串聯量子接點之電導率的影響。 

 
(七) 兩接頭的介觀環的 Fano 共振傳輸的研究：我們研究在無外加磁場情況下有兩個

接頭的一維介觀環的傳輸現象；結果顯示在開放式的環中，當能量符合介觀環的駐波條件

時會產生 Fano 結構；但是在一些特殊的能量條件下這些 Fano 結構的寬度會慢慢變窄甚至
消失。我們發現 Fano結構不一定是傳統上認為共振與非共振的連續態所造成的結果，利用
解析近似的方法去分析 Fano共振結構的意義，我們可以利用奈米製程以及電性量測來控制
系統參數用以調制 Fano結構。 



 
 

Abstract: 
We study the spin and charge pumping in mesoscopic structures: [I] Strain induced 
coupling of spin current to nanomechanical oscillations; [II] Visibility of current and shot 
noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers; [III] 
Transport characteristics of the dc spin current generation involving a quantum dot; [IV] 
Effects of impurity on the dc spin current generation in a Rashba-type channel; [V] 
Dual-frequency modulation and sideband asymmetry characteristics in quantum transport 
through quantum dot; [VI] The conductance of double quantum point contacts under 
de-phase process; [VII ] The analytic analysis of Fano resonance transport through a 
mesoscopic two-lead ring. 
 
 
[I] Strain induced coupling of spin current to nanomechanical oscillations： 
We propose a setup which allows to couple the electron spin degree of freedom to the mechanical 
motions of a nanomechanical system not involving any of the ferromagnetic components. The 
proposed method employs the strain induced spin-orbit interaction of electron in narrow gap 
semiconductors. We have shown how this method can be used fro detection and manipulation of 
the spin flow through a suspended rod in a nanomechanical device. 
 
[II] We investigate the visibility of the current and shot-noise correlations of electrical analogs of 
the optical Mach-Zehnder interferometer and the Hanbury Brown Twiss interferometer. The 
electrical analogs are discussed in conductors subject to high magnetic fields where electron 
motion is along edge states. The transport quantities are modulated with the help of an 
Aharonov-Bohm flux. We discuss the conductance (current) visibility and shot noise visibility as 
a function of temperature and applied voltage. Dephasing is introduced with the help of fictitious 
voltage probes. Comparison of these two interferometers is of interest since the Mach-Zehnder 
interferometer is an amplitude (single-particle) interferometer whereas the Hanbury Brown Twiss 
interferometer is an intensity (two-particle) interferometer. A direct comparison is only possible 
for the shot noise of the two interferometers. We find that the visibility of shot noise correlations 
of the Hanbury Brown Twiss interferometer as function of temperature, voltage or dephasing, is 
qualitatively similar to the visibility of the first harmonic of the shot noise correlation of the 
Mach-Zehnder interferometer. In contrast, the second harmonic of the shot noise visibility of the 
Mach-Zehnder interferometer decreases much more rapidly with increasing temperature, voltage 
or dephasing rate. 
 
[III] Transport characteristics of the dc spin current generation involving a quantum dot: 
We have investigated the mechanism of dc spin current ( SC ) generation by applying an ac 
finger-gate ( FG ) atop a Rashba-type quantum channel. We consider the structure consisting of a 
quantum dot ( QD ) located between two ac-FGs and resonance levels exist in the quantum dot 
formed out of two static-biased gates in such quantum channel. The asymmetric spin-dependent 
transmission coefficients of the electron is owe to the spin-dependent resonance inelastic 



scattering ( RIS ) process while the electron transport through resonance levels of a quantum dot. 
The transmission coefficient of the spin-up electron is smaller than the spin-down one while the 
incident energy is around the resonant main peak. There are satellite peaks occurring around 
n Ωh  away from the resonant main peaks due to the modulation of the ac-FGs. Here, the 
transmission coefficient of the spin-up electron is larger than the spin-down one for the 
spin-resolved satellite peaks. The time-dependent, spin-resolved mechanism makes the difference 
( RL RLT T↑ ↓− ) change its sign such that the polarized direction of the dc spin current (SC) would be 
changed its sign due to the incident energy crossing the center of the resonant main peaks in our 
system. 
 
[IV] Effects of impurity on the dc spin current generation in a Rashba-type channel: 
We have investigated the effects of a single impurity on the dc spin current (SC) generation in a 
Rashba-type channel. The dc SC could be generated via a single ac finger-gate (FG). Effects of 
impurity have strong dependence of transverse-location and strength for the transport of dc SC in 
the channel. The spin-resolved dip structures are broadened while the impurity is away from the 
edge inside of the ac-FG. The effect of impurity is decreased for the impurity in the edge of the 
channel. The impurity has small effect for the transport while the impurity is outside of the ac-FG. 
The spin-resolved inter-subband transition is observed while the incident energy near each 
subband threshold because the symmetry of transverse direction is broken by the impurity. 
 
[V] Dual-frequency modulation and sideband asymmetry characteristics in quantum transport 
through quantum dot: 
We study quantum transport of electrons through a quantum dot under dual-frequency modulation. 
Under such modulation condition, the spatial-invariance is destroyed by the two potentials of 
different oscillating frequencies. Hence, a net current will be formed by each time cycle. In 
addition, we discover that electrons exhibit remarkable asymmetric side-peak structures. In some 
conditions, electrons are more probable to make transition through resonance state by absorbing a 
photon than emitting a photon. This characteristic will reverse when the resonance state 
approaches subband bottom. 
 
 
[VI] The conductance of double quantum point contacts under de-phase process： 
In many researches, the scale of system is much smaller then coherent length. So it neglect the 
de-phase process due to electron scattering. We use custom method to induce numerical de-phase 
process in 1-D case to solve 2-D problem through considering sub-band mixing. Observe 
de-coherent strength how to influence the conductance of double quantum point contacts (QPCs) 
in series. 
 
 
[VII] Fano resonance transport through a mesoscopic two-lead ring： 
The low-energy and ballistic transport through a 1-dimensional two-lead ring at zero magnetic 
field is studied. Our study have focused on the case of the potential in the ring defines open but 
not closed cavities, and it is found that Fano resonance may appear at energies correspond to the 
standing wave states in the ring, but commensurate system parameters can shrink the widths of 



the resonance at some energies to infinitesimally small. These findings suggest that the 
conventional picture of the Fano resonance as an effect due to the interference between the paths 
through resonant states and non-resonant continuum of states might not account for all the 
Fano-type lines seen in the transport measurements. We analytically obtain the approximation 
form to interpret the Fano Resonance peak structures. Moreover, the resonance may find 
application in the fabrication of electrical nano-devices since it is sensitive to the system 
parameters and hence tunable. 
 
Keywords:  
Quantum transport, quasi-bound state, inelastic scattering, quantum channel, spin current, 
mesoscopic ring, Fano structures, dwell time, persistent current, current visibility, noise visibility, 
Mach-Zehnder interferometer, the Hanbury Brown Twiss interferometer, edge states, 
Aharonov-Bohm flux, dephasing, dual-frequency, quantum dot, impurity, quantum point contact 
(QPC), conductance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

二、Motivations and goals 

[I] Strain induced coupling of spin current to nanomechanical oscillations： 
an ability to control the spin transport in semiconductors is a key problem to be solved towards 
implementation of semiconductor spintronics into quantum information processing [1-3]. Many 
methods have been proposed to achieve control of the electron spin degree of freedom using 
magnetic materials, external magnetic fields and optical excitation [3]. Other promising ideas 
involve the intrinsic spin-orbit interaction (SOI) in narrow gap semiconductors to manipulate the 
spin by means of electron fields [4] and electric gates [5, 6]. Recently, some of these ideas have 
been experimentally confirmed [7,8].  
In semiconductors the spin-orbit effect appears as an interaction of the electron spin with an 
effective magnetic field whose direction and magnitude depend on the electron momentum. A 
specific form of this dependence is determined by the crystal symmetry, as well as by the 
symmetry of the potential energy profile in heterostructures. In strained semiconductors new 
components of the effective magnetic field appear due to violation of the local crystal symmetry 
[9]. The effective of the strain induced SOI on spin transport was spectacularly demonstrated by 
Kato et. al. in their Faraday experiment [8]. An interesting property of the strain induced SOI is 
that the strain can be associated with mechanical motion of the solid, in particular, with 
oscillations in nanomechanical systems (NMS), in such a way making possible the spin-orbit 
coupling of the electron spin to nanomechanical oscillations. At the same time a big progress in 
fabricating various NMS [10] allows one to reach the required parameter range to observe subtle 
effects produced by such a coupling. 
We will consider NMS in the form of a suspended beam with a doped semiconductor film 
epitaxially grown on its surface (see Fig. 1). An analysis of the SOI in this system shows that the 
flexural and torsion vibrational modes couple most effectively to the electron spin. As a simple 
example, we will focus the torsion modes. The strain associated with torsion produces the 
spin-orbit field which is linear with respect to the electron momentum and is directed 
perpendicular to it. This field varies in time and space according to respective variations of the 
torsion strain. Due to the linear dependence on the momentum, the SOI looks precisely as 
interaction with spin dependent electromagnetic vector potential. An immediate result of this 
analogy is that the time dependent torsion gives rise to a motive force on electrons. Such a force, 
however, acts in different directions on particles with oppositely oriented spins, including thus 
the spin current in the electron gas. The physics of this phenomenon is very similar to the spin 
current generation under time dependent Rashba SOI, where the time dependence of the SOI 
coupling parameter is provided by the gate voltage variation [6]. In the present work we will 
focus, however, on the inverse effect. Due to the SOI coupling, the spin current flowing through 
the beam is expected to create a mechanical torsion. The torque effect on NMS due to spin flow 



has been previously predicted [11] for a different physical realization, where the torque has been 
created by spin flips at nonmagnetic-ferromagnetic interface. They also suggested an 
experimental set up to measure such a small torque. The torque due to SOI effect can be by 2 
orders of magnitude stronger than the torque produced by the current flowing through the 
FM-NM interface. Hence, the SOI effect can be measured by the same method as was proposed 
[11]. Besides this method, other sensitive techniques for displacement measurements can be 
employed [12].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[II] Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown 
Twiss interferometers: 

With the advent of mesoscopic physics, it has become possible to experimentally investigate 
quantum phase coherent properties of electrons in solid state conductors in a controlled way. In 
particular, in ballistic mesoscopic samples at low temperatures, electrons can propagate up to 
several microns without loosing phase information. This opens up the possibility to investigate 
electrical analogs of various optical phenomena and experiments. An investigation of such 
analogs is of fundamental interest. On the one hand, it allows one to establish similarities 
between the properties of photons and conduction electrons, a consequence of the wave nature of 
the quantum particles. On the other hand, it also allows one to investigate the differences between 
the two types of particles arising from the different quantum statistical properties of fermions and 
bosons. For many-particle properties, such as light intensity correlations or correspondingly 
electrical current correlations, noise, the quantum statistical properties are important. [1,2] Both 
the wave-nature of the particles as well as their quantum statistics are displayed in a clearcut 
fashion in interferometer structures. In this work we are concerned with the electrical analogs of 
two well known optical interferometers, the single-particle Mach-Zehnder (MZ) interferometer 
and the two-particle Hanbury Brown Twiss (HBT) interferometer. 
 The MZ-interferometer is a subject of most textbooks in optics.[3] In the framework of 
quantum optics, considering individual photons rather than classical beams of light, the 
interference arises due to the superposition of the amplitudes for two different possible paths of a 
single photon. This leads to an interference term in the light intensity. The MZ-interferometer is 

Fig. 1 : Schematic illustration of electromechanical spin current detector, containing a
suspended semiconductor-mental (S-M) rectangular rod atop an insulating substrate (blue). A
spin current is injected from the left semiconductor reservoir (yellow) and then diffuses
toward the metallic film (green). While passing through the semiconductor film, the spin
current induces torque shown by the black arrow.  



thus a prime example of a single particle interferometer.[4] Various electronic interferometers 
with ballistic transport of the electrons have been investigated experimentally over the last 
decades, as e.g. Aharonov-Bohm (AB) rings[5] and double-slit interferometers.[6] Detailed 
investigations of dephasing in ballistic interferometers was carried out in Refs. [7,8]. Only very 
recently was the first electronic MZ-interferometer realized by Ji et al.[9] in a mesoscopic 
conductor in the quantum Hall regime. A high visibility of the conductance oscillations was 
observed, however the visibility was not perfect. This led the authors to investigate in detail 
various sources for dephasing. As a part of this investigation, also shot noise was measured. Still, 
some aspects of the experiment are not yet fully understood. Theoretically, Seelig and one of the 
authors [10] investigated the effect of dephasing due to Nyquist noise on the conductance in a 
MZ-interferometer. The effect of dephasing on the closely related four-terminal resistance in 
ballistic interferometers [11] was investigated as well. Dephasing in ballistic strongly interacting 
systems is discussed by Le Hur. [12,13] Following the experimental work of Ji et al.,[9] 
Marquardt and Bruder investigated the effect of dephasing on the shot-noise in 
MZ-interferometers, considering dephasing models based on both classical [14,15] as well as 
quantum fluctuating fields.[16] Very recently, Forster, Pilgram and one of the authors [17] 
extended the dephasing model of Refs. [10,14] to the full statistical distribution of the transmitted 
charge. 
 The HBT-interferometer [18-20] was originally invented for stellar astronomy, to measure 
the angular diameter of stars. It is an intensity, or two-particle,[4] interferometer. The interference 
arises from the superposition of the amplitudes for two different two-particle processes. 
Importantly, there is no single particle interference in the HBT-interferometer. Consequently, in 
contrast to the MZ-interferometer there is no interference in the light intensity, the interference 
instead appears in the intensity-intensity correlations. Moreover, the intensity-intensity 
correlation also display the effect of quantum statistics. Photons originating from thermal sources 
tend to bunch, giving rise to positive intensity cross correlations. For the electronic analog of the 
HBT-interferometer, it was the corresponding anti-bunching of electrons that originally attracted 
interest. It was predicted [1] that the electrical current cross correlations in mesoscopic 
conductors would be manifestly negative, i.e. display anti-bunching, as a consequence of the 
fermionic statistics of the electrons. Negative current cross correlations were subsequently 
observed in two independent experiments.[21,22] Recently, anti-bunching for field emitted 
electrons in vacuum was also demonstrated.[23] The two-particle interference in the 
HBT-experiment has received much less attention. We emphasize that while the bunching of the 
photons was necessary for obtaining a finite, positive cross correlation signal, it was the 
two-particle effect that was of main importance to HBT since the angular diameter of the star was 
determined from the two-particle interference pattern. In electrical conductors, two-particle 
effects in AB-interferometers were investigated theoretically in Refs. [24-26]. Only very recently 
two of the authors and Sukhorukov [27] proposed a direct electronic analog of the optical 
HBT-interferometer which permits to demonstrate two-particle interference in an unambiguous 
way. 
 In this work we investigate and compare in detail the current and and zero-frequency noise 
in electronic MZ and HBT interferometers. We consider interferometers implemented in 
mesoscopic conductors in the integer Quantum Hall regime, where the transport takes place along 



single edge states and Quantum Point Contacts (QPC's) serve as controllable beam splitters. The 
effect of finite temperature, applied bias and asymmetry, i.e. unequal length of the interferometer 
arms, is investigated. The strength of the interference contribution is quantified via the visibility 
of the phase oscillations. The dependence of the visibility on the beam splitter transparencies as 
well as on the temperature, voltage and asymmetry is discussed in detail. Of interest is the 
comparison of visibility of the shot-noise correlation of the MZ-interferometer and the 
HBT-intensity interferometer. Shot noise correlations in the MZ-interferometer exhibit two 
contributions, one with the fundamental period of h/e and a second harmonic with period h/2e. 
The shot noise correlations in the HBT-interferometer, even though they are due to two particle 
processes, are periodic with period h/e. Thus the Aharonov-Bohm period can not be used to 
identify the two particle processes which give rise to the HBT effect. It is therefore interesting to 
ask whether the HBT two-particle processes have any other signature, for instance in the 
temperature or voltage dependence of the visibility of the shot-noise correlation. We find that this 
is not the case. To the contrary, we find that the shot noise correlations in the HBT intensity 
interferometer behave qualitatively similar to the h/e shot noise correlation in the 
MZ-interferometer. In contrast the h/2e contribution in the shot noise of the MZ-interferometer 
decreases more rapidly with increasing temperature, voltage or dephasing rate than the h/e 
oscillation in the MZ- or HBT-interferometer. 
 We investigate dephasing of the electrons propagating along the edge states by connecting 
one of the interferometer arms to a fictitious, dephasing voltage probe. In all cases, the current 
and noise of the MZ-interferometer as well as the noise in the HBT-interferometer, the effect of 
the voltage probe is equivalent to the effect of a slowly fluctuating phase. 
 
[III] Transport characteristics of the dc spin current generation involving a quantum dot: 

Spintronics is important in both application and fundamental arenas [1,2,40]. The key issue 
of great interest is the generation of dc spin current (SC) without charge current. We proposed the 
SC generation via only one single ac-FG in a Rashba-type narrow channel [41]. A lot of methods 
have been proposed to generate and manipulate SC by utilizing optical excitation [42] , spin 
injection [43], and external magnetic field [44] in the QD system. More recently, another 
alternative method for generation and control of the SC is based on the Rashba-type spin-orbit 
interaction (SOI) in the narrow gap semiconductors [45].  

The transport characteristics of metal-QD-metal structure have also been studied [46]. 
Utilizing the time-variation field to generate the SC has been studied in some mesoscopic systems 
in adiabatic [47] and non-adiabatic regimes [41,48]. Here, we consider a mesoscopic structure 
consisting of FG-QD-FG, where the FG is ac biased and QD is modeled by two delta potential in 
the quantum channel. The spin-dependent RIS mechanism makes the spin-dependent electron 
transit to its subband bottom such that the asymmetry spin-resolved transmission coefficients 
occur [41]. The spin-dependent RIS plays a crucial role while the incident energy is close to the 
resonance level or away n Ωh  from resonance level in the QD. We find that the difference of 
spin-resolved transmission coefficients would be changed the sign depended on the incident 

energy. The spin-down transmission coefficient is larger than spin-up one RL RLT T↓ ↑>  for incident 

energy close to the resonance main peak. However, the spin-up transmission becomes larger than 



spin-down one RL RLT T↑ ↓>  for the incident energy close to the satellite peaks with respect to the 

resonance level.  
Eventually, we obtain the dc SC without any charge current and opposite polarized direction 

for SC via varying the electron incident energy. Experimentally, we can tune the strength of two 
delta potentials to shift the energy of resonance main peak in order to change the switching point 
of the polarized direction of a SC. This tunable polarized direction of the SC is more valuable in 
the application of the spintronics device.  
 
[IV] Effects of impurity on the dc spin current generation in a Rashba-type channel： 
We have proposed the dc SC generation via a ac-FG in Rashba-type quantum channel [41]. We 
are also interested in effects of the impurity for the transport of dc SC. The location and strength 
dependence of the impurity for the transport of dc SC has been studied. We find the effect of the 
impurity would be enhanced while the impurity is away from the channel-edge inside the ac-FG. 
The intersubband transition occurring near the subband bottom due to the translation invariance 
being broken. The impurity has smaller effect for the transport while the impurity is outside the 
ac-FG.  
   
[V] Dual-frequency modulation and sideband asymmetry characteristics in quantum 
transport through quantum dot: 
Quantum pumping effect has been an interesting topic [49-51]. In this work, we try to achieve 
quantum charge pumping in an alternative way by dual-frequency modulation instead of 
introducing a phase difference into the time-dependent potentials. Our goal is to find the optimal 
pumping modulation of the dual-frequency system, and also to get to understand the reasons 
electrons exhibit asymmetric sideband transmission characteristics. 
 
[VI] The conductance of double quantum point contacts under de-phase process: 
In experimental results, the phenomenon of double QPCs (quantum point contact) in series 
cannot be explained very well in classical theory. Because the conductance of one QPC will be 
quantized, however, in classical theoretical treatment, the total conductance of double QPCs in 
series still can observe the plateaus in curve. Here, we simply utilize an imaginary reservoir 
between the double QPCs to simulate the de-coherent effect related to the electron scattering 
process. This method can introduce a concept for the coherent length. We also can compare the 
de-well time and the lifetime via this method. 
 
[VII ] The analytic analysis of Fano resonance transport through a mesoscopic two-lead 
ring: 
The conventional Fano resonance is an effect due to the interference between resonant and 
non-resonant processes. It was first proposed in atomic physics [52], and the effect was then 
observed in a wide variety of spectroscopy such as the atomic photoionization [53], optical 
absorption [54], Raman scattering [55], and neutron scattering [56]. As recent progress in the 
technology of fabrication of electrical nano-devices has achieved devices with the size of the 
order of the inelastic length scales of the conduction electrons, where within the electronic 



transport is ballistic, the Fano resonance is also seen in condensed matter systems. For instance, it 
is seen in the Scanning Tunneling Spectroscopy of a surface impurity atom [57,58], transport 
through a quantum dot (QD) [59-64] or carbon nanotube [65]. Moreover, it is proposed that the 
resonance can be used in the probe of phase coherence [66,67] and design of spin filters [68]. 
 
 

三、Results and discussion: 

[I] Strain induced coupling of spin current to nanomechanical oscillations [70] (Appendix 
A). 
[ II ] Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown 
Twiss interferometers (Appendix B). 
[III] Transport characteristics of the dc spin current generation involving a quantum dot: 
The system structure is shown in Fig. 1 and the QD is located between two ac-FGs. We use the 
scattering matrix method to deal with such problem. For simplicity, we suppose the symmetric 
structure such that the dc SC would be generated by ac-FG [1] without accompanying any charge 
current.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 presents the spin-resolved transmission coefficients RLT σ  versus incident energy in the 

unit of /µ Ω  for various amplitudes 1α  of the dynamic spin-orbit coupling constant. The 

notation RLT σ  denotes that electron is incident from left-hand side terminal into the right-hand 

side terminal with spin state σ . We observe the spin-resolved transmission coefficient RL RLT T↑ ↓<  

for the incident energy around the resonance main peaks E1=4.93 Ω  and E2=20.13 Ω . The other 

features are RL RLT T↑ ↓>  for satellite peaks which are away from each resonance main peak in 

n Ωh . As increasing 1α , the strength of inter-sideband transition become stronger such that the 
difference of the spin-resolved transmission coefficients is enhanced due to the RIS through the 
resonance levels in the QD.  

( )0 1V x xδ + ( )0 1V x xδ −

L L
FD FDDD

QD 

Fig. 1: Schematic illustration of dc spin current generation involving a quantum dot on the 
Rashba-type quantum channel. 



 
Figure 3 shows the SC corresponding to the figure 2 and the charge current is zero for our 
symmetric structure. The most interesting phenomena is that polarized direction of the SC have 
opposite sign while the incident energy of an electron passes the two resonance main peaks. It is 
because the difference of the spin-resolved transmission coefficients has the opposite-sign value 
for the resonance main peaks and satellite peaks, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We also find that the absolute value of the SC magnitude is larger in left-hand side of E1 (the first 
resonance main peak) than that in the right-hand side of E1. It is because the larger difference of 

Fig. 2: The spin-resolved transmission
coefficient is plotted as a function of incident
energy /µ Ω  for (a) 1 0.02α = , (b)

1 0.04α = , and  (c) 1 0.06α = . Other
parameters are spin-orbit coupling constant

0α =0.13, external frequency Ω =0.001
(14GHz ), delta-type gate strength V0=0.4, the
ac-FG length L=35 (140nm), FD=20 (80nm),
and DD=40 (160nm). There are several
spin-resolved satellite peaks occurring away
from the first resonance main peak. The two
resonance main peaks are related to the energy
E1=4.93 Ω  and E1=20.13 Ω , respectively. 

Fig 3: The spin current related to the Fig. 2 is
plotted for 1 0.02α = (green), 0.04 (purple),
and 0.06 (brown). The polarized direction of
the SC is changed the sign while the incident
energy of an electron passes the resonance
main peaks E1 and E2. 
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spin-resolved transmission coefficients in the left-hand side of E1 due to the asymmetric satellite 
peaks. The absolute value of the SC magnitude is almost equal for the left-hand side and 
right-hand side of E1 because of the unobvious asymmetric satellite-peak structures. The tunable 
polarized direction of the SC is valuable to apply in the SC selector device based on 
time-modulated FG in the semiconductor device. 
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Fig. 4: The magnitude square of 
the spin-up (red) and spin-down 
(blue) wave functions are 
plotted as a function of spatial 
coordinate in the Rashba-type 
quantum channel. We choose the
incident energy for three points 
(a) p, (b) q, and (c) r (see the 
Fig. 2(c)). The QD is located 
between x=-20 and x=20; the 
first ac-FG is located between 
x= -75 and x= -40; the second 
ac-FG is located between x=40 
and x=75. The transverse 
direction is y direction.  
 
 
 
 
 
 
 
 

 
We can observe that the magnitude square for spin-up wave function is smaller than spin-down 
wave function in Fig. 4 (b) in the transmission region (x>75) at the resonance main peak q 

corresponding to the relation RL RLT T↑ ↓< . For the satellite peaks p and r, the situation is reversed, 

x 
y 

x 
y 

x 
y 

(a) 

(b) 

(c) 



RL RLT T↑ ↓> , in the transmission region. The spin-dependent wave functions are localized within the 

QD for the resonance main peak and satellite peaks in standing-wave profile due to the resonance 
inelastic tunneling effect.  
 
We use one-sideband approximation expressions of a single ac-FG to analyze the numerical 
results. The spin-resolved one-sideband transmission coefficients are expressed in the form of 

All the spin-dependent difference comes from the spin-resolved wave vector RLkσ . Figure 5 

presents the one-sideband approximation for the analytical and numerical results. Figure 5 (b) and 
(c) reveal that the partial transmission coefficient 1T± is larger for the spin-up electron than the 
spin-down one due to the RIS process. It shows that the one sideband-transition mechanism plays 
an important role for the difference of the spin-resolved transmission coefficients. While the 
incident energy is close to the resonance main peak, the spin-up electron is more easily to transit 
to the satellite peaks via absorbing or emitting Ωh  photon energy. For the energy around 
satellite peaks, the transmission rate is barely low due to far from the resonance level in the QD. 

It turns out the spin-up electron has lower transmission coefficient ( RL RLT T↑ ↓< ) due to the larger 

probability to transit to the satellite peaks for the spin-up electron. In the other hand, the incident 
energy of the electron coincides with the nearest satellite peaks away from the main peak such 
that the spin-up electron has larger probability to transit to the resonance main peak passing 

through the QD and we get the opposite result of RL RLT T↑ ↓> . 
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Fig. 5: The spin-resolved partial
transmission coefficients 0T  and 1T± are
plotted as a function of /µ Ω  for a single
ac-FG case. Other parameters are

0 0.13α = , 1 0.02α = , 0.001Ω = , and the
ac FG length L=35. The dip structures are
organized the quasi-bound state features
due to an electron emitting n Ωh  photon
energy to transit to beneath of its subband
bottom. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, we increase the strength V0 of the two delta potentials and the resonance levels are lift to 
the higher energy. When the magnitude of V0 is enhanced, the band width of each resonance level 
become more and more narrow in the QD. If we focus on the second resonance peak (purple 
arrow), the satellite peaks (green arrows) would be resolved by increasing the strength of V0 in 
Fig. 6 (a)-(c). The Fig. 6 (d) shows the resonance main peaks is shifted toward the higher energy 
owe to the larger V0. The SC becomes smaller near the first main peak because the band width for 
the main and satellite peaks is more narrow as increasing V0. We can tune the energy for the 
switching points such that the spin-polarized direction of the SC would be changed its sign as its 
incident energy crossing switching points via varying V0. 
 
In summary, we have investigated the dc SC generation in sequent structure of ac-FG, QD, and 
ac-FG. The difference of the spin-resolved transmission coefficients is shown the opposite sign 

while the incident energy occurring around the main peaks RL RLT T↑ ↓<  and satellite peaks 

RL RLT T↑ ↓> , respectively. The switching point for the spin-polarized direction of SC can be tuned 

by varying V0. We have proposed a possible setup to realize the device for SC selector based on 

(a)V0=0.4

(b)V0=0.8 

(c)V0=1.2 

(d)

Fig. 6: The spin-resolved transmission coefficients are plotted as a function of /µ Ω with 
varying the delta potential strength V0= (a) 0.4, (b) 0.8, and (c) 1.2. The SC is shown in 
(d) corresponding to the Fig. 6 (a)-(c). Other parameters are the same in the Fig. 2. 



RIS mechanism involving a QD. 
 
[IV] Effects of impurity on the dc spin current generation on a Rashba-type channel: 
The finite-range impurity in the Rashba-type quantum channel is in the from 

( ) ( ) ( )0 0 1 2V x x y y y yδ θ θ− − − −   . The system configuration is show in Fig. 1 and the 

transverse direction is finite-range potential with longitudinal delta profile potential. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The dc SC can be generated via a single ac-FG without any charge current [41]. The resonance 
inelastic scattering (RIS) play a important role to make the spin-resolved transmission coefficient 
asymmetry. The Fig. 2 presents the spin-resolved transmission coefficients and SC versus 
incident energy /nµ Ω  for no impurity case. 
                                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The system configuration is shown and the finite-range impurity (red) can be located 
inside or outside of the ac-FG. The blue block is ac-FG, V0 is the impurity strength, l is the 
FG length and W is the channel width. 

( ) ( ) ( )0 0 1 2V x x y y y yδ θ θ− − − −   x 

y 

y=y1 

y=y2 

W 

0

1

2

3

0 5 10 15 20
0.0

0.2

0.4

0.6

 

 

 

Tr
an

sm
is

si
on

 TRL

 TRL

 

Sp
in

 C
ur

re
nt

 (n
A

)

µ /Ω

Fig. 2: The spin-resolved transmission
coefficients and spin current versus

/nµ Ω is plotted for no impurity case.
Other parameters are: static SOI
coupling constant 0 0.13α = , the
dynamic SOI amplitude 1 0.05α = ,
oscillating frequency 0.002Ω =
(28GHz), channel width W=50, and the
ac-FG length l=20. The spin-resolved
dip structures is due to the RIS
mechanism. 
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While the impurity is located in the channel edge inside of the ac-FG, the effect of the impurity is 
small for the transport of dc SC. Figure 3 presents the transmission and dc SC versus incident 
energy /nµ Ω  as increasing the impurity strength V0. All of their SC are almost the same and it 
shows the weak effect of impurity for the transport of dc SC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While the impurity is away from the channel edge, the effect of the impurity is more obvious in 
Fig. 4. We also observe the structure of the intersubband transition near the arising of the second 
and third subband bottom due to breaking the translation invariance in transverse direction. As 
increasing the impurity strengths, the spin-resolved dip structures become more broaden due to 
the impurity scattering.                               
 
While the impurity is away from the channel edge outside of the ac-FG, the effect of impurity is 
smaller than inside of the ac-FG. The spin-resolved transmission coefficients and SC is shown in 
Fig. 5. The spin-resolved dip structures are not obvious broaden in this case providing the effect 
of the impurity is weaker outside of the ac-FG than inside of the ac-FG. 
 
In summary, effects of impurity on transport of dc SC depend on the locations and strength of the 
impurity. The impurity affects the dc SC is not very strong such that the dc SC generation via a 
single FG is valuable in application of spintronics devices even in diluted-impurity case. 

Fig.3: The spin-resolved transmission coefficients and SC is plotted as function of /nµ Ω  for 
varying the impurity strength V0. The impurity is located in the channel edge for x0=0, y1=0, 
and y2=4. Other parameters are the same as Fig.2. 

0

1

2

3

0

1

2

3

0 5 10 15 20
0

1

2

3

 

 

 

 

 

 

Tr
an

sm
is

si
on

  

µn /Ω

 TRL

 TRL
0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

Sp
in

 C
ur

re
nt

 (n
A

)

µn /Ω

 V0=0.1
 V0=0.2
 V0=0.3

(a) V0=0.1 

(b) V0=0.2 

(c) V0=0.3 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4: The spin-resolved transmission coefficients and SC is plotted as function of /nµ Ω
for varying the impurity strength V0. The impurity is located in the channel edge for x0=0, 
y1=8, and y2=12. Other parameters are the same as Fig.2. 
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Fig.5: The spin-resolved transmission coefficients and SC is plotted as function of /nµ Ω  
for varying the impurity strength V0. The impurity is located in the channel edge for x0=-15, 
y1=8, and y2=12. Other parameters are the same as Fig.2. 
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[VI] Dual-frequency modulation and sideband asymmetry characteristics in quantum 
transport through quantum dot: 
  
a. Shifting of resonance levels 

In this subsection, we discuss the shifting of the resonance levels in an open quantum dot 
confined by Vs1 on the left and Vs2 on the right. 
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Fig. 1: Total current transmission coefficient of a quantum dot with a=15, and Vs1=Vs2=V. 
 

 

 
 
 
 

As shown in Fig. 1, we acquire sharper resonance states with stronger confinements to a 
quantum dot, but broader and lower ones with weaker static confinements. The transmission 
coefficient of each case achieves 1. In Fig. 2, when we add an additional part δV to one of the 
static barriers making the quantum dot asymmetric, the resonance levels also shift to higher 
energies or lower energies when δV is, respectively, positive or negative. Another interesting 
feature in Fig. 2 is that the transmission coefficient does not achieve 1 when the quantum dot is 
asymmetric. 
 

Fig. 2: Total current transmission 
coefficient of a quantum dot with 
a=15, Vs1=3, Vs2=V+δV. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We then apply time-dependent potential(s) to the confinement of a quantum dot. The 
magnitude of the confining barrier will change periodically. Therefore, resonance levels will also 
shift with time, but the overall effect (after time averaging) of the shift is towards lower-energy 
end. This can be referred back to Fig. 3.1.2. The degree of shifting towards lower energy is 
greater than that of shifting towards higher energy, making the overall effect shift to the left. 
In Fig. 4, we applied two oscillating barriers to the quantum dot. The shift of resonance state is 
therefore further enhanced. 
 
b. Sideband Characteristics 
 

In this subsection, we discuss sideband characteristics under several different 
time-dependent modulations on the confinement of the open quantum dot. 

 
Sideband Features of Single Oscillating Potential: 
 

Only one time-dependent potential is applied to the confinements of the quantum dot. Either 
Vd1cosΩ1t is applied on the left, or Vd2cosΩ2t is applied on the right of the quantum dot. 
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Fig. 3: Current transmission of a=15, 
Vs1=Vs2=3, Vd1=0, Vd2=2, and 
Ω2=0.0084. Dotted line represents the 
resonance state of the quantum dot 
without time dependent potential. 
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Fig. 4: Current transmission of
a=15, a=15, Vs1=Vs2=3, Vd1=Vd2=2,
and Ω1=Ω2=0.0084. T→ and T← are
identical. Dotted line represents the
resonance state without time
dependent potential. 
 



 
(Ι) Ω2=Ω1: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 and Fig. 6 are complementary to each other due to the same oscillating frequency, 
exhibiting the same sideband features. In Fig. 5, because only Vd1cosΩ1t is applied to the 
quantum dot (applied on the left of the quantum dot), sideband characteristics for electrons 
incident from the right is not as notable as those of electrons incident from the left. 
 
(ΙΙ) Ω2=nΩ1: 

Within this case we set Ω2=2Ω1, and, again, either Vd1cosΩ1t is applied on the left, or 
Vd2cosΩ2t is applied on the right of the quantum dot.  

In Fig. 7, 8, and Fig. 9, we can see that sideband structures for T→ are more significant, 
whereas sideband structures are more significant for T← in Fig. 8, and Fig. 9. 

When only Vd1cosΩ1t is applied, electrons incident from the right seem to be “screened” by 
Vs2 before encountering the oscillating barrier. Hence, it’s easier for electrons incident from the 
left to make transition by resonance levels when Vd1cosΩ1t is applied, therefore making the 
side-peak features more significant. The condition totally reverses when Vd2cosΩ2t is applied on 
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Fig. 5: Current transmission 
of a=15, a=15, Vs1=Vs2=3, 
Vd1=2, Vd2=0, and 
Ω1=0.0084. 
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Fig. 6: Current transmission
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Vd2=2, and Ω2=0.0084. 
 



the right of the dot. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

c. Double Oscillating Potentials 
 
(Ι) Ω2=Ω1: 

In Fig. 10, only T→ is shown because T→ and T← are exactly the same under such symmetric 
condition. The special feature is that side-peak structures are more notable at the left of the 
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Fig. 7: Current transmission of 
a=15, Vs1=Vs2=3, Vd1=2, Vd2=0, and 
Ω1=0.0084. 
 

Fig. 8: Current transmission of a=15,
Vs1=Vs2=3, Vd1=0, Vd2=2, and
Ω2=2Ω1=0.0168. 
 

Fig. 9: Current transmission of a=15, 
Vs1=Vs2=3, Vd1=0, Vd2=2, and 
Ω2=3Ω1=0.0252. 
 



resonance state implying electrons are more possible to absorb n-Ω1 energy from the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
d. Sideband Features When Resonance States Approach Subband Bottom 
 
From Fig. 3.2.9 and Fig. 3.2.10 we find that the relative strength of the two sidepeaks beside the 
resonance state will reverse when approaching subband bottom. 
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Fig. 10: Current transmission of 
a=15, Vs1=Vs2=3, Vd1=Vd2=2, 
and Ω2=Ω1=0.0084. 
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Fig. 11: Current transmission
of Vs1=Vs2=3, Vd1=Vd2=2,
Ω1=Ω2=0.0084 under a=21,
and a=22. 
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[VI] The conductance of double quantum point contacts under de-phase process: 
The double QPCs with de-coherent scattering process [69] have been studied and the structure is 
shown in the Fig. 1.  
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The de-coherent strength parameter is εand E is the incident energy. It represents how the 

de-coherent strength influents the total conductance.ε=0 occurs when double QPCs in series 
when coherent length is infinite. If de-coherent strength is raising up, the total conductance 
approaches the classical theoretical results and the de-coherent process increases the resistance so 
the total conductance is lowering down.  

w1 w2 w3 

1 3 
Fig. 1: Our model is a double
constriction with a cavity region.
The narrow constriction can be
regarded as a quantum point contact
[70]. The dimensionless unit of
length is 1/kf.  
 

Fig. 2: In classical picture, a QPC
can be regarded as a resistance
related to its width. This figure
shows calculated total conductance
as a function of   the width of
QPC2 for various de-coherent
strength. The width of QPC1 is
fixed. 
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Fig. 5: The theoretical conductance for double QPC in series is plotted as a function of incident 
energy.  
 
We can obtain the dip structure when we check the relation between total conductance and 
incident energy in Fig. 4. At the same incident energy of Fig. 3, the Fig. 5 (a) is the normal case 
and we can find dip structure in Fig. 5 (b). It supports our above theoretical assumption. 
 
 

Fig. 3: It is shown the double
QPC are fully de-coherent. So
the total conductance is the
conductance for two QPC in
series. Green line is the
conductance of QPC2 and be
quantized conductance as an
individual QPC [71]. 
 

Fig. 4: For the specific case, the total
conductance is increased when
de-coherent strength is turned on. The
reason is the resonance occurs in such
specific case.  
 

(a) (b)



 
 
 
 
 
 
 
 
 
 
 
 
[VII ] The analytic analysis of Fano resonance transport through a mesoscopic two-lead 
ring: 
                                        
 
 
 
 
 
 
 
 
 
Unequal armlengths: 
We investigate the case of different armlengths in the ring but clean transport channel. This is 
described by M1=M2=1 and the transmission amplitude A3 is reduced to 

( )
( )( ) ( )( ) ( )( )

1 2
3

1 2 1 2 1 2

sin sin
11 exp cos cos
4

i kL kL
A

ik L L k L L k L L

+
=

 − − + − + − − 

……….(1) 

The observation of the detuned zeroes in the numerator and denominator directly implies that the 
above numerical results can be casted into the usual Fano resonance expression, and the relation 
between the resonant dip's width and detuning from perfectly constructive 2PI be investigated 
more closely. To be self-contained, first we give a very brief review of the Fano resonance 
discussed in Fano's original paper. In a tunneling process, if there simultaneously involves a 
non-resonant tunneling, which is almost energy independent and can be simply described by a 
complex-valued tunneling amplitude 0t , and a resonant tunneling at incident energy =0ε  which 
can be approximately described by a complex-valued tunneling amplitude rt /( )za iaε= + , 
where z  is a complex-valued number describing the relative strength of the non-resonant and 
resonant tunneling, and a  is a real-valued number characterising the width of the resonant 
tunneling. The total tunneling amplitude would be tot 0t ( ) /( )rt t qa iaε ε= + = + + , and the total 

tunneling  robability 2
totT= t  would be 

M2

M1 

x0 x3 

x1 

x2 

x1 

x2 
x0=0 
x1=L1 
x2=L2 

x1=x2=x3=0

Fig. 1: The generic system we consider has two
leads. The boxes on the ring labeled M1,2

represent the scatters. A coordinate system xi is
defined for the line segment labeled by i (i=1,
2 and 3). While the arrows denote the
increasing direction of the coordinates, the
right Y-junction is defined at x1 =x2 =x3=0, and
the left Y-junction is at x0=0, x1=L1, and x2=L2.
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where 0q z/t i≡ + , is the Fano parameter. We will briefly describe the behavior of the above 
tunneling probability. In the case of a 0≠ , when q 0≠ , T  gives a dip/peak when the 
numerator/denominator in Eq.2 is close to zero. When 0q = , T  has only a dip at 0ε = . The 
case of Im 0q =  is discussed comprehensively in Fano's original paper. In the case of a 0→ , 
the numerator and denominator in Eq.2 can become exact zeroes but, they are all first order 
zeroes at =0ε  and hence they cancel each other and gives a finite transmission amplitude. This 
is actually just the case of commensurate armlength ratio 2 1/L L  we have discussed. Since we 
have analytically found that all the dips can only appear at mk k= , where 1 2( ) 2mk L L mπ+ =  
and m  is an integer defines mk , we expand the tunneling amplitude 3A  near a dip by letting 

1 2( )( )mk k L Lδ = − + . Since we also know that the dips appear when 1 2( ) 2mk L L nπ− ≠ , where 
n  is an integer, we define a detuning from a perfectly constructive 2PI δ  by 

1 2( ) 2mk L L nπ δ− = + , where ∆  is from π−  to π+  (note that given an m $m$, n $n$ is 
determined). Then we expand 3A  at the vicinity of a dip when both the dimensionless δ  and 

∆  are small. We have expanded Eq.1 for the case of max( )δ ∆:  and π∆ = . We expand 

the numerator to the third order and the denominator to the second order, and we obtain an 
approximate transmission amplitude  

3 3
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The fractional part can be viewed as a 0q =  Fano resonance with a δ -dependent width, and 
the part other than the fractional part can be viewed as an envelope function. It is seen that within 
this range of δ  the line shape is not in the conventional Fano form. But if we further restrict 

ourselves to the range of δ  is an order of magnitude smaller than ∆ , i.e., 2max( )δ ∆: , the 

expression in Eq. 3 can be further simplified to  

 
2

3 2( 1) (1 ) ,
8

8

m nA
i

δ

δ

+ ∆− −
∆+

; ……………….(4) 

which is exactly in the form of the conventional 0q =  Fano resonance, which has only a dip. 
Note that the parameter δ  is a dimensionless wavevector but not energy. When the detuning ∆  
approaches zero, the width of the dip ( 2∆: ) approaches zero and the dip becomes infinitely 
sharp and vanishes. There are a few noteworthy points here. If one adopts the conventional 
understanding of the Fano resonance lines with the usual notions of quasibound states and their 
lifetimes, the ``lifetimes'' of the ``quasibound states'' our case might seem can be drastically tuned 
by a slight tuning of the armlength ratio! Moreover, the two arms of the ring are all the same 
besides their lengths, and the SWR at 1 2( ) 2k L L mπ+ =  also occurs in the entire ring, therefore 
there is no obvious distinction between the ``resonant'' and ``non-resonant'' tunneling paths in 



here.  
 

On the other hand, we also have investigated the transmission amplitude 3A  for the case of 

1 2L L L= = , in the complex wave number k% plane. This is a common way to investigate the 

quasibound states in the tunneling paths, the states in the ring in our case. In this special case of 

1 2L L L= = , we can readily find poles at Ln3kL n iπ= −% , where n  is an integer. Though the 

Re k% does correspond to a standing wave in an isolated ring with circumference 2L , the Im k% 
is large and comparable to the spacing in the Re k%. This indicates that these ``quasibound'' states 
are vaguely defined and this is in congruent with the fact that the ring is open. It is also 
inappropriate to view any of these states signified by the poles as a quasibound state in Fano's 
original formalism, which always gives a peak-dip pair profile at near the quasibound state energy. 
In spite of this, the transmission dips can be created and sharp. As we will see in the later 
subsections, these standing wave states are also related to the formation of the peak-dip pairs in 
thetransmission spectrum when impurity potential is included.  
 
 

It is thus seen that the conventional Fano resonance scheme with straightforward notions 
like non-resonant and resonant tunneling paths, lifetime of the quasibound states, might be hard 
to provide a consistent understanding basis of the above results of equal armlengths and slightly 
unequal armlengths. This reveals the logic that though when there are resonant and non-resonant 
paths in a tunneling process there will be a Fano resonance line, the reversed statement, when 
there is a Fano lineshape then there are resonant and non-resonant tunneling paths in the 
tunneling process, may {\it not} be always true. In other words,though the mathematical form of 
the resulting tunneling probability can be unanimously in the Fano form as in Eq. 2, the physical 
contents could be quite different. 
 
Single impurity 
 

This subsection considers the case of a point impurity is embedded into the ring. The 
impurity is described by a Dirac-δ  function potential and this model should be applicable for 
local potentials with extensions small compared with the wavelengths of the itinerant electrons 
and armlengths of the ring. The impurity is embedded into arm 1 by adding the potential 

1 1 1( )V x Xδ − , where 1V  is the strength of the impurity and 1X  is the location of the impurity in 
coordinate 1x  on arm 1, and the corresponding transfer matrix is  
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Henceforth we will use the dimensionless parameter 2
1 1 1 /(2 )v mLV π≡ h  to characterize the 



impurity strength. It is noted that the transfer matrix has the symmetry 11 22 *
1 1M (M )=  and 

12 21 *
1 1M (M )= . Arm 2 is clean and hence 2M 1= . 

 
Figure 2 shows how the asymmetric Fano-type resonance arises as the strength of the 

impurity on arm 1 grows. We have chosen 1 2L L=  and 1 1/ 0.3X L =  in Fig. 2. Such a peak-dip 
line shape resonance is in contrast with the mere dip resonance in the without impurity case, but 
both of them are seen to develop from zero widths. However small the width of the Fano 
resonance, it is seen that the peaks always reach one and the dips always reach zero. 
Mathematically the dips are also due to the lift of zeroes in the denominator D . It is noted that the 
dips are not necessarily at the eigenenergies of an isolated ring with a point  

 
 
impurity. When the impurity strength becomes considerable, the dips depend very much on the 
location of the impurity since both the impurity and Y-junctions have a substantial effect on the 
standing waves in the ring. At the strong impurity limit, the zero transmission dips are wide and 
located at 1kX  and 1 1( ) integerk L X π− = × , and that agrees with the result of a 1D wire with 
stubs.  The arm is essentially cutoff when the impurity is strong, and our case is equivalent to a 
1D wire with two stubs of lengths 1X  and 1 1L X−  attached. There will be zero transmission 
when the length of any one stub is such that an integral number of half-wavelengths can just be 
fitted in.  
 

Fig. 2: The transmission probability T
is shown versus the dimensionless
wave number kL1/(2π) for L1=L2 and
a point impurity at X1/L1=0.3 with
strength v1=0.2, 0.8, and 10 (cutoff
limit) [From (a) to (c)]. Each of the
panels has a height of 1. The Fano
resonance lines are seen to collapse at
the limit v1=0 by shrinking their
widths. The square roots of the
magnitude of the numerator C and
denominator D of the transmission

amplitude, C (red) and

D (blue), are also plotted [in (d)]

for v1=0.8 to illustrate how the Fano
resonance arises. 



Similar to the collapse of resonant dips, collapse of Fano peak-dip pairs is also seen to occur. 
In Fig. 3 we have shown the transmission probability for the case of the impurity is located near a 
commensurate location in the ring. We have chosen 1 2L L=  and 1 1/ 1/ 3X L : , and the Fano 
resonance lines at 1 /(2 ) 1.5kL π = , 3 and 4.5 are seen to collapse at 1 1/ 1/ 3X L : . The expressions 
for C  and D  in this case are complicated and a detailed analytic analysis is difficult. 
Nevertheless it can be readily verified that at a k that simultaneously satisfies 1 1kL n π= , 

2 2kL n π= , '
1 1kX n π= , where 1 2,n n  and '

1n  are integers, and 1 2n n+  is even 

[i.e., 1 2( ) integer 2k L L π+ = × ], both C  and D  vanish but the transmission amplitude 

1
12

3 1/ ( 1) 1 /( )nA C D imV k
−

 = = − + h  is nonzero. At such a mathematically ``accidental'' nonzero 

transmission, it is expected that a slight detuning of 1X  can generate a transmission zero as in 
those cases discussed before. Nevertheless, the nearby perfect transmission peak seems to have 
no intuitive explanation. Note that the above mentioned conditions for k  also imply 
that 1 2( ) integer 2k L L π− = × .  

 
 
We can also get an approximate transmission amplitude at the vicinity of a sharp peak-dip pair 
when the detuning of the impurity from an commensurate location is small, and investigate more 
closely the relation of the resonant width to the detuning. Since we know that under some 
commensurate conditions, i.e., rational 2 1/L L  and 1 1/X L , the peak-dip pair collapses at 
some 0k k= , where 0k  is defined by 0 1 1k L n π= , 0 2 2k L n π= , where 1 2n n+  is even, and 

'
1 1kX n π= , we can make an expansion for the case of a small detuning of the impurity from the 

commensurate location by letting '
1 1kX n π= + ∆  under the condition 0 1 1k L n π= , 

Fig. 3: The transmission probability T
is shown versus the dimensionless
wave number kL1/(2π) for L1=L2 and a
point impurity with strength v1=2 at
X1/L1=0.32, 1/3, and 0.35 [from (a) to
(c)]. All the panels have heights of 1.
the Fano resonance lines at
kL1/(2π)~1.5 and 3 are seen to collapse
at the limit X1/L1=1/3. 



0 2 2k L n π= ,where 1 2n n+  is even. Defining a dimensionless 

wavevector 1 2 1 2( ) ( )k L L n nδ π= + − + , and consider the regime 2max( )δ ∆:  and π∆ = , 

also assumming that [ ]1 1 1 2/ ( )v v n n π≡ +%  is of the order of 1, we can expand the numerator C  

and denominator D  to the lowest nonvanishing order and obtain the approximate transmission 
amplitude  
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The zero of the numerator is seen to occur at 2
12vδ = ∆% , while the zero of the real part of the 

denominator is seen to occur at 2 2
1 12 /(1 )v vδ = ∆ +% % . The two zeroes can only be equal when 1 0v =%  

or 0∆ =  and such a situation of detuned zeroes corresponds to the case of a nonzero Fano 

parameter $q$, which results in a peak-dip pair. Since 2
1(1 ) 1v+ >% , when 1 0v >%  (the impurity 

potential is repulsive), the peak appears preceding the dip, if 1 0v <%  (the impurity potential is 
attractive), the order of appearance of the peak and dip is swapped. On the other hand, the overall 
width of the resonant line depends neither on the sign of the impurity potential 
( 1v%) nor the detuning ( ∆ ).  
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