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Power Delivery Network Analysis with

Hierarchical Model Order Reduction Techniques
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The increase in the complexity of VLSI (Very Large Scale Integrated) chips, and the
decrease in the feature size of chips demand large metal resources for the power delivery network.
The number of wire segments will be over one billion in nanometer designs. This causes the
designing and verifying of the power delivery network to become a challenging task. The inferior
design of the power distribution network can degrade the circuit performance, noise margin, and
reliability.

To ensure the design quality of power delivery, extensive transient power grid simulations
1



need to be performed to analyze the power delivery fluctuation. However, due to the large size of
power delivery network, the traditional circuit simulators, such as SPICE/HSPICE, do not
perform well and often take days to complete the full simulation and need many gigabytes of
memory space. Hence, in order to facilitate the design of large scale power grids, it is crucial to
develop an efficient transient simulation engine for the power delivery network analysis. In the
first year of this sub-project, we have integrated a model order reduction method based on
matching the solution moments at several desired frequencies, with the hierarchical analysis to
develop an efficient power delivery network simulation engine. However, it is hard to choose the
suitable expanded frequencies. Since the goal of analyzing power delivery network is to get the
voltage drop waveform at each node, it is more straightforwardly to solve its system equation in
the time domain. Therefore, we focus on studying and developing several time domain methods

to simulate the power distribution network in the second year of this sub-project.

Keywords : Power/Ground Network, Power Delivery Network, Hierarchical Analysis, Model

Order Reduction
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With the UDSM (Ultra Deep Sub-Micron) technology, several features of today's chips
( higher operating frequencies, larger number of transistors, smaller feature size and lower power
supply voltage) have pushed the power delivery noise analysis onto the designers' list of high
priority concerns [1~4]. Basically, the power delivery noise consists of IR drop, Ldi/dt drop and
resonance fluctuations. The IR drop has been widely discussed and extensively studied in the
literatures [5~8]. Due to the roaring clock frequency, increasing current consumption, and even
the clock gating feature, Ldi/dt noise is quickly emerging as another power fluctuation concern
[6]. Power delivery noise causing the power voltage to deviate from the ideal value can severely
degrade the performance and even make the gate function erroneously. Therefore, the extensive
analysis of RLC/RLKC (resistance, inductance, mutual inductance, and capacitance) power
delivery system is required to ensure them to meet the target performance and reliability goals.
Generally speaking, one of the major difficulties for the power delivery analysis is size
explosion. Tens of millions of devices and parasitics are required to be modeled and simulated
over a long time period. However, it is computationally expensive to simultaneously simulate all
transistors with the power delivery structure. To enhance the simulation speed, it has been
proposed to decouple the power delivery structure simulation and transistors' simulation [6]. First,
the current profiles of transistors can be estimated by the current extraction methods. After that,

the power delivery network can be modeled as a suitable RLC/RLKC circuit attached by current

2



sources. In this way, the simulation can be effectively done since there are fewer elements in the
circuit, and a RLC/RLKC circuit can be simulated with one LU-decomposition. However, due to
the large size of linear circuit, traditional circuit simulators, such as SPICE/HSPICE, do not
perform well and often take days to complete the full simulation and need many gigabytes of
memory space. For this reason, the hierarchical simulation technique has been applied by [6] to

speed up the power delivery network simulation.

The MOR (Model Order Reduction) technique is another efficient way which can be utilized
to speed up the circuit analysis [8], and has been widely studied and improved over the last
decade [5, 9~11]. Starting from AWE (Asymptotic Waveform Evaluation) [9] to PRIMA
(Passive Reduced-order Interconnect Macromodeling Algorithm) [11], MOR techniques have
been successfully extended to consider the inductance effects with reasonable accuracy. Later, an
extended Krylov subspace method, EKS (Extended Krylov Subspace) [5], has been developed to
simulate large scale power delivery circuits with many PWL (Piece Wise Linear) current sources.
To resolve the source waveform modeling issues, EKS need to perform the moment shifting
procedure to recover the proper moments. In [12], we proposed an improved EKS (IEKS) method
such that it did not need to perform moment shifting for the source waveform modeling, and
established a novel hierarchical power delivery macro-modeling methodology which integrated
the multiple-port Norton equivalent theorem with the MOR algorithm to generate compact and
accurate models and achieved significant runtime improvement. We not only considered the self
inductance, but also included the effect of mutual inductance in each sub-circuit. The
computation load of this method is independent of the number of sources.

In the first year of this sub-project, we have proposed a procedure of hierarchical analysis of
power delivery system with including the coupling at the boundaries of different sub-circuits to
approximate the coupling effects. We integrated a model order reduction method based on
matching the solution moments at several desired frequencies, with the hierarchical analysis to
develop an efficient power delivery network simulation engine. However, it is hard to choose the
suitable expanded frequencies. Since the goal of analyzing power delivery network is to get the
voltage drop waveform at each node, it is more straightforwardly to solve its system equation in
the time domain.

As we mentioned above, one bottleneck of power network analysis is the tremendous
amount of elements in the system equation. Therefore, the directly solving methods are
prohibitive, and the iteratively analyzing methods are better for this large system. Although the
iterative methods always converge very quickly for the errors of high-frequency components,
they converge extremely slowly for the errors of low-frequency components. Hence, one issue for
applying iterative methods to analyze the power delivery network is to accelerate convergent rate
due to the slow convergence of low-frequency errors.

Recently, several stochastic methods [14, 15] were proposed to solve the power delivery
network. A system-like method by using the stochastic approach was proposed by [14]. It first
solved the impulse response of the power delivery network, and then used the random process

method to calculate the voltage at each node. However, the procedure of finding auto-correlation
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matrix and impulse response are very expensive. A random walk method was developed to
analyze the power distribution network in [15]. This method viewed the procedure of solving the
power network as a “travel game”. A traveler walks from a starting node to another with a
probability which is proportional to the conductivity between them, and collects a voltage value
contributed from the node which the traveler arrives. The traveler keeps walking until he/she
reaches a node with constant voltage, and adds all the collected voltage values together as his/her
reward of this travel. This walking procedure repeats again and again until the average
reward/voltage converges. Thus, the flat method based random walk procedure may be too
expensive. Although the authors in [15] proposed a hierarchical based method, the interface
nodes between subsets must be vias. This hierarchical procedure might not be general if the
number of nodes in each sub-network is too huge.

In the following section, two different time-domain methods are developed to analyze the
power delivery network. First, a multilevel method based on an aggregation based algebraic
multigrid (AAMG) method [16] is proposed to avoid the slow convergence of the basic iterative
methods. Then, a semi-stochastic like method based on the Markov chain is developed to
simulate the power delivery network. It works very similar with random walk process but we can
find the limit behavior by using the techniques of linear algebra. Moreover, a Markov chain based

hierarchical method can be generalized to speed up the analysis of power distribution network.

P

The power delivery network can be modeled as a RLC/RLKC circuit attached by many current
sources as illustrated in Figure 1. The top chip view of power delivery network is shown in
Figure 1.(a). Figure 1.(b) is the layout view of the interconnection of power delivery network
which the devices are modeled as many independent time-varying current sources. The main goal
of power delivery network analysis engine is to calculate the voltage disturbance at each node of
Figure 2.(b). By applying the extraction tools to Figure 1.(b), the power delivery network can be
modeled as a RLKC mesh as illustrated in Figure 1.(c). For simplicity, we do not show the
mutual inductances in Figure 1.(c). This RLC/RLKC circuit model can be represented as a set of
MNA (Modified Nodal Analysis) equations,

Gx(H)+C x(t) = Bu(?), (1)
where x(7) represents the vector of MNA variables consisting of nodal voltages, inductor source
currents, and voltage source currents, u(f) denotes the vector of port voltage sources and internal

current sources. G is the conductance matrix, C is the susceptance matrix, and B is the input

selector matrix mapping the sources to the internal states.
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Figure 1. Modeling of power delivery networks

In the following two subsections, first, a non-symmetric aggregation-based algebraic
multigrid method for power grid network analysis is developed to improve the convergence speed
of the basic iterative methods. After that, a different approach based on the Markov chain is
developed to analyze the power delivery network.

A. A Non-Symmetric Aggregation-Based Algebraic Multigrid Method for Power Delivery
Network Analysis

Problem Transformation and Introduction of Multigrid Methods

The multigrid method (MG) is an efficient method widely used for solving partial differential
equations (PDEs). Firstly, the trapezoidal numerical approximation is applied to Equation (1)

resulting in a set of linear equations,
(G+%)x(r+h): —(G—%jx(m Bu(t+ h)+ Bu(t) (2)

where 4 is the time step.

Equation (2) can be represented as

Ax(t+h)=b(t+h), 3)
where A=G+2C/h and b=-(G-2C/h)x(t)+Bu(t+h)+Bu(t).

The solution space of Equation (3) can be decomposed into two subspaces, the smooth (low
frequency) subspace A and the oscillatory (high frequency) subspace 8B, according to the

eigenvectors of the associated system. The eigenvectors with small eigenvalues are according the
smooth subspace A, and the eigenvectors with large eigenvalues are according to the oscillatory
subspace B.

The concept of multigrid method consists of two complementary components: one is
relaxation, and the other is error correction [17]. Relaxation acts as a good smoother which is
shown in Figure 2. The relaxation step can dramatically reduce the high frequency error
components by using iterative solvers such as Gauss-Seidel and Weighted Jacobi methods.

On the other hand, the low frequency error components can be reduced by the error

correction which involves mapping the problem to coarser grids via the restriction operator, 7",
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solving the mapped problem which has fewer variables, and mapping the solution back to the
original fine grids via the interpolation (prolongation) operator,/},. The low-frequency error
components at the fine grids Q" become more oscillatory at the coarse grids Q”" as shown in
Figure 3 [17], and the relaxation procedure at coarser grids can reduce those components more

efficiently.
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Figure 2. Relaxation involves several iterations. (a) High-frequency error components reduced

effectively. (b) Slight reduction of error for low-frequency components.
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coarse grids.

While solving the original problem, A"x"(++h)=b"(t+h), the residual of fine grids is equal to

"= b"(t+h)-A"" after several times of relaxing Equation (3) with initial guess v" . The original

ini *

problem is equivalent to solve the following problem.

A= (4)
If we can solve Equation (4), the exact solution of Equation (3) is equal to Vi+e". In order to
efficiently solve ¢, the restriction operator, ;" , maps the residual of fine grids to the residual of
coarse grids by *" = I”"r", and Equation (4) is reduced to the following smaller system,

APt =y (5)



where 4" is the reduced system matrix, 4> = (I ;’h) A"}, €™ is the coarse-grid error, (1 ,fh)/is
the interpolation operator, and 1., = (1 ,fh) . If the size of reduced system matrix is small enough,
the coarse-grid residual equation can be solved by direct methods. Otherwise, the similar steps,
relaxation and restriction, are used again to further simplify the system matrix until it can be
solved directly. Assuming the solution of the residual equation on the coarsest grids, Q" have
been obtained, then the interpolation operator, [ nh/ , is used to map the error term " back to the
finer level, Q g , by e v —e v +1, Ae”h . This interpolation procedure is recursively
performed. Finally the approximate solution of equation (3) is equal tov" «v" + I} e*". Various
recursive schemes can be utilized to obtain the approximated solution. The recursive V-cycle [17]
of the multigrid method with several nested iterations is illustrated in Figure 4(a), where direct
solvers are usually applied at the coarsest level to find the exact solution of the reduced system,
and the interpolation operator is applied from the coarsest level back to the finest level. Also, the

W-cycle or full multigrid V-cycle scheme [17] shown in Figure 4(b) and (c) can be used to obtain

better results in some cases.
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Figure 4. (a) The recursive V-cycle of the multigrid method with four nested iterations; (b)

W-cycle scheme; (c) Full multigrid (FMG) scheme on four levels.



Power Delivery Network Solver Based on Aggregation-Based Algebraic Multigrid Methods

Given the system equation of the power delivery network as shown in Equation (3),
Ax(t+h)=b(t+h), our goal is to solve x(¢#+h) at any specific time, t+h. For simplicity, we take
‘(t+h)’ out at the rest of this subsection. Therefore, the equation can be rewritten as

Ax=b, (6)

where the solution x is in R™ and the system matrix A is in R"xR", and N is the number of
unknowns. As we mentioned before, the solution space RN = A4®R8, where AcR" is of dimension
M<N, and BeR" is of dimension N — M. We can construct a basis {q1, q2, ..., qu} for the smooth
subspace A with each ¢;eR", such that

A=spaniq;, q2, ..., qu}

If the matrix Q is defined to be a N xM matrix which is constructed by the column vectors

qi s, an arbitrary vector ve A can be uniquely specified as
M
V:Zaiqi =Qa M
i=1

where O=[q; q> ... qul, a=(a;, az, ..., aM)t. The matrix Q: RM RN is the prolongation
operator and its transpose, O": RN —RM, is the restriction operator.

Using the prolongation operator O, we can construct a multilevel scheme and obtain a
corrected solution approximation,

x“=x""+Qa, (®)

where x"/ is an approximated solution after v/ smoothing iterations.

Let the corrected residual R“=A4x"-b be orthogonal to the smooth subspace A: <R, 0> = 0, where

<., ->1is the standard inner product. We can derive the coarse-level equation,

Agpa=-OR", 9)
where R"=Ax"'-f is the residual after v/ smoothing iterations, and A4~Q'4Q is the

coarse—level matrix.

After the above derivations, a multilevel scheme can be constructed with the prolongation
operator O which is composed of the eigenvectors with small eigenvalues of the system normal
matrix. Because of the orthogonal property between the corrected residual R° and smooth
subspace A, the high-frequency errors can be eliminated efficiently.

With applying a mesh-based aggregation technique, the system normal matrix can be

divided into many aggregated sub-matrices by the following five principles:

P1 Select the node with maximum degree of strong connections in the graph as the
first node in an aggregation.

P2 Every point must be included in the aggregation.

P3 Each point cannot belong to different aggregations.

P4 Let the points which have strong connection between them in the same
aggregation.

P5 Let the points which have weak connection between them in the different

aggregations



The eigenvectors and eigenvalues of the system normal matrix can be solved by using QR
decomposition [18] to calculate the eigenvectors and eigenvalues of each aggregated sub-matrix.
For each aggregation, those eigenvectors with smaller eigenvalues are assembled into the
columns of prolongation matrix.

The aggregation-based algebraic multigrid method uses a multilevel scheme to eliminate the
high-frequency errors, and the low-frequency errors are eliminated by the smoother at each level.
The complementarities between the smoother and the coarse-level correction can make the

convergence faster, and the convergence rate is nearly independent of the problem size.

B. Power Delivery Network Analysis Using Markov Chain
In this subsection, we first develop a Markov-chain like method to solve the power delivery
network which only includes the RC components. Then, we extend this method to deal with

the RLKC components.

Markov-Chain Like Solver for Flat RC Power Delivery Network

Without considering the inductance effect, the RLKC power delivery system in Figure 1
can be reduced to RC model as shown in Figure 2.
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Figure 5. RC power delivery network

By performing KCL at each node x, its nodal equation can be rewritten as

degree(x) dV t
n (=3 g ()10, 21 i
i=1

where v,(f) is the nodal voltage of each adjacent node x, g; is the corresponding
conductance between node i and x, ¢, is the capacitance at node x, and I(f) is the
independent current source at node x.

After applying backward Euler approximation to Equation (10), it can be simplified to



1.(1)

n(0= 3 e by C
1eadj(X)[ Z gi]_’_hx [ Z gij+ hx ( z giJ"'hX

ieadj(x) icadj(x) icadj(x)

(11)

As you can see that the first two items’ coefficients in the right hand side of Equation
(10) are all positive, and their sum is equal to 1. Therefore, a probability model can be

constructed for our Markov Chain model.
® Markov Chain Model for Flat Power Delivery Network Analysis

According to Equation (11), each nodal voltage at time ¢ is view as a transient state [19]
(This kind of node is named as “internal node”.), and the probability of transition, p,;, from
state x to state i is the coefficient of vi(¢). The last two terms in Equation (11), and all power
supplies are absorbing states [19] (This kind of node is named as “boundary node”.) and
their coefficients are the probabilities of transition form state x to tem. With the above

configuration, The Markov Chain recursive equation can set up as

degree(x)
vx(t): Z pxivi(t)+pxxilastvx(t_h)_klx(t) (12)
i=l1
sl x ol o e lbeen o i)
= + - (13)
Vi) \R Q)W) \0 PNV E-m) (0 K1,

where

R: transition matrix form internal nodes to pure Vpp states

Q: transition matrix from internal nodes to internal nodes.

P,: transition matrix from internal nodes to their last sampling time voltage states.
K: contribution matrix of independent sources.

V,: the vector of pure Vpp states.

V((?): the vector of internal nodal voltages.

V((t-h): the vector of last sampling nodal voltage states.

From above, the related absorbing Markov chain [19] recursive equation (13) of the
power delivery network bas been constructed. The limit-behavior of Equation (13) needs to
be derived in order to calculate all nodal voltages.

® Limit Behavior of Flat RC Power Delivery Network Markov Chain System

To solve V/(t) in Equation (13), we can perform an iterative procedure and find the

solution of this recursive equation as following lemma,
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Lemma:
Given a RC power delivery model system, the solution of its absorbing Markov chain
recursive equation is

I/I(l(): BI—)bI/b(t)—i_B I/I(t_h)_NKlmdep (14)

I1—>1 last

where
B.>p : Static-state probability matrix form V;(#-4) to V.
Br>1 ase ¢ Static-state probability matrix from V(¢) to V(¢-h).
N: Static-state probability matrix from V(7) to V(¢).
Proof:
The iterative method is used to find the limit behavior of Equation (13).
Let 7 be the k" iterative nodal voltage vector.

Up to the k" iteration, the absorbing Markov chain recursive equation is

I R 94 b B | O PN b () A

As the iteration number goes infinity, it becomes

0 0 0
0

nov (1 oymey [0 ) 0
vo) B Q)\rw) o fZQ"jPX V(t—h)) |0 (ZQ"]K |y

i=0 i=0

where

Q*=0;

NEZO‘,Q’#(I—Q)I,

0

B[*)b =B =(ZQIJR =NR >
i=0

B =NP,.

I—1 _last

Finally, the solution of V(¢) is
Vl(t) = BI—>be (¢) + BI—)I_IastVI (- h) - NKI

indep (X X 2

Hence, since the items at right hand side of Equation (14) are constant at the current

sampling time, the unknown vector of V(¢) can be directly calculated.
® Hierarchical Based Markov-Chain Like Solver for RC Power Delivery Network

Since the flat Markov chain solver needs to calculate the inverse or perform LU
decomposition on a matrix, its time complexity is at least O(N?). We propose a Hierarchical
based Markov chain solver to deal with this problem. This hierarchical analysis contains
three phases

11



Phase 1. Partition the whole power grid into many sub-grids and view the nodes
on cut lines as boundary nodes.

Phase 2. Construct the relation between boundary nodes and sub-grid nodes.

Phase 3. Solve the nodal voltage at each node.

Phase 1. Partition the whole power grid into many sub-grids and view the nodes
on cut lines as boundary nodes

fn nodesq

S the cut line node be wirtaal boundary

-

Figure 6. RC power delivery network partition

The suggested number of cut lines is & = N’ to get an optimum efficiency for the hierarchical

based algorithm.

Phase 2. Construct the relation between virtual boundary nodes and sub-grid
nodes

There are two sub-phases in this Phase. We need to construct the relation between
internal nodes and boundary nodes in SubPhase 2.1. Then, the relation between virtual
boundary nodes and boundary nodes is constructed in SubPhase 2.2. The virtual boundary
nodes are the nodes adjacent to the boundary nodes as illustrated in Figure 8.

SubPhase 2.1. Construct the relation between internal nodes and boundary nodes

Those nodes on the cut lines are defined to be boundary nodes as illustrate in Figure 7,

and the Markov chain equations for all sub-networks are constructed.

Boundary node

Pure ¥V nodes ___,._p.
in sub-gird A Single sub-grid

(wiew as internal nodes)

Figure 7. The relation between internal nodes and boundary nodes

After constructing the relation between sub-grids and boundary nodes, the sub-grids

12



nodal voltage vector can be expressed as

V,(t)=B,_,V,()+B_, . V,(t—h)+B_V,~N, K, I (15)

—1 last I—>I1"1_indep

where
V(?): the vector of boundary nodal voltages.
V(t-h): the vector of internal last sampling nodal voltage states.
V: the vector of pure Vpp states in sub-girds.

Kl; ingep: the vector of internal independent current source coefficients.

SubPhase 2.1. Construct the relation between virtual boundary and boundary nodes

The relation between virtual boundary and boundary nodes can be built up by the
follow steps.

Step A.  The first-pass internal nodes are view as virtual boundary nodes, and the

relation between virtual boundary and boundary nodes is

4 (t) b—>fV (t) + Bb—>ka + Bb Vh(t_ h) - Nb—)be—>bIb (16)

—b_last

Step B.  From the pervious discussion, the system equation of virtual boundary nodes

to boundary nodes for each sub-grid network i is

Vfl (t) = Bfl.—>b, Vbl. (t) + B/;—ﬂ_,mV],.Jm (t - h) + B_/;.—>k V N/ > K[ -1, ] (17)
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boundary nodes when a boundary state

2o mto.

Figure 8. The virtual boundary nodes

Therefore, the hierarchical iterative system matrix is

V, () _ 0 V, () B, ., _last 0 V,(t—h) bk 0 Vi N, K, 0 ]indep_b
Vf(t) _(L Oj Vf(t) ’ 0 Bf%]flast (Z(t—h)]—l_ Bf»k Vfﬁk B 0 Nf—)IKs [indepJ

Let us rewrite the above hierarchical iterative matrix as
k+1 k
V. (t V. (¢
OV (h0Y s
Vf (t) Vf (®)

13



where C: the last three terms of right hand side of the hierarchical iterative matrix

(0 o

The matrix 1-G is a strictly diagonal dominant matrix and the convergence of this
iterative equation has been proven by [20]. Furthermore, the G matrix is consistently
ordered [20], we can use SOR (successive over-relaxation method) to improve its

convergent rate.

Phase 3. Solve the nodal voltage at each node

From the description of Phase 1 and Phase 2, the nodal voltages of all internal nodes are
functions of boundary nodal voltages, and the boundary nodal voltages are functions of
virtual boundary nodal voltages. Therefore, we first compute the nodal voltages at boundary
nodes and virtual boundary nodes, and re-compute the nodal voltages at the internal nodes.

Figure 9 is the flow chart of the proposed hierarchical Markov chain method for RC

power delivery network analysis.

“istual Bowndany and Boundass

Figure 9. The flow chart of the proposed hierarchical Markov chain method for RC power
delivery network analysis.
Markov-Chain Like Solver for RLKC Power Delivery Network

With including the effect of mutual inductance, the proposed Markov-chain like solver for
RC power delivery network can not be directly applied to solve those additive variables,
branch currents induced by the inductance components. An iterative procedure is used to
overcome this problem. A single branch equation with including the inductance/mutual
inductance effect can be represented as

8 i
v -v.()=LOR+ > L, dl,(1)
jelL _effect(i) dt
14



Let the matrix K be the inverse of inductance matrix L, and k; be the entry of K at row i and
column j. After applying KCL, backward Euler and with some manipulations of the above

branch equation, the nodal equation for a node and its iterative relation are

hk,,
hk Z /

—h
Vo= 8 ¢ it JEL_effect(i);j#i » I;

e v, + N f
‘g +hk, g, + hk, g, + hk, ’g +hk,

t_ t t—h
I, =h Z kl.ijj +1]
JeL _effect(i)

2
hg k c 2, hgky,
. 9.k, ‘  i=h 8 yi-h JeL _effect(i); j#i
V.= 4+ v+ =L+ h
iedegree(x) mx (g, + hkii) mxh iedegree(x) mx iedegree(x) mx (g; + hkii)

(19)

(20)

t

L@

m

X

Figure 10.(a) is the flow chart of the proposed hierarchical Markov chain method for RLKC
power delivery network analysis, and Figure 10.(b) is the flow chart of the RLKC Solver.
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Figure 10. (a) The flow chart of the proposed hierarchical Markov chain method for RLKC

power delivery network; (b) The flow chart of RLKC Solver.
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In this report, we have developed a multilevel method based on an aggregation based
algebraic multigrid (AAMG) method to efficiently analyze the power delivery network. With this
multilevel approach, the proposed method can speed up the convergence speed by avoiding the
slow convergence in the low frequency errors which the basic iterative methods suffer.

We also proposed a semi-stochastic like method based on the Markov chain to simulate the
power delivery network. This hierarchical based Markov-chain solver can efficiently analyze
both the RC and RLKC power delivery networks.
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