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A special class of the Bianchi type VI expanding solutions was speculated to break the cosmic no-hair

theorem that will not approach the late-time de Sitter solution. We will show that an unstable mode always

exists when the perturbation of the field equations is applied to the system. In addition to a model-

independent perturbation formula, a simplification is also achieved by the introduction of a �R ¼ 0

solution good for quadratic models in all Bianchi spaces. The result shows that this special class of

anisotropically expanding solutions is unstable.
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I. INTRODUCTION

The inflationary scenario is known to be a successful
model working properly with the cosmological standard
model. There should have been a brief moment of accel-
erated expansion during the epoch of the early universe [1].
For example, a simple physically motivated inflationary
scenario can be induced by the acceleration driven by a
scalar field with a constant potential serving as the cosmo-
logical constant. It can also be induced by higher derivative
pure gravity models with natural graceful exit. On the other
hand, late-time de Sitter space appears to be a natural
consequence of the evolutionary universe. Therefore, it is
important to find out whether universal acceleration and an
asymptotic approach to the de Sitter metric always occurs
in these models.

In short, the field equations of any gravitational system
with a cosmological constant � can always be written as

Gab ¼ Tab ��gab: (1)

The Einstein tensor Gab on the left-hand side of the above
equation signifies the geometric impact of the gravitational
effect due to the contribution of the energy-momentum
tensor Tab shown on the right-hand side of the above
equation.

Gibbons and Hawking [2] and Hawking and Moss [3]
conjecture that all models with a positive cosmological
constant will tend to a late-time de Sitter space. This is
later known as the cosmic no-hair theorem for the Einstein
gravity. Partial proof was given by Robert Wald [4] which
shows clearly that any model with a positive cosmological
constant will drive the late-time evolution towards the de
Sitter spacetime, at least locally, for all non-type-IX
Bianchi spaces provided that the matter sources obey
(i) the dominant energy condition (DEC)

Tabt
atb � 0 (2)

and (ii) the strong-energy condition (SEC)

ðTab � 1
2gabTÞtatb � 0 (3)

for any timelike vector ta [4]. Here Tab and T denote the
energy momentum and its trace for any fields coupled to
the gravitational system. The behavior of the type IX
Bianchi space is similar if � is sufficiently large [4].
In addition, a series of cosmic no-hair theorems of

varying strengths and degrees of applicability have been
proved in support of certain constraints on the field pa-
rameters for its occurrence [4–13]. It is also known, how-
ever, that counterexamples exist where these energy
conditions do not hold exactly [14,15]. Many of these
solutions had later been shown to be unstable [9,16–19].
These examples appear to be in favor of the Hawking’s no-
hair conjecture. By all means, it is important to verify or
confirm any existing claim that anisotropically expanding
solutions could be stable. These may further our under-
standing of the limit and constraints on the fate of the
evolution of our universe.
In particular, a new type of cosmological solutions was

shown to arise naturally when�> 0which has no counter-
part in general relativity both in the Bianchi type II and
type VIh spaces [20] once quadratic terms are added to the
Lagrangian of general relativity. Theses solutions inflate
anisotropically and do not approach the late-time de Sitter
spacetime. Hence, they could be counterexamples to the
hope that the cosmic no-hair theorem will continue to hold
in higher-order extensions of general relativity. Additional
studies of higher-order theories can also be found in
[21–25]. We have been, however, able to show that the
inflationary solutions found [20] in the Bianchi II space are
in fact unstable in the presence of anisotropic perturbations
[26]. Note that the Bianchi type II solutions (and some
Bianchi type I inflating solutions) were also found to be
unstable by Barrow and Hervik in Ref. [27].
In this paper, we will try to show that the inflationary

solutions found in the Bianchi VI space are also unstable in
the presence of anisotropic perturbations. In particular, we
will provide a comparably simple method in deriving the
perturbation solutions for all quadratic models considered
here that can be generalized to all Bianchi spaces.
A pure gravity theory which is quadratic in the scalar

curvature and the Ricci tensor is considered in Ref. [20] for
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the model consists of the four-dimensional gravitational
action

SBH ¼ 1

2

Z
d4x

ffiffiffi
g

p
L

¼ 1

2

Z
d4x

ffiffiffi
g

p ðRþ �R2 þ �RabR
ab � 2�Þ: (4)

The Einstein equations can be shown to be [20]

Hab � Gab þ�ab þ�gab ¼ 0; (5)

where Gab � Rab � Rgab=2 and

�ab � 2�RðRab � 1
4RgabÞ þ ð2�þ �ÞðgabD2 �DaDbÞR

þ �D2ðRab � 1
2RgabÞ þ 2�ðRacbd � 1

4gabRcdÞRcd:

(6)

Here the tensor �ab incorporates the deviation from regu-
lar Einstein gravity related to the coupling constants �
and �.

A new class of exact solutions is found in a spatially
homogeneous universes of the Bianchi types VI (BVI)
space given by the metric

ds2VI ¼ �dt2 þ dx2 þ exp½2ðr� sÞtþ 2að1� hÞx�dx22
þ exp½2ðrþ sÞtþ 2að1þ hÞx�dx23; (7)

where

r2 ¼ 8�s2 þ ð3þ h2Þð1þ 8��Þ þ 8��ð1þ h2Þ
8�h2

;

a2 ¼ 8�s2 þ 8�ð3�þ �Þ þ 3

8�h2
:

(8)

Here r, s, a, and h are all constants. These solutions
represent homogeneous universes with a four-dimensional
group acting transitively on the spacetime [20,28–30].
Note that the solution inflates anisotropically if � � 0.
These solutions exist when � or � vanishes but not in
the limit � ! 0. Interesting discussions related to these
solutions can be found in Ref. [20].

Note also that there is a symmetry [s ! �s and
h ! �h] which is equivalent to the transformation
[x2 ! x3 and x3 ! x2] in the Barrow-Hervik (BH) metric
solution (7).

The Bianchi type VI solutions given above inflate in the
presence of a positive cosmological constant �. They are
also known to violate the energy conditions that secure the
cosmic no-hair theorem [4]. Hence, it is important to find
out whether these expanding solutions are stable or not
[9,16–19].

Higher derivative terms may come from the low energy
limit of the string effective theories. From the point of view
of an effective theory of gravity, quadratic curvature terms
can also be treated as perturbative corrections to Einstein
gravity valid in the higher energy scale. In particular,

quadratic theories also give field equations with higher
order in time derivatives. Many of them are known to
have run away solutions and, hence, are supposed to be
unphysical [31,32]. For example, the BH expanding solu-
tion in both Bianchi type II and type VI models is not
defined for � ! 0. The BH solution in type II Bianchi
space has been shown to be unstable.
Because of the complication of the expanding solutions

studied here for the Bianchi type VI models, it is not easy
to obtain or analyze the stability equation of the system.
We will, however, introduce a useful method to derive the
anisotropic perturbation equations of this BH solution for
the quadratic models. In addition, we will also show that an
unstable mode always exists without writing down the
complicated expression of the perturbation solutions. As
a result, we will be able to show that these new classes of
anisotropically expanding solutions are not stable.
This paper will be organized as follows: (i) We will first

derive the universal formula of the Friedmann equation,
and the trace equation as the base of our stability analysis
on a BVI metric space. This new set of equations can be
shown to agree with the Htt ¼ 0 and H11 ¼ 0 components
of Eq. (5) for the quadratic curvature model (4). It can also
be verified directly that BH solutions are also solutions to
these new equations. (ii) Anisotropically perturbations can
be obtained by perturbing these two field equations against
any BVI background metric. (iii) A complete set of per-
turbation equations against the BH background metric
solutions (7) can therefore be obtained directly. (iv) As a
result, we end up with a polynomial equation of degree 3
for the perturbation equations. We will also show that a
unstable mode can be shown to exist from a simple obser-
vation of this stability equation. Therefore, we do not need
to solve the perturbation equations for a solution with a
complicated expression that is difficult to analyze.
(v) Finally, we conclude that the BH expanding solutions
are always unstable against these anisotropic perturbations.
Conclusions and discussions will also be drawn at the end
of this paper. We also listed some useful derivations in the
Appendix.

II. THE BVI METRIC AND THE FIELD
EQUATIONS

The dynamical field of the BH solution can be described
by the metric component g22ðt; xÞ and g33ðt; xÞ. We are
about to show that small perturbations in these two metric
components lead to the existence of an unstable mode. This
will be enough to prove that the BH solution is unstable.
Therefore, we will only need to consider the dynamics of
these two metric components in this paper. The field equa-
tions (5) given above are not easy to handle for the purpose
of perturbation. Instead of directly applying perturbation to
the field equations, we will derive the Friedmann equation
of the higher derivative model from an effective action
approach. Since there are two dynamical fields, we will
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need two field equations for a complete analysis. In addi-
tion to the Friedmann equation we will derive in a moment,
we will also take the trace equation of (5) as another
differential equation for our complete analysis. Indeed,
the trace equation gives

R ¼ ð3�þ �ÞD2Rþ 4�: (9)

We will show in a moment that this is a very useful
equation for the purpose of our analysis. Note also that
the other components of the field equations (5) are redun-
dant and can be derived from the Friedmann equation and
the trace equation (9) following directly from the Bianchi
identity DaG

a
b ¼ 0 and the generalized energy-momentum

conservation law.
In order to derive the Friedmann equation for the BVI

space, we will write the metric as

ds2 ¼ gabdx
adxb

¼ �A0ðt; xÞ2dt2 þ dx2 þ A2ðt; xÞ2dy2 þ A3ðt; xÞ2dz2:
(10)

Here ðx0; x1; x2; x3Þ ¼ ðt; x; y; zÞ, Aaðt; xÞ ¼ aaðtÞdaðxÞ
with the spacetime indices a, b, c running from 0 to 3.
Note that the Friedmann equation is the tt component of
the Einstein equation. Hence, it can only be derived from
varying the action with respect to A0. As a result, the
variation of LðA0; H0; I0; I

0
0Þ with respect to A0, H0, I0,

and I00 will lead to the Friedmann equation given by

DFL¼LþLA0
�DtLH0

�DxLI0 þðDxÞ2LI0
0
¼0: (11)

Here A0 ¼ 1 has been reset after the derivation. In addi-
tion, we have also defined Ha ¼ _Aa=Aa ¼ _aaðtÞ=aaðtÞ and
Ia ¼ A0

a=Aa ¼ d0aðxÞ=daðxÞ as the Hubble parameters and
spatial expansion rate for later convenience. In addition,
overdot _ and prime 0 denote differentiation with
respect to t and x. Furthermore, LA0

� �L=�A0 and

similarly for LI0 and LI0
0
. Covariant differentiations Dt �

@t þ hHi and Dx � @x þ hIi with hHi ¼ H2 þH3 and
hIi ¼ I2 þ I3.

Note also that we can easily show that the field equations
(9) and (11) agree with the field equations (5) for the BH
model (4). Moreover, it is also easy to show directly that
the solution (7) is indeed a solution to the field equations
(9) and (11). We remark here that Eq. (11) is the complete
and comprehensive and model-independent expression of
the anisotropic Friedmann equation for the BVI spaces. We
have not dropped any terms irrelevant to the perturbation
equation up to this point.

III. ANISOTROPIC METRIC PERTURBATIONS

We will first derive a set of perturbation equations in an
arbitrary background metric space specified by AmðtÞ ¼
A0
mðtÞ given by the BH metric (7). It turns out that all

perturbed fields will depend on �Hm instead of �am.

Therefore, linear perturbation equations will be derived
as differential equations of �Hm. Note that the perturbation
equations are in general very complicated for the Bianchi
type solutions [33]. It is comparably more difficult to prove
that a known solution is really a stable solution. This is
because we need to prove that it is stable against all
possible perturbations. On the other hand, to show that
the system is unstable, we only need to find a consistent
unstable solution to the perturbation equation.
For our purpose that will be clear in a moment, the

perturbation of the field equations will be made against
the metric perturbations through the effect of �Hm ¼
km exp½�t�. Here the subindex m runs from 2 to 3 while
a runs from 0 to 3. We will show that at least a positive
mode with � > 0 always exists for the perturbations
against the expanding BH background solutions.
Therefore, this will prove that the BH solutions are always
unstable. Note again that the parametrization of the per-
turbed field as �Hm ¼ km exp½�t� is made simply for our
purpose to find a unstable mode.
We need to perturb both Eqs. (9) and (11) all together in

order to obtain all possible perturbation solutions for fur-
ther stability analysis. First of all, by perturbing the trace
equation (9) we are lead to the following equation:

½1þ 2ð3�þ �Þð�2 þ 2r�Þ��R ¼ 0 (12)

as the first perturbation equation for the BH model. Note
that the differential equations can be restored easily by
replacing �with @t. There are two independent solutions to
the above equation:

ðiÞ � ¼ !� ¼ �r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1=ð3�þ �Þ

q
(13)

as the solution to the equation �2 þ 2r�þ 1
2ð3�þ�Þ ¼ 0,

and

ðiiÞ �R ¼ 2½ð�þ 3r� sÞ�H2 þ ð�þ 3rþ sÞ�H3� ¼ 0:

(14)

The first solution is a trivial solution of less interest to the
stability analysis. The second solution indicates, however,
that the perturbation �R vanishes when � � !� for any
physical perturbation following the Hubble parameters
�Hm ¼ km exp½�t�.
We will focus on the perturbation solution under the

condition �R ¼ 0 throughout the rest of this paper. As a
result, we can freely ignore the perturbations of any func-
tion of R when perturbations are applied to the Friedmann
equation. This follows directly from the fact that �fðRÞ ¼
½�fðRÞ=�R��R ¼ 0 if �R ¼ 0 for any function of scalar
curvature fðRÞ. Note that convenience also derived from
the fact that R ¼ 4� on the background metric (7).
In addition, we can also remove all terms that are

proportional to ð�þ 3r� sÞ�H2 þ ð�þ 3rþ sÞ�H3 ¼ 0
in the derivation of the second perturbation equation de-
rived from perturbing the Friedmann equation (11).
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By doing so, it greatly simplifies the complicated expres-
sion of the second perturbation equation derived from the
quadratic terms.

In order to classify and simplify the complicate deriva-
tion, let us define the following variables: F0 ¼ DFR,
F� ¼ DFðR2Þ, and F� ¼ DFðRb

aR
a
bÞ for convenience.

As a result, the Friedmann equation can be written as

F0 þ �F� þ �F� ¼ 0: (15)

In addition, we can show that

F0 ¼ �2½Gt
t þ��; (16)

F� ¼ �R2 þ 2RF0 þ 4hHi _R (17)

directly from the formal expression of the Friedmann
equation, see the Appendix for details. Therefore we can
show that

�F� ¼ 2R�F0: (18)

Note that the constants r, s, a, h and the cosmological
constant � are related to each other by the following
identities:

1þ 2½R;�2ðr2 þ s2 � a2 � a2h2Þ� ¼ 0; (19)

R ¼ 4� ¼ 2ð3r2 þ s2 � 3a2 � a2h2Þ (20)

in the BH metric background. These relations follow di-
rectly from the definition of r2 and a2 given in Eq. (8).
The complicated relations of these constraints also reflect
the forthcoming difficulty of the stability analysis.

IV. STABILITY CONDITIONS

Therefore the perturbation equation of the Friedmann
equation reduces to the following form:

�F� � 4ðr2 þ s2 � a2 � a2h2Þ�F0 ¼ 0 (21)

independent of the �-dependent term. This means that the
R2 term will not affect the stability of the BH solutions
once the effect of �R ¼ 0 is included. This is a quite
remarkable and useful result for the quadratic models. It
is also related to the fact that the BH solution does not exist
in the limit � ! 0. The perturbations of �F0 and �F� can

be derived straightforwardly. The results are, see the
Appendix for details,

�F0 ¼ 2ðrþ sÞ�H2 þ 2ðr� sÞ�H3; (22)

�F��4ðr2þs2�a2�a2h2Þ�F0

¼½A2�
2þB2�þC2��H2þ½A3�

2þB3�þC3��H3

¼0: (23)

Note also that we have used the condition �R ¼ 0 in
deriving the first equation. Here Am, Bm, and Cm are
polynomial functions of r, s, a, and h defined as

A2ðs; hÞ ¼ 2ð3r� sÞ (24)

B2ðs; hÞ ¼ 4½3r2 � 2rs� s2 þ a2 � a2h� (25)

C2ðs; hÞ ¼ 8½�2r3 þ sr2 � 3s2rþ 2s3 þ a2sþ a2rh2�:
(26)

In addition, we can also show that A3ðs; hÞ ¼ A2ð�s;�hÞ,
B3ðs; hÞ ¼ B2ð�s;�hÞ, and C3ðs; hÞ ¼ C2ð�s;�hÞ. For
convenience, we have only written s, h explicitly in defin-
ing the polynomial functions Am and Bm that also depend
on r and a. Note also that all �H2-related coefficients and
�H3-related coefficients in the complete perturbation
equation are related by the transformation [s ! �s and
h ! �h]. These symmetric relations follow directly from
the fact that the BH background solutions (7) also obey the
same symmetry. Finally, we can write the perturbation
equations as

M�H� A2�
2þB2�þC2 A3�

2þB3�þC3

�þ3r�s �þ3rþs

 !
�H2

�H3

 !

¼0: (27)

Note the second row equation represents the equation
�R ¼ 0. It can be shown that the above perturbation equa-
tions can also be derived directly from perturbing the
complete set of the field equation (5). As a result, a non-
trivial solution exists only when detM � �sFð�Þ ¼ 0. The
functionFð�Þ is a polynomial function of degree 3 given by

Fð�Þ ¼ �3 þ 2A�2 þ B�� 4C (28)

with the coefficients A, B, and C given by

A ¼ 2rþ a2h=s (29)

B ¼ r2 � 3s2 � 3a2 þ 3a2rh=s (30)

C ¼ r3 þ 3rs2 þ a2h2 þ 3ra2 > 0: (31)

Note that C is always positive for all positive r which
stands for an expanding solution. Therefore, we end up
with a polynomial equation

Fð�Þ ¼ 0 (32)

for the perturbation equation.
Any polynomial equation of degree 3 can always be

solved by using the identity cos3� ¼ 4cos3�� 3 cos�
after some proper reparametrization of the coefficients.
The results are very difficult to interpret due to the com-
plicated structure of the solution.
We can show, however, that there always exists at least

a positive mode � ¼ �þ solution if C> 0. This
result follows directly from two observations of the equa-
tion Fð�Þ ¼ 0: (a) Fð�Þ ! 1 as � ! 1, and
(b) Fð0Þ ¼ �4C< 0. Therefore, the one-dimensional con-
tinuous curve Fð�Þ and the positive � axis must have at
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least a point of intersection on the �-Fð�Þ plane. The
intersection point K with coordinate (� ¼ �þ, Fð�Þ ¼ 0)
represents a positive mode solution � ¼ �þ to the poly-
nomial equation Fð�Þ ¼ 0. Therefore the existence of a
positive mode �þ shows that the perturbation against the
BH background space is always unstable provided that
C> 0.

As shown clearly earlier that C> 0 represents an ex-
panding solution. Therefore, we prove that the expanding
solutions found in the Bianchi type VI quadratic models
are inevitably unstable.

Note that if no positive mode can be found in the above
perturbation approach only indicates that an unstable mode
does not exist in the perturbation along the considered
directions �Hi. Unstable modes could also exist if we
perturb the expanding solutions in the directions prescribed
by the inhomogeneous spaces. Unstable modes could also
exist by perturbing extra fields or extra terms that are not
considered here. It is clear, however, that the expanding
solution is unstable once an unstable mode is found in any
direction of perturbation. Therefore, the simple method,
identifying the possible existence of any positive mode,
shown here in this paper could be useful to providing clues
of stability analysis even if the stability equations are too
complicated to be analyzed.

V. CONCLUSIONS

We have derived the Friedmann equation and trace
equation as the base of our stability analysis in an expand-
ing BVI metric space. These new sets of equations are
shown to agree with the Htt ¼ 0 and H11 ¼ 0 components
of Eq. (5) for the quadratic curvature model (4). It can also
be verified directly that BH solutions (7) are also solutions
to these new equations. In addition, we have introduced a
useful method to induce anisotropic perturbations to the
BH solution in the quadratic models.

Anisotropically perturbations are obtained by perturbing
these two field equations against the BVI background
metric. A complete set of perturbation equations against
the BH background metric solutions (7) is therefore ob-
tained directly. As a result, we derive a polynomial equa-
tion of degree 3 as the perturbation equation.

We also show that the unstable mode always exists from
a simple observation of this stability equation. Therefore,
there is no need to analyze the property of the mode
solutions with a complicated format. In addition, the !�
modes become unstable if 3�þ �< 0. Therefore the
system can only remain stable for a brief moment before
the unstable mode � ¼ �þ dominant the expanding pro-
cess even if the prescribed energy conditions DEC and
SEC are both violated. Consequently, we show that the
BH solution is always unstable against these anisotropic
perturbations in favor of the no-hair conjecture for the
Einstein gravity. It appears that the energy conditions to
be held for the no-hair theorem can be further relaxed for

many existing models. Hopefully, the result shown in this
paper will be helpful to the relative analysis of the no-hair
theorem.
In addition, the perturbation equation �R ¼ 0 could also

be used to simplify the derivation of the full set of pertur-
bation equations in different Bianchi spaces. For example,
the anisotropically expanding solutions for the action (4)
were found to be [20]

d2 ¼ 11þ 8�ð11�þ 3�Þ
30�

; b2 ¼ 8�ð�þ 3�Þ þ 1

30�

(33)

in the Bianchi type II space represented by the metric:

ds2 ¼ �dt2 þ a21ðtÞdr2 þ gmndx
mdxn (34)

with ðx0; x1; x2; x3Þ ¼ ðt; r; z; �Þ, a21ðtÞ ¼ exp½bt�=d2,
a22ðtÞ ¼ exp½2bt�=d2, and

gmn ¼ a22ðtÞ ra22ðtÞ
ra22ðtÞ a21ðtÞ þ r2a22ðtÞ

� �
: (35)

Here d and b are some constant functions of �, �, and �.
We will also write x ¼ d2=b2 for convenience. Note
that these solutions also follow the relation R ¼ 4� ¼
ð11b2 � d2Þ=2. Therefore the perturbation equation of
the trace equation also gives �R ¼ 0 that can be shown
to give

�K ¼ 2ð2�2 þ 5�þ xÞ�D1 þ ð2�2 þ 6�� xÞ�D2 ¼ 0

(36)

with aiðtÞ ¼ exp½bDiðtÞ�=d and �Di ¼ ki exp½b�t� defin-
ing the perturbation of Di.
In addition, the perturbation equation of the Friedmann

equation can be shown to be [26,34,35]

��K� þ ��K�

� �f2½16�3 þ 28�2 þ ð8x� 30Þ�� 6x��D1

þ ½16�3 þ 36�2 � ð8xþ 36Þ�þ 6x��D2g
þ �f2½5�3 þ 9�2 þ ð9x� 8Þ�� 3x��D1

þ ½6�3 þ 13�2 þ ð6x� 10Þ�þ 3x��D2g ¼ 0: (37)

The �-dependent term �K� can be factorized as �K� ¼
ð8�� 6Þ�K. Hence, we can use the equation �K ¼ 0 to
eliminate the �-dependent term �K�. As a result, we can
write the perturbation equation as

D�D � C11 C12

C21 C22

� �
2�D1

�D2

� �
¼ 0 (38)

with

C11 ¼ 2�2 þ 5�þ x; (39)

C12 ¼ 2�2 þ 6�� x; (40)

C21 ¼ 5�3 þ 9�2 þ ð9x� 8Þ�� 3x; (41)
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C22 ¼ 6�3 þ 13�2 þ ð6x� 10Þ�þ 3x: (42)

Therefore, nontrivial solutions for �Di exist only when
detD ¼ C11C22 � C12C21 ¼ 0. This equation can be
shown to be a polynomial equation of degree 4:

Jð�Þ ¼ 2�4 þ 8�3 þ ð5xþ 7Þ�2 þ 2ð5x� 1Þ�
þ 15xðxþ 1Þ ¼ 0: (43)

As a result, Jð�Þ ¼ 0 can be solved to obtain the following
four different solutions:

� ¼ �� � �1þ 1
2

�
5� 5x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 130x� 95x2

p �
1=2

;

(44)

� ¼ ~�� � �1� 1
2

�
5� 5x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 130x� 95x2

p �
1=2

:

(45)

This result shows that the �R ¼ 0 equation can help reduce
the labor in deriving the perturbation equation in different
types of Bianchi spaces. Note that a similar result also
applies to the case in the Bianchi type I space [27].
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APPENDIX A: FRIEDMANN EQUATION

We can show that all nonvanishing components of the
Riemann curvature tensor are given by

Rt1
t1 ¼

1

A2
0

½ _H1 þH2
1 �H0H1� � 1

A2
1

½�I0I1 þ I00 þ I20�;

(A1)

Rtm
tm ¼ 1

A2
0

½ _Hm þH2
m �H0Hm� � 1

A2
1

I0Im; (A2)

R1m
1m ¼ 1

A2
0

H1Hm � 1

A2
1

½I0m þ I2m � I1Im�; (A3)

Rtm
1m ¼ 1

A2
0

½ImðHm �H1Þ �HmI0�; (A4)

R23
23 ¼

1

A2
0

H2H3 � 1

A2
1

I2I3 (A5)

for the BVI metric, Eq. (34),

ds2 ¼ gabdx
adxb

¼ �A0ðt; xÞ2dt2 þ dx2 þ A2ðt; xÞ2dy2 þ A3ðt; xÞ2dz2:
Here the Riemann curvature tensor is defined by the dif-
ferential 2-form Ra

b � Ra
bcddx

c ^ dxd=2 ¼ d!a
b þ

!a
c ^!c

b with the connection 1-form !a
b related to the

spin connection �a
bc by the relation !a

b � �a
bcdx

c. In

addition, the Ricci tensor and scalar curvature are defined
as Ra

b � Rac
bc and R � Ra

a. Note that any Lagrangian

derived from the Riemann curvature tensor given above
will become a functional of Hi and Ii once we set A0 ¼ 1.
We can show that the variation of the Lagrangian L with

respect to A0, I0, and I00 can be replaced by the variation

of Hi and _Hi. This is because, with Li � �L=�Hi,
Li � �L=� _Hi,

�L

�A0

¼ �HiLi � 2 _HiL
i; (A6)

�L

�I00
¼ �L1; (A7)

�L

�I0
¼ �IiL

i þ J; (A8)

from an observation that relative terms always appear in
the Riemann curvature tensor in a coherent way. For ex-
ample, I00 is always there when� _H1 appears in R

t1
t1. Note

that in the above equations we have set A0 ¼ A1 ¼ 1 after
the substitution is done so that the above equations become
helpful for our stability analysis free from the irrelevant
parts related to the effect of A1. In addition, the term J is
not written explicitly because there is an I0-dependent term
in a combination ofHmI0. The effect of this term can not be
replaced by the variation of the other combination in a
simple manner. We will leave it here and derive the explicit
form of J when we apply this equation to the quadratic
interaction. In fact, it will only show up in �2ðRt

1Þ2 as a
part of the Lagrangian Rb

aR
a
b. In particular, this term does

not contribute to the Lagrangian Rþ �R2.
We would like to draw a few remarks concerning the

simplified version of the Friedmann equation derived
above. First of all, we will drop all terms that have no
contribution to the perturbation equation �F�. This in-

cludes all terms independent of �Hm. By doing so we
can drop irrelevant terms and make the derivation a lot
easier. Second of all, the Friedmann equation derived
above does not have an isotropic limit except the trivial
limit Hm ¼ 0. This is simply because of the fact that BH
solutions set the scale factor a1 ¼ 1 for all time. Therefore,
all terms related to the effect of a1 cannot be restored by all
means. This is a very special effect of the BH solutions. We
cannot, however, throw away the a1 terms from the very
beginning. The reason is obvious from a simple observa-
tion at the H1 dependence of the Riemann curvature ten-
sors. For example,

Rt1
t1 ¼

1

A2
0

½ _H1 þH2
1 �H0H1� � 1

A2
1

½�I0I1 þ I00 þ I20�

! 0 (A9)
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when we setH1 ¼ H0 ¼ I0 ¼ I1 ¼ 0. The variational con-
tribution from �Rt1

t1=�
_H1 and �R

t1
t1=�I

0
0 does not vanish

at all. Therefore, we have to keep track of these terms
before we set H1 ¼ H0 ¼ I0 ¼ I1 ¼ 0 in order to derive
the correct formula for the Friedmann equation.

As a result, we can show that the Friedmann equation,
Eq. (11),

D FL ¼ Lþ LA0
�DtLH0

�DxLI0 þ ðDxÞ2LI0
0
¼ 0;

can be written as

DFL ¼ LþHiDtL
i �HiLi � _HiL

i � ½Dx�2L1

þ IiDxL
i � hIiJ ¼ 0: (A10)

Here J ¼ 4�hH2iRt
1 for the quadratic Lagrangian

�Rb
aR

a
b. In addition, hH2i � H2

2 þH2
3 . Summation over

repeated indices is understood in the above equation. The
contribution of i ¼ 1 terms will be mostly irrelevant to the
stability analysis of our problem after we set A1 ¼ 1. It is
written here not only for a complete presentation of the
Friedmann equation. In fact, there is a contribution from
½Rt

t�1 ¼ �Rt
t=� _H1 to the Friedmann equation before we

set A1 ¼ 1. This complete version of the Friedmann equa-
tion will be helpful to the model-independent study for all
BVI metric spaces.

We can easily show that the Friedmann equation shown
above is identical to the tt component of the field equations
in Eq. (5) in the presence of the metric (34). It also agrees
with the equation derived directly from Eq. (11).

In particular, we can show that, upon removing all terms
that vanish when BH background metric is inserted,

F� ¼ �Rb
aR

a
b þ 2hHi _Rt

t þ 4H2H3R
t
t þ 2H2

_R2
2

þ 2H3
_R3
3 � 4hIihHiRt

1 þ irrelevant terms

(A11)

for the quadratic part L� ¼ Rb
aR

a
b. There are also addi-

tional terms in F� that are irrelevant to the perturbation of

�Hm. These terms are in fact very complicated in structure.
In addition, we also drop any term that is proportional to R2

which will not contribute to the perturbation equation
under the constraint �R ¼ 0. We will simply drop these
terms for convenience. In fact, relative derivation becomes
a lot easier by ignoring these terms. As a result, we can
derive the perturbation equation for the � term:

�F� ¼ 2½ð3r� sÞ�2 þ 2ð3r2 � 2rs� s2 þ a2 � a2hÞ�
� 4ða2rþ a2sh2 þ r3 � 2sr2 þ 2rs2 � 3s3Þ��H2

2½ð3rþ sÞ�2 þ 2ð3r2 þ 2rs� s2 þ a2 þ a2hÞ�
� 4ða2r� a2sh2 þ r3 þ 2sr2 þ 2rs2 þ 3s3Þ��H3:

(A12)

Consequently, the perturbation equation of the Friedmann
equation, (23), can be derived from the above equation
together with Eq. (21).
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