
行政院國家科學委員會專題研究計畫 期中進度報告

計算機網路之安全通信協定的驗證與系統實作(1/2)

計畫類別：個別型計畫

計畫編號：NSC93-2213-E-009-092-

執行期間：93年08月01日至94年07月31日

執行單位：國立交通大學資訊科學學系(所)

計畫主持人：楊武

計畫參與人員：楊武

報告類型：精簡報告

報告附件：出席國際會議研究心得報告及發表論文

處理方式：本計畫可公開查詢

中 華 民 國 94年5月16日

Abstract

Security protocols are indispensable in secure communi-

cation. We give an operational semantics of security proto-

cols in terms of a Prolog-like language. With this semantics,

we can uncover attacks on a security protocol that are pos-

sible with no more than a given number of rounds. Though

our approach is exhaustive testing, the majority of fruitless

search is cut off by selecting a small number of represen-

tative values that could be sent by an attacker. Hence, the

number of scenarios is relatively small and our method is

quite practical. Furthermore, our method not only reports

possible attacks but also describes the attacks in great de-

tail. This description would be very helpful to protocol de-

signers and analyzers.

Keywords and phrases: computer communication, com-

puter security, logic, Prolog, security protocol, verification.

1 Introduction

To securely communicate with other parties, we need

two things: First, we need an encryption algorithm so that

nobody can decrypt an encrypted item unless he has the

proper keys. Second, the security protocol[3] used for es-

tablishing the secret keys must be correct.

A security protocol is a set of messages that the com-

municating parties use to establish secure communication

channels, mostly by setting up agreed-upon secret keys.

Given the rapid growth of distributed systems, there is a

pressing need for a framework and tools for the develop-

ment and analysis of security protocols [3].

Throughout this paper, we will use the following

Neumann-Stubblebine protocol [7] to illustrate our method

for testing security protocols. (The notation {X}K denotes

the result of encrypting X with key K.)

1.A → B : A,Na.

2.B → S : B, {A, Na, Tb}Kbs, Nb.

3.S → A : {B,Na, Kab, T b}Kas, {A,Kab, T b}Kbs,Nb.

4.A → B : {A,Kab, T b}Kbs, {Nb}Kab

A and B are two roles who want to establish a shared

secret key Kab though a trusted server S. An attack on

this protocol goes as follows: The attacker, say diana,

pretends to be alice and takes up the role A. She first sends

alice’s identity (denoted by A) and a nonce Na to barbara

(barbara will play the role B). Note that Na is generated

by diana. When barbara sends the second message to the

server charm (who will paly the role S) for verification,

diana will record the second item {A,Na, Tb}Kbs.

Then charm will send the third message to alice. diana

intercepts this message. However, diana could not decrypt

the items in the third message because she does not possess

the keys Kas and Kbs. diana will send the two items

{A,Na, Tb}Kbs and {Nb}Na to barbara as the fourth

message. At this stage, barbara is fooled to believe Na

is the session key between her and alice. From now

on, diana will use Na to ask barabara for sensitive

information.

A round of the protocol consists of exchanging the above

four messages. Some attacks can be done in a single round

(such as the one described above) and others may need more

rounds. For example, an attack to Otway-Rees protocol, an

attack to SSH [2] and the parallel-session attacks need more

than one round. However, the number of rounds needed in

an attack is quite small in practice. An attacker may imper-

sonate a role in one round and another in a second round in

order to collect necessary information.

We give an operational semantics of security protocols

in terms of a Prolog-like language. With this semantics,

attacks on a security protocol are uncovered by exhaustive

testing. The exhaustive testing is limited in that (1) we are

confined within a fixed number of rounds in a test session;

(2) the attacker can only fake no more than a fixed number

of bogus atomic values; and (3) the faked values that are

sent by an attacker, such as {A,Kab, T b}Kbs, must have

the correct format, though the contents may not be genuine.

In this way, the majority of the search space, of which most

are very possibly fruitless, is cut off.

With the method discussed in this paper, it is easy to ex-

periment with different numbers of rounds and bogus items

and with different kinds of collaborations, such as a real

principal collaborating with the attacker and 3-person col-

laboration. Our method is capable of discovering type-flaw

attacks [5, 9]. Our method may be extended to investigate

the interaction of two or more different security protocols.

In our method, we frequently need to compare two val-

ues for equality. To detect freshness attacks, it is neces-

sary to determine if one nonce is greater than another. Our

method can be easily extended to include this ability and

hence is able to detect freshness attacks. Our method is ap-

plicable to both symmetric and asymmetric encryption.

Some security protocols make use of broadcast mes-

sages (for group communication), rather than one-to-one

messages. Our current method is unable to handle broad-

cast messages because there are many recipients. In our

method, we also assume that the attacker cannot intercept

and change a message. The attacker(s) can only eavesdrop

the messages on the communication channel and pretend to

be an honest principal.

Security protocols are first studied in [6], which leads to

the Kerberos system. Paulson [8] shows a logic method for

proving the correctness of a security protocol. Yang and

Tsay [10] discusses a simple method for proving the exis-

tence of certain flaws in security protocols. Their method is

based on logic. Heather et al. [5] and Li et al. [9] report a

tagging scheme for preventing type-flaw attacks.

Clark and Jacob also view a security protocol as a pro-

gram [4] and the associated BAN logic as its semantics.

Their work generates all the reasonable protocols, executes

these protocols, and selects the good ones. Ours differs

from theirs in that we use extended Prolog as the semantic

language. Our approach generates and executes all reason-

able attacks and checks if the protocol can be broken down.

2 Basic Constants and Predicates

Consider the Neuman-Stubblebine protocol. There are

three roles: A, B, and S. In this section, we will consider

five principals alice, barbara, charm, dian, and elisa.

diana and elisa are collaborating attackers who attempt to

cheat on barbara. (We use different attackers in different

rounds of the protocol and allow them to collaborate.)

Each honest principal has an identity, which is public. An

attacker pretends to be an honest principal by using that

principal’s identity. (In what follows, cut are used to cut

off unnecessary search.)

Principal(alice). Identity(alice, aliceID).
P rincipal(barbara). Identity(barbara, barbaraID).
P rincipal(charm). Identity(charm, charmID).
P rincipal(diana). Dishonest(dianan).
P rincipal(elisa). Dishonest(elisa).
Public(XID) : −Identity(X, XID).
Identity(X, Y ID) : −Pretend(X, Y), Identity(Y, Y ID).
Identity(,) : −!, fail.

A person may play different roles in different rounds.

Pretend(diana, alice). Pretend(elisa, alice).
Roles(diana, barbara, charm, 1).
Roles(barbara, elisa, charm, 2).

Each list of Roles(, , ,) constitutes a scenario. We

can exhaustively generate and examine every possible sce-

nario (of course, under the restriction that at most a cer-

tain number of rounds will be considered). Fortunately, the

number of reasonable scenarios are not too many.

We use symbolic constants to represent (existing and

newly generated) keys, nonces, timestamps, tokens, and bo-

gus items. We have facts and rules that describe the initial

key distribution and the generation of nonces, timestamps,

tokens and bogus items. Tokens are used to initiate mes-

sages. Suppose we will test two rounds and there are four

messages per round. Thus, there are exactly 8 tokens, one

for each message instance. (If we want to examine three

rounds, there will be 12 tokens.) Increasing the number of

rounds may discover more weaknesses while at the cost of

more analysis time. Whenever a principal receives a token,

he has the right (and obligation) to send out the correspond-

ing message. Our convention is that the sender of the first

message is the one who initiates a round of a protocol, who

is the first parameter in the Roles() predicate.

During an attack, the attacker may need to manufacture

several bogus items. The number of bogus items needed

per round is no more than the number of atomic values in

all message, which is usually a small number. Our method

allows a user to specify the number of bogus items he needs

in testing a protocol. The more bogus items, the more possi-

ble an attack can be uncovered, however, at the cost of more

analysis time.

diana and elisa may actually be the same attacker. It is

more flexible to use different attackers in different rounds

and to test different collaboration scenarios. Collaborators

share their knowledge.

Collaborate(diana, elisa).
Collaborate(elisa, diana).
Knows(A, X) : −Collaborate(A,B),Knows(B, X).

With Collaborate, it is easy to examine what may hap-

pen if two or more principals and/or the attackers collabo-

rate. Note that Collaborate is not necessarily a symmetric

relation.

In testing a protocol, we limit the scope of searching to

atomic values and proper structures built with atomic values

using the binary enc (encryption) and comp (composition)

operations. Only the constants declared above are atomic.

There is not any other constant symbol.

3 A Semantics of Security Protocols

A security protocol is similar to a traditional program in

that both contain a list of instructions for execution. A tradi-

tional program emphasizes that the desirable result will be

produced. On the other hand, it is usually quite obvious that

a security protocol will achieve its goal of exchanging keys.

The emphasis of a security protocol is that the attacker will

not be able to know the key under given assumptions. Thus,

in designing an operational semantics of security protocols,

we have to model what the attacker is capable of knowing

and doing.

A round of a security protocol usually consists of several

messages. One message triggers another. The first message

in a protocol is triggered by the initiator’s intention to com-

municate with another principal. The following clauses use

tokens to trigger another message. By the way, once a mes-

sage is sent out on the network, we assume that all items in

the message become public since there is generally no way

to prevent an attacker from eavesdropping on the physical

communication media.

For each message, the sender needs to receive the token

for the message. Then he needs to demonstrate his ability to

create all the items in the message. Finally, all items needs

to pass the receiver’s verification (of course, to the extent of

the receiver’s knowledge). When all is done, the token for

the next message is issued. Here we will show the rules for

the first message. Rules for other messages are similar.

1. A → B : A, Na.

Completes1(J, P11, P12) : −Received(X,T, J),
T oken(T, 1, J), Roles(X, , , J), Item(P11, 1, 1, J),
Item(P12, 1, 2, J).
Received(Y, S, J) : −Completes1(J, ,),
Roles(, Y, , J), T oken(S, 2, J).
Public(P11) : −Completes1(, P11,).
Public(P12) : −Completes1(, , P12).

Next we will show the the clauses for the messages in the

security protocol. We consider each item in each message in

turn. There are four clauses for each item in a message, one

for each of the following four cases: (1) both the sender and

the receiver are honest; (2) the sender is dishonest but the

receiver is honest; (3) the sender is honest but the receiver

is dishonest; and (4) both the sender and the receiver are

dishonest. A dishonest principal can also use the clause for

the honest one if he decides not to cheat in a particular item.

In each clause, the left-hand side contains certain pred-

icates. These predicates are classified into two groups: (1)

the binding predicates, which the sender uses to create the

item; and (2) the verification predicates (those in boxes),

which the receiver uses to verify the components in the

item. Note that not every component can be verified im-

mediately by the receiver. For instance, an item encrypted

with a key not known to the receiver, such as the second

item, {A,Kab, T b}Kbs, in the third message, which is en-

crypted with key Kbs, which is not known to the receiver

A, cannot be verified by the receiver immediately. How-

ever, this encrypted item will eventually be decrypted and

verified in a well-formed protocol.

A message consists of one or more items. An item is ei-

ther an atomic value or a composite one. A composite value

is made up of atomic values with the enc (encryption) and

comp (composition) operations. We assume that an atomic

item always contains an atomic value and a composite item

always contains a composite value with the correct struc-

ture. When an attacker fakes an item, only the atomic values

in the fake item are replaced with incorrect atomic values.

From the sender’s side, the sender must be able to build

an item from the values he knows with the necessary enc

and comp operations. The values come from three sources:

• The value could be a priori knowledge, such as initial

key distribution and principals’ identities.

• The value could also be atomic values generated by the

sender, such as a nonce, a timestamp, and a new key.

• The value could also be obtained from a pre-

vious message that the sender receives, such as

{A,Kab, T b}Kbs in the fourth message in the

Neuman-Stubblebine protocol. The sender simply

passes this item to another principal.

From the receiver’s side, the receiver must either verify

the values in the item or pass the item to another principal.

To verify a value, there are three ways:

• Verify that the value is a priori information, such as

initial key distribution and principals’ identities.

• Verify that the value was generated by the receiver pre-

viously, such as a nonce and a timestamp.

• Verify that the value is identical to a previously re-

ceived value.

The attacker is entitled to fake the items in all messages

sent by the impersonated principal in a single round. Any-

thing that the attacker knows can fill in the empty slots in

the item. Note that public knowledge can still be faked if it

is verified after the goal of attack is achieved.

In what follows, there are four clauses for each item in

each message. The right-hand side of each clause consists

of two groups of predicates: binding and verification pred-

icates. The verification predicates are enclosed in boxes.

The text within the square brackets explains the individual

predicates. Certain clauses can be further simplified easily.

Note that we may consider each item in a message sep-

arately because knowing comp(X,Y) is exactly the same

as knowing X and knowing Y . This argument is not valid

for encryption: in general, knowing enc(comp(X, Y),K)
is quite different from knowing enc(X, K) and knowing

enc(Y,K) [1]. Here we list the clauses for the first mes-

sage. Other messages are processed similarly.

1. A → B : A,Na.

Item(XId, 1, 1, J) : −Roles(X, , , J),
Identity(X, XId), [A binds XId to a constant symbol.]

Roles(X, , , J), Identity(X, XId). [B verifies XId.]

Item(XId, 1, 1, J) : −Dishonest(X), Roles(X, , , J),
Atomic(XId),Knows(X, XId), [A fakes XId.]

Roles(X, , , J), Identity(X, XId). [B verifies XId.]

Item(XId, 1, 1, J) : −Roles(X, , , J),
Identity(X, XId), [A binds XId to a constant symbol.]

Dishonest(Y), Roles(, Y, , J). [B is dishonest.]

Item(XId, 1, 1, J) : −Dishonest(X),
Roles(X, , , J), Atomic(XId),Knows(X,XId), [A

fakes XId.]

Dishonest(Y), Roles(, Y, , J). [B is dishonest.]

Item(Na, 1, 2, J) : −
NonceNa(Na, J), [A binds Na to a constant symbol.]

. [B believes in Na. No verification.]

Item(Na, 1, 2, J) : −Dishonest(X),
Roles(X, , , J), Atomic(Na), Knows(X, Na), [A

fakes Na.]

. [B believes in Na. No verification.]

Item(Na, 1, 2, J) : −
NonceNa(Na, J), [A binds Na to a constant symbol.]

Dishonest(Y), Roles(, Y, , J). [B is dishonest.]

Item(Na, 1, 2, J) : −Dishonest(X),
Roles(X, , , J), Atomic(Na), Knows(X, Na), [A

fakes Na.]

Dishonest(Y), Roles(, Y, , J). [B is dishonest.]

In order to fool a principal, the attacker only needs to

fake all the messages that were sent to that principal in a

single round. For example, to fool B, the attacker needs to

successfully fake the first and the fourth messages in a sin-

gle round. In addition, only the values that can be verified

by B need to be genuine. For the first message, only XId

needs to be genuine. For the fourth message, Kbs, XId,

Tb and Nb needs to be genuine.

Most security protocols are used to establish a key

shared between two or more principals. For the Neuman-

Stubblebine protocol, the attacker succeeds when B be-

lieves in a compromised key Kab. Thus, to attack B in

the first round, the attacker’s goal is to steal Kab which B

will always accept.

?− Completes1(1, ,), Completes4(1, ,),
Item(enc(comp(comp(,Kab),),), 4, 1, 1),
Knows(diana,Kab).

To allow the attacker to inject fake messages, we cre-

ate the necessary tokens for him, by adding the Received

clauses which diana may elect to use in her attack:

Received(diana, t11, 1), Received(diana, t14, 1).

4 Conclusion

We have given an operational semantics for a security

protocol, which is ready for simulating the execution of the

protocol. With extensive simulation, it is possible to un-

cover hidden flaws in a security protocol before it is put

into practical use. Our method is very practical because it

is able to cut off many fruitless search.

References

[1] M. Abadi, R. Needham, “Prudent engineering prac-

tice for cryptographic protocols,” IEEE Transactions

on Software Engineering, Vol. 22, No. 1, pp. 6-15,

January 1996.

[2] M. Abadi, “Explicit communication revisited: two

new attacks on authentication protocols,” IEEE Trans-

actions on Software Engineering, Vol. 23, No. 1, pp.

185 - 186, March 1997.

[3] J.A. Clark and J.L. Jacob, “A survey of authentica-

tion protocol literature: Version 1.0,” November 1997,

available at http://www-users.cs.york.ac.uk/ jac/.

[4] J.A. Clark and J.L. Jacob, “Protocols are Programs

Too: the Meta-heuristic Search for Security Proto-

cols,” Information and Software Technology Vol. 43,

891-904, 2001.

[5] J. Heather, G. Lowe, and S. Schneider, “How to pre-

vent type flaw attacks on security protocols,” In Pro-

ceedings of 13th IEEE Computer Security Founda-

tions Workshop, 255-268, 2000.

[6] R. Needham and M. Schroeder, “Using encryption

for authentication in large networks of computers,”

Comm. ACM, 21(12), 993-999, 1978.

[7] B.C. Neumann and S.G. Stubblebine, “A note on the

use of timestamps as nonces,” ACM Operating Sys-

tems Reviews, 27(2), 10-14, April 1993.

[8] L.C. Paulson, “Proving security protocols correct,” In

Proceedings of 14th Symposium on Logic in Com-

puter Science, 370-381, 1999.

[9] Y. Li, W. Yang, and C.W. Huang, “Preventing type

flaw attacks on security protocols with a simplified

tagging scheme,” Journal of Information Science and

Engineering (accepted), July 2004.

[10] W. Yang and C.-W. Tsay (2002), “A logic approach

to the verification and testing of security protocols,”

In Proceedings of International Conference on Com-

muincations and Computer Networks (CCN 2002)

(Cambridge, MA, November 4-6), 140-145, 2002.

