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Blind Identification and Equalization of MIMO FIR Systems (II)

A Progress Report

NSC-92-2213-E-009-085

NSC-93-2213-E-009-041

Principal investigator: Ching-An Lin

We describe briefly the research work in progress, the preliminary results obtained so far,

and the expected final results at the end of the first two years’s research. Topics of research

we have undertaken include

• Blind identification of MIMO channel using periodic precoding.

• Reverse link power control in CDMA.

• Space-time block coding scheme

1 Blind identification of MIMO channel using periodic precoding

The basic idea is to induce cyclostationarity at the transmitter and to exploit the linear relation

between the covariance of the received data. This is an extension of our pervious result on

SISO channel. A preliminary version of the result had been presented at 2005 ISCAS (Kobe

Japan). Quite a few people at the conference are interested in our result. One of the feature

attract most attention: the ability of the proposed algorithm to identify the channel when the

number of outputs is less than the number of inputs.

The complete result has been submitted to IEEE Transaction on Signal Processing (date:

2005/4/19). The manuscripts is attached at the end of this report.

Currently we are working on an algorithm for blind identification of MIMO channel without

using periodic precoding. Preliminary simulation results are promising. We expect to finish

the investigation and submit a paper at the end of this budget year.

2 Reverse link power control in CDMA.

In CDMA multi-user environment, the signal transmitted by a mobile will cause interference

at the base station for other user. This is commonly called multiple access interference (MAI),

which is due to the non-orthogonality of the codes that identify the individual user. The MAI

makes power control important in maintaining a desired level of quality of service (QOS).

The current practice is to use a very conservation control strategy in order to guarantee

stability at the expense of the achievable performance. In other words, if an more aggressive
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strategy is used it may be possible to have faster tracking of the intended signal-to-interference

(SIR) level. Of course, in a feedback loop an aggressive control strategy runs the risk of causing

instability if the controller is not properly designed. We believe feedback control theory should

be used to design power control strategy so as to improve quality of service or to increase the

network capacity.

The power control problem can be modelled as a decentralized control problem, with in-

terconnected dynamics and distributed control. The interconnected dynamics has diagonal

dominance structure: the correct correlations gives the intended strong links and the incor-

rect corrections can be modelled as weak links. There is stability theory based on diagonal

dominance available. The purpose of our research is to investigate the possibility of using

the theory do analyze the performance of power control algorithm. We will try to establish

quantitative relation between the interference level and the achievable performance

We expected some preliminary results at the end of the current budget year.

3 Space-time block coding scheme

This is a topic we just started to investigate. In the MIMO setup (multiple transmit and

receive antenna), the coding is important in using the channel diversity while maintain a

reasonable transmission rate. We will focus on the topics of identification and equalization in

a space-time coded transmission.

We are currently studying the fundamental aspect of space-time coding scheme and we do

not expect any significant process at the end of this budget year.
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4 Paper submitted to IEEE Trans. Signal Processing

Blind Identification of MIMO Channels Using Optimal Periodic Precoding∗

Ching-An Lin and Yi-Sheng Chen

Department of Electrical and Control Engineering

National Chiao-Tung University

Hsinchu, Taiwan

Abstract

We propose a method for blind identification of MIMO FIR channels that exploits cyclo-

stationarity of the received data induced at the transmitters by periodic precoding. It is

shown that, by properly choosing the precoding sequence, the MIMO FIR transfer functions,

with Mt inputs and Mr outputs, can be identified up to a unitary matrix ambiguity. The

transfer functions need not be irreducible or column reduced, and there can be more outputs

(Mr ≥ Mt) or more inputs (Mr < Mt). The method exploits the linear relation between the

covariance matrix of the received data and the “channel product matrices”. The method is

shown to be robust with respect to channel order overestimation. The proposed algorithm

requires solving linear equations and computing the nonzero eigenvalues and eigenvectors of

a Hermitian positive semidefinite matrix. The performance of the algorithm, and indeed the

identifiability, depend on the choice of the precoding sequence. We propose a method for

optimal selection of the precoding sequence which takes into account the effect of additive

channel noise and numerical error in covariance estimation. Simulation results are used to

demonstrate the performance of the algorithm.

Key Words : MIMO channel, blind identification, transmitter induced cyclostationarity,

periodic precoding

1 Introduction

Blind identification of SISO frequency selective channels exploiting transmitter induced

cyclostationarity of the second-order statistics of the received data is first proposed in [1, 2].

Since then, various schemes have been proposed to induce cyclostationarity at the transmitter

and to blindly identify SISO [3]-[8] and MIMO channels [9]-[13]. One way to induce cyclo-

stationarity at the transmitter is by periodic precoding, i.e., multiplying the source symbols

∗Research sponsored by the National Science Council under grant NSC-93-2213-E009-041
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with a periodic sequence before transmission [2, 5, 6, 8],[9]-[11]. For SISO channels, blind

identification methods based on periodic precoding are shown to be robust with respective

to channel order overestimation and impose no restriction on the locations of channel zeros

[2, 5, 6, 8].

In the MIMO context, Chevreuil and Loubaton [9] proposes a scheme that multiplies each

input by a constant modulus complex exponential precoding sequence to induce conjugate

cyclostationarity at the transmitter. The scheme is used to reduce the MIMO channel iden-

tification preblem to several SIMO ones, which are then solved by the subspace method [16].

Each SIMO channel is required to be free from common zeros and only real symbols can be

used. Bölcskei et. al. [10] proposes a method that can identify each of scalar channels up

to a phase ambiguity using non-constant modulus periodic precoding sequences. The method

imposes no restriction on channel zeros and is insensitivity to channel order overestimation.

However, no general procedure for the design of the precoding sequences is given. The method

is extended to the multicarrier case [11].

In this paper, we propose a method for blind identification of MIMO FIR channels using

periodic precoding as a means to induce cyclostationarity. It is shown that, by properly

choosing the precoding sequence, the MIMO FIR transfer functions, with Mt inputs and Mr

outputs, can be identified up to a unitary matrix ambiguity. The transfer functions need not

be irreducible or column reduced [14, 15], and there can be more outputs (Mr ≥ Mt) or more

inputs (Mr < Mt). The method exploits the linear relation between the covariance matrix

of the received data and the “channel product matrices”. The method is shown to be robust

with respect to channel order overestimation. The proposed algorithm requires solving linear

equations and computing the nonzero eigenvalues and eigenvectors of a Hermitian positive

semidefinite matrix. The performance of the algorithm, and indeed the identifiability, depend

on the choice of the precoding sequence. We propose a method for optimal selection of the

precoding sequence which takes into account the effect of additive channel noise and numerical

error in covariance estimation. Simulation results are used to demonstrate the performance

of the algorithm. The paper generalizes the results for the SISO case discussed in [8].

The paper is organized as follows. Section 2 is problem statement and formulation. In

Section 3, we derive the identification method and propose the blind identification algorithm.

In Section 4, we discuss optimal selection of the precoding sequence. Simulation results are

given in Section 5. Section 6 concludes the paper.

Notations used in this paper are quite standard: Bold uppercase is used for matrices, and

bold lowercase is used for vectors. AT represents transpose of the matrix A, and A∗ represents

conjugate transpose of the matrix A. A ⊗ B is the Kronecker product of A and B. 0M×N is

the zero matrix of dimension M × N , and IM is the identity matrix of dimension M × M .
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2 Problem Statement and Formulation
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Figure 2.1: MIMO Channel Model

We consider the linear MIMO baseband model of a communication channel with Mt trans-

mitters and Mr receivers shown in Figure 2.1, where each source symbol sequence is multiplied

by an N -periodic sequence, p(n), before transmission. The transmitted signal is

wj(n) = p(n)sj(n), j = 1, 2, · · · , Mt (2.1)

where p(n + N) = p(n), ∀ n. The discrete time model describing the relation between the

transmitted signal wj(n) and the received signal xi(n) has the form of an MIMO FIR filter

with additive noise:

xi(n) =

Mt∑

j=1

Lij∑

l=0

hij(l)wj(n − l) + vi(n), i = 1, 2, ..., Mr (2.2)

where hij(0), hij(1), · · · , hij(Lij), are the impulse responses of the channel between the jth

transmitter and the ith receiver, and vi(n) is the channel noise seen at the input of the ith

receiver. The equations (2.1) and (2.2) can be written more compactly as

w(n) = p(n)s(n), x(n) =
L∑

l=0

H(l)w(n − l) + v(n) (2.3)

where w(n), s(n) ∈ CMt, and x(n), v(n) ∈ CMr are vector signals formed by stacking the

respective scalar signals together, e.g., x(n) = [x1(n) x2(n) · · · xMr
(n)]T . The ijth element

of H(l) ∈ CMr×Mt is hij(l), and L = maxi,j{Lij} is the order of the MIMO channel. Thus

H(L) 6= 0Mr×Mt
. The following assumptions are made throughout.

(A1) s(n) and v(n) are white with zero mean vector sequences, and s(n) and v(n) are

temporally and spatially uncorrelated. More precisely, E[s(k)s(j)∗] = δ(k − j)IMt
∈

RMt×Mt, E[v(k)v(j)∗] = δ(k − j)σ2
vIMr

∈ RMr×Mr , E[s(k)v(j)∗] = 0Mt×Mr
, ∀ k, j, where

δ(k − j) is the Kronecker delta function.
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(A2) An upper bound L̂ of the channel order L is known and the period N > L̂ + 1.

(A3) rank([H(0)T H(1)T · · · H(L)T ]T )=Mt.

Due to periodic precoding, the input-output relation between the source s(n) and the

received signal x(n), described by (2.3), is periodically time-varying. In order to obtain a

time-invariant representation, we consider input-output relation between block input and block

output of size N [17]. Define block signal x̄(n) = [x(Nn)T ,x(Nn+1)T , · · · ,x(Nn+N−1)T ]T ∈
CMtN , and let v̄(n), w̄(n), s̄(n) be similarly defined. Since p(n) is periodic, w̄(n) = Gs̄(n) for

all n, where G = diag[p(0)IMt
, p(1)IMt

, · · · , p(N − 1)IMt
] ∈ RMtN×MtN is a diagonal matrix.

In terms of block signals, (2.3) can be written as

x̄(n) = H0w̄(n) + H1w̄(n − 1) + v̄(n) = H0Gs̄(n) + H1Gs̄(n − 1) + v̄(n) (2.4)

where H0 is an MrN × MtN block lower-triangular Toeplitz matrix with [H(0)T H(1)T · · ·
H(L)T 0T

Mr×Mt
· · · 0T

Mr×Mt
]T ∈ CMrN×Mt as its first block column (i.e., the first Mt columns),

and H1 is an MrN × MtN block upper-triangular Toeplitz matrix with [0Mr×Mt
· · · 0Mr×Mt

H(L) H(L − 1) · · · H(1)] ∈ CMr×MtN as its first block row (i.e., the first Mr rows).

The problem we study in this paper is blind identification of the MIMO channel matrix

H = [H(0)T H(1)T

· · · H(L)T ]T using second-order statistics of the received data. The proposed method exploits

the cyclostationarity induced by periodic precoding at the transmitters. The performance of

the proposed identification algorithm (Section 3.3) depends critically on the choice of the pre-

coding sequence. We discuss the optimal selection of the sequence that yields the best perfor-

mance. We define the following operations that will be used in the derivation of the main result.

First, for any m×m matrix A = [ak,l]0≤k,l≤m−1, define Γj(A) = [a0,j a1,j+1 · · · am−1−j,m−1]
T

for 0 ≤ j ≤ m− 1, i.e., Γj(A) is the vector formed from the jth super-diagonal of A. Second,

for any Mrn × Mrn matrix B = [Bk,l]0≤k,l≤n−1, where Bk,l is a block matrix of dimension

Mr × Mr, define Υj(B) = [BT
0,j BT

1,j+1 · · · BT
n−1−j,n−1]

T for 0 ≤ j ≤ n − 1, i.e., Υj(B) is the

matrix formed from the jth block super-diagonal of B.

3 Channel Identification

We study channel identification in this section. In Section 3.1, we derive the proposed

method assuming the channel order is known and the noise is absent. We show that by

appropriately selecting the periodic precoding sequence, any MIMO channel satisfying (A3)

is identifiable up to an Mt × Mt unitary matrix ambiguity. In Section 3.2, we show that
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the proposed method is robust with respect to channel order overestimation and we propose

an identification algorithm in Section 3.3. The effect of noise and optimal selection of the

precoding sequence are discussed in Section 4.

3.1 The Identification Method

We consider the noise free case and assume that the channel order L is known. Equation

(2.4) now becomes

x̄(n) = H0Gs̄(n) + H1Gs̄(n − 1) (3.1)

With assumption (A1), the covariance matrix of x̄(n) can be written as

Rx̄(0) = E[x̄(n)x̄(n)∗] = σ2
s

(
H0G

2H∗
0 + H1G

2H∗
1

)
(3.2)

Let J ∈ RN×N be the matrix whose first sub-diagonal are all one, i.e., Γ1(J
T ) = [1 1 · · · 1]T ∈

R(N−1), and all remaining entries are zero. The block Toeplitz structures of H0 and H1 allow

us to write H0 =
∑L

k=0 Jk ⊗H(k) and H1 =
∑L

k=0(J
T )N−k ⊗H(k), respectively. Besides, we

define Gp = diag[p(0), p(1), · · · , p(N − 1)] ∈ RN×N . Hence H0G
2H∗

0 can be written as

H0G
2H∗

0 =
L∑

k=0

Jk ⊗ H(k)
(
G2

p ⊗ IMt

) L∑

l=0

(
Jl ⊗ H(l)

)∗

=

L∑

k=0

L∑

l=0

(
Jk ⊗ H(k)

) (
G2

p ⊗ IMt

) (
(JT )l ⊗ H(l)∗

)

=
L∑

k=0

L∑

l=0

(
JkG2

p(JT )l
)
⊗ (H(k)H(l)∗) (3.3)

where we have used the identies (A⊗B)∗ = A∗ ⊗B∗ and (A⊗ B)(C⊗ D) = (AC) ⊗ (BD)

[20, p.190]. Similarly, H1G
2H∗

1 can be written as

H1GH∗
1 =

L∑

k=0

L∑

l=0

(
(JT )N−kG2

pJ
N−l

)
⊗ (H(k)H(l)∗) (3.4)

The following proposition shows that the matrices JkG2
p(JT )l and (JT )N−kG2

pJ
N−l have

special structures that allow decomposition of (3.2) into a group of decoupled equations.

Roughly speaking, the jth block super-diagonal part of (3.2) involves only the unknown

“channel product matrices”, H(k)H(k + j)∗, k = 0, 1, · · · , L − j. For example, the equa-

tions corresponding to the diagonal blocks (j = 0) involve only H(k)H(k)∗, k = 0, 1, · · · , L.

In the proposed identification algorithm, these “channel product matrices” are computed first

by solving linear equations, and then the channel impulse response matrices H(k) are com-

puted via eigenvalue-eigenvector decomposition.

Proposition 3.1 : Let 0 ≤ k, l ≤ L be two non-negative integers. Then
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(a) For l = k + j, where 0 ≤ j ≤ L − k, both JkG2
p(JT )l and (JT )N−kG2

pJ
N−l are upper

triangular matrices with only the respective jth upper diagonals nonzero, and

Γj

(
JkG2

p(JT )l
)

= [0 · · · 0︸ ︷︷ ︸
k entries

p(0)2 p(1)2 · · · p(N − 1 − k − j)2

︸ ︷︷ ︸
N−k−j entries

]T (3.5)

Γj

(
(JT )N−kG2

pJ
N−l

)
= [p(N − k)2 p(N − k + 1)2 · · · p(N − 1)2

︸ ︷︷ ︸
k entries

0 · · · 0︸ ︷︷ ︸
N−k−j entries

]T (3.6)

(b) For l < k, both Γj

(
JkG2

p(JT )l
)

and Γj

(
(JT )N−kG2

pJ
N−l

)
are lower triangular with

zero diagonal matrices.

Proof : See [8].

It follows from (3.5) and (3.6) that

Γj

(
JkG2

p(JT )l
)

+ Γj

(
(JT )N−kG2

pJ
N−l

)

=





[p(N − k)2 · · · p(N − 1)2

︸ ︷︷ ︸
k entries

p(0)2 · · · p(N − 1 − k − j)2

︸ ︷︷ ︸
N−k−j entries

]T if j = l − k ≥ 0

0(N−j)×1 if j 6= l − k

(3.7)

Since

Υj

((
JkG2

p(JT )l
)
⊗ H(k)H(l)∗

)
= Γj

(
JkG2

p(JT )l
)
⊗ H(k)H(l)∗ (3.8)

and

Υj

((
(JT )N−kG2

pJ
N−l

)
⊗ H(k)H(l)∗

)
= Γj

(
(JT )N−kG2

pJ
N−l

)
⊗ H(k)H(l)∗ (3.9)

it follows from (3.2)-(3.4) and (3.7)-(3.9) that Υj (Rx̄(0)) can be derived as follows.

Υj (Rx̄(0)) = Υj

(
H0G

2H∗
0 + H1G

2H∗
1

)

=
L∑

k=0

L∑

l=0

Υj

((
JkG2

p(JT )l
)
⊗ (H(k)H(l)∗)

)
+ Υj

((
(JT )N−kG2

pJ
N−l

)
⊗ (H(k)H(l)∗)

)

=

L∑

k=0

L∑

l=0

{Γj

(
JkG2

p(JT )l
)

+ Γj

(
(JT )N−kG2

pJ
N−l

)
} ⊗ H(k)H(l)∗

=

L−j∑

k=0

[p(N − k)2 · · · p(N − 1)2 p(0)2 · · · p(N − 1 − k − j)2]T ⊗ H(k)H(k + j)∗

=

L−j∑

k=0

[p(N − k)2IMr
· · · p(N − 1)2IMr

p(0)2IMr
· · · p(N − 1 − k − j)2IMr

]T H(k)H(k + j)∗

(3.10)

The right hand side of (3.10) is a linear combination of block columns with the channel product

matrices, H(k)H(k + j)∗, as coefficients. If we define, for 0 ≤ j ≤ L,

Fj = [(H(0)H(j)∗)T (H(1)H(j + 1)∗)T · · · (H(L − j)H(L)∗)T ]T ∈ C
Mr(L−j+1)×Mr (3.11)
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then (3.10) can be written in a more compact form (3.12).

Υj (Rx̄(0)) = MjFj ∀ 0 ≤ j ≤ L (3.12)

where Mj ∈ RMr(N−j)×Mr(L−j+1) is defined as

Mj =




p(0)2 p(N − 1)2 · · · p(N − L + j)2

p(1)2 p(0)2 · · · p(N − L + j + 1)2

...
...

...
...

p(N − 2 − j)2 p(N − 3 − j)2 · · · p(N − L − 2)2

p(N − 1 − j)2 p(N − 2 − j)2 · · · p(N − L − 1)2




⊗ IMr
(3.13)

We note that Mj, 1 ≤ j ≤ L, is obtained from M0 by deleting its last jMr rows and last jMr

columns.

Since N > L + 1, the (L + 1) equations in (3.12) are overdetermined and the equations

are also consistent. If Mj is full column rank, then the solution can be obtained as

Fj = (MT
j Mj)

−1MT
j Υj (Rx̄(0)) (3.14)

If Fj, 0 ≤ j ≤ L, are computed from (3.14), then we have the channel product matrices

H(k)H(l)∗ for 0 ≤ k ≤ l ≤ L. We now consider the computation required to determine the

channel impulse response matrices H(0), H(1), · · · ,H(L) from Fj.

Let Q be the Hermitian matrix defined by Υj(Q) = Fj for j = 0, 1, · · · , L, and let the

channel matrix H = [H(0)T H(1)T · · · H(L)T ]T . Clearly we have

Q = HH∗ (3.15)

Since rank(H) = Mt by assumption (A3), Q has rank Mt. Since Q is Hermitian and positive

semidefinite, Q has Mt positive eigenvalues, say, λ1, · · · , λMt
. We can expand Q as

Q =

Mt∑

j=1

(
√

λjdj)(
√

λjdj)
∗ (3.16)

where dj is a unit norm eigenvector of Q associated with λj > 0. We can thus choose the

channel matrix to be

Ĥ = [
√

λ1d1

√
λ2d2 · · ·

√
λMdMt

] ∈ C
Mr(L+1)×Mt (3.17)

We note H can only be identified up to a unitary matrix ambiguity U ∈ CMt×Mt, i.e., Ĥ = HU,

since ĤĤ∗ = HH∗ = Q.

We note that the matrix Mj, j = 0, 1, · · · , L, is determined by the precoding sequence.

By appropriately selecting the precoding sequence, we can make each Mj full column rank.
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We summarize what we have so far:

(a) If the MIMO channel described by (2.3) satisfies (A1) and (A3) and the channel order L

is known, then the channel matrix H can be identified up to a unitary matrix ambiguity.

(b) The proposed identification method use the covariance matrix of the received signal Rx̄(0)

as data, and the computations involved are solving linear equations (3.12) and perform-

ing eigenvalue-eigenvector decomposition of the Hermitian matrix Q in (3.16).

We note that in the proposed method, the channel condition is assumption (A3), i.e., the

channel matrix H is full column rank. Hence the channel needs not be irreducible or column

reduced. If Mr ≥ Mt (more outputs), then (A3) is generically satisfied [18, ch.7]. If Mt > Mr

(more inputs), then (A3) is generically satisfied provided (L + 1)Mr ≥ Mt. Besides, in (A1),

for simplicity, we have assumed that the covariance matrix of the source is the identity matrix.

The method still applies if the covariance matrix Σ2
s is diagonal. The equation (3.15) becomes

Q = HΣ2
sH

∗ and the channel is identifiable up to a unitary matrix ambiguity.

3.2 Channel Order Overestimation

So far we have assumed that the channel order L is known. If only an upper bound

L̂ ≥ L is available with N > L̂ + 1, then following the same process given in Section 3.1, the

corresponding Mr(L̂+1)×Mr(L̂+1) matrix Q can be similarly constructed as in (3.15). The

last (L̂ − L) block columns (i.e., (L̂ − L)Mr columns) of Q are zero, so are its last (L̂ − L)

block rows. Hence again, Q is of rank Mt and has Mt positive eigenvalues with the associated

eigenvectors all of the form d̂ = [dT 0 · · · 0]T ∈ CMr(L̂+1) where d ∈ CMr(L+1). Thus, we can

determine the actual channel order and impulse response matrices, up to a unitary matrix

ambiguity, from the Mt eigenvectors associated with the Mt positive eigenvalues of Q.

3.3 Identification Algorithm

We summarize the proposed method as the following algorithm.

1) Select the precoding sequence p(n) such that each matrix Mj defined in (3.13) is full column

rank.

2) Estimate the autocovariance matrix Rx̄(0) via the time average

R̂x̄(0) =
1

K

K∑

i=1

x̄(i)x̄(i)∗ (3.18)

where K is the number of data block (i.e., KN is the number of samples for each transmitter).

3) Compute Fj, formed by the channel product matrices, for j = 0, 1, · · · , L, using (3.14).

10



4) Form the matrix Q as in (3.15), and obtain the channel impulse response (3.17) by com-

puting the Mt largest eigenvalues and the associated eigenvectors of Q.

4 Optimal Selection of the Precoding Sequence

In Section 3, we see that in order to identify the channel, the precoding sequence must

be selected so that the resulting matrix Mj is full column rank such that Fj can be exactly

solved as (3.14). However, when noise is present, the covariance matrix R̂x̄(0) contains the

contribution of noise and numerical error is present in the estimation of R̂x̄(0) by (3.18). This

implies that (3.12) usually has no solution and (3.14) becomes a least squares approximate

solution. The choice of Mj will affect error in the computation of Fj since different MT
j Mj in

(3.14) may have different condition numbers. In this section, we discuss the optimal selection

of the precoding sequence, which takes into account the effect of noise and numerical error in

estimating R̂x̄(0), so as to increase the accuracy of Fj and thus reduce the channel estimation

error.

4.1 Optimality Criterion

Now we consider the general case that the noise is present and discuss the design of the

precoding sequence p(n). From (2.4) and assumption (A1), the covariance matrix of the

received signal is

Rx̄(0) = H0G
2H∗

0 + H1G
2H∗

1 + σ2
vIMr

⊗ IN (4.1)

From (4.1) and (3.2), we see that noise has only contribution to the diagonal entries of Rx̄(0).

Therefore the (L + 1) decoupled groups of equations in (3.12) remain unchanged, except for

the j = 0 group, which becomes

Υ0 (Rx̄(0)) = Υ0

(
H0G

2H∗
0 + H1G

2H∗
1

)
+ σ2

vΥ0 (IMr
⊗ IN)

= M0F0 + Y (4.2)

where Y = σ2
v [IMr

IMr
· · · IMr

]T ∈ RMrN×Mr with unknown σ2
v . Thus from (3.14), F̂0, the

least squares approximation of F0, can be written by

F̂0 = (MT
0 M0)

−1MT
0 (M0F0 + Y)︸ ︷︷ ︸

Υ0(Rx̄(0))

= F0 + (MT
0 M0)

−1MT
0 Y = F0 + Z (4.3)

which is F0 plus a perturbation term due to noise. The perturbation term Z is the least squares

solution of the equation M0Z = Y. We note that if every column of Y is orthogonal to every

column of M0, then Z = 0, which implies F̂0 = F0. But that is impossible since the entries of

M0 are positive and those of Y are nonnegative. Therefore, we seek to appropriately choose

the precoding sequence p(n) such that every column of Y is as close to being orthogonal to
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that of M0 as possible. To this end, we first define qki and yi shown below as the columns of

M0 and Y, respectively:

M0 =

[
q01 q02 · · · q0Mr︸ ︷︷ ︸

M0(:,1:Mr)

q11 q12 · · · q1Mr︸ ︷︷ ︸
M0(:,Mr+1:2Mr)

· · · qL1 qL2 · · · qLMr︸ ︷︷ ︸
M0(:,LMr+1:(L+1)Mr)

]
(4.4)

Y = σ2
v [IMr

IMr
· · · IMr

]T = [y1 y2 · · · yMr
] (4.5)

Then, due to the special structure of the block matrix M0 and Y, it is easy to check that qki

is orthogonal to yj, i.e., qT
kiyj = 0 for j 6= i, e.g.,

qT
01y2 = [p(0)2 0 · · · 0︸ ︷︷ ︸

Mr entries

· · · p(N − 1)2 0 · · · 0︸ ︷︷ ︸
Mr entries

][0 σ2
v 0 · · · 0︸ ︷︷ ︸

Mr entries

· · · 0 σ2
v 0 · · ·0︸ ︷︷ ︸

Mr entries

]T = 0

and each qT
kiyi assumes the same value, σ2

v

∑N−1
n=0 p(n)2, for k = 0, 1, · · · , L, i = 1, 2, · · · , Mr,

e.g.,

qT
01y1 = [p(0)2 0 · · · 0︸ ︷︷ ︸

Mr entries

· · · p(N − 1)2 0 · · · 0︸ ︷︷ ︸
Mr entries

][σ2
v 0 · · ·0︸ ︷︷ ︸

Mr entries

· · · σ2
v 0 · · · 0︸ ︷︷ ︸

Mr entries

]T = σ2
v

N−1∑

n=0

p(n)2

Thus we only need to consider the relation between columns of q01 and y1 (the case of k = 0

and i = 1). Define the correlation coefficient

γ =
qT

01y1

‖q01‖2‖y1‖2
(4.6)

Since γ is nonnegative and by Cauchy-Schwarz inequality, 0 ≤ γ ≤ 1. In order to make

the perturbation term Z small, we choose q01 so that the correlation coefficient γ is as small

as possible. Based on this point of view, we formulate the optimal selection problem as

minimizing γ subject to

1

N

N−1∑

n=0

|p(n)|2 = 1 (4.7)

|p(n)|2 ≥ τ > 0, ∀ 0 ≤ n ≤ N − 1 (4.8)

Roughly, constraint (4.7) normalizes the power gain of the precoding sequence of each trans-

mitter to 1; constraint (4.8) requires that at each instant, the power gain is no less than

τ . Note that the problem of selecting the precoding sequence is identical to the SISO case

considered in [8]. Thus the optimal precoding sequence p(n) is a two-level sequence with a

single peak in one period [8]. More specifically, for each m, 0 ≤ m ≤ N − 1,

p(n) =

{ √
N(1 − τ) + τ , n = m

√
τ , n 6= m, 0 ≤ n ≤ N − 1

(4.9)

12



is an optimal precoding sequence. Because the precoding sequence is periodic with period N ,

the single peak can be placed at any one of the N positions which yield the same γ. However

the peak location m does significantly affect the numerical condition of the linear equation

(3.12) as we discuss next.

4.2 On Selection of m

We now consider the selection of m. We know that different choices of m result in different

matrix Mj and affect the numerical computation of Fj, j = 1, 2, · · · , L, in (3.14) and F̂0 in

(4.3), since different MT
j Mj may have different condition number. If the condition number is

large, then the matrix MT
j Mj is ill-conditioned and the computation in (3.14) and (4.3) are

sensitive to data error. Let

µ = max
0≤j≤L

κ(MT
j Mj) (4.10)

where κ(A) is the condition number of A. Our goal is to choose m so as to minimize the

largest condition number of the corresponding matrices MT
j Mj, j = 0, 1, · · · , L. Since the

peak appears at one of the N possible positions in the periodic precoding sequence, there are

N precoding sequences which may result in N different µ. The following result shows that

some choices of m are to be avoided since they result in some Mj being rank deficient and

thus µ = ∞.

Proposition 4.1 : At least one Mj, 0 ≤ j ≤ L, is not full column rank if and only if

N − L + 1 ≤ m ≤ N − 2.

Proof : See Appendix A.

Hence if we choose, either 0 ≤ m ≤ N −L or m = N −1, then each Mj is full column rank

and the channel is identifiable. The following result shows that we can classify the remaining

choices into 2 groups that are relevant to the optimal choice of m.

Proposition 4.2 :

(a) Each of the (N − L) choices, m = 0, m = 1, · · · , m = N − L − 1, results in the same µ

denoted by µ1.

(b) The two choices m = N − L and m = N − 1 result in the same µ denoted by µ2. Also

µ2 ≥ µ1.

Proof : See Appendix A.

From Proposition 4.2, we know if µ2 > µ1, then we choose case (a); if µ2 = µ1, we

proceed to compare the second largest condition numbers of the set of matrices {MT
j Mj}L

j=0

for these two cases and choose the case whose value is smaller. If they are again equal, the

same procedure can be done by comparing the third largest condition numbers and so on.

Moreover, for 0 ≤ m ≤ N − L − 1 (case (a)), since the condition numbers of MT
j Mj are the

same for each fixed j, j = 0, 1, · · · , L, (see Appendix A), we can use m = 0 to represent case

13



(a). Similarly, m = N − 1 can be used to represent case (b). Hence the optimal selection of

m reduces to one of two cases: m = 0 or m = N − 1. In other words, the optimal precoding

sequence has a peak either at the beginning or at the end.

5 Simulation Results

In this section, we use several examples to demonstrate the performance of the proposed

method. The channel normalized root-mean-square error (NRMSE) is defined as

NRMSE =
1

‖H‖F

√√√√1

I

I∑

i=1

‖Ĥ(i)U(i) − H‖2
F (5.1)

where the unitary matrix ambiguity U(i) is computed by the least squares method [15], solving

min
U(i)

‖Ĥ(i)U(i) − H‖2 (5.2)

I is the number of Monte Carlo runs, and Ĥ(i) = [Ĥ(i)(0)T Ĥ(i)(1)T · · · Ĥ(i)(L)T ]T is the

estimate of channel impulse response matrix H. The input source symbols are i.i.d. QPSK

signals. The channel noises are white Gaussian. The signal-to-noise ratio (SNR) at the output

is defined as

SNR =
1
N

∑N−1
n=0 E[‖z(n)‖2

2]

E[‖v(n)‖2
2]

(5.3)

where z(n) = [z1(n) · · · zMr
(n)]T is the signal component of the received signal (see Figure

2.1). For the simulations below, the number of Monte Carlo runs is fixed at I = 100.
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1) Simulation 1 – optimal selection of precoding sequences

In this simulation, we use the following model

H(z) =

[
0.4851 0.3200

−0.3676 0.2182

]

︸ ︷︷ ︸
H(0)

+

[
−0.4851 0.9387

0.8823 0.8729

]

︸ ︷︷ ︸
H(1)

z−1 +

[
0.7276 −0.1280

0.2941 −0.4364

]

︸ ︷︷ ︸
H(2)

z−2 (5.4)

given in [11] to demonstrate the effect of different precoding sequences on the performance of

the proposed method. For comparsion, the first sequence is chosen as {0.767 1.07 1.07 1.07},
which satisfies (4.7) and (4.8). The second and third sequences are chosen based on (4.9)

for N = 4 and τ = 0.5878 with the two possible peak positions: m = 0 and m = 3. By

computation, the corresponding µ for the three cases are 40.0, 4.66 and 22.1, respectively.

Thus m = 0 is the optimal selection. Figure 5.1 shows that for SNR=10 dB, there are about

5∼6 dB and 6∼7 dB difference in NRMSE between the optimal one and two others. Figure

5.2 shows the NRMSE versus SNR when the number of samples (for each transmitter) is fixed

at 1000. For each sequence, the NRMSE decreases as SNR increases and is roughly constant

for SNR ≥ 20 dB.
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Figure 5.1: Channel NRMSE versus Number of Samples

2) Simulation 2 – robustness to channel order overestimation

In this simulation, we use the same channel model (5.4). For each upper bound L̂, 0 ≤
(L̂ − L) ≤ 6, we choose N = L̂ + 2, SNR=10 dB, and 1000 samples (for each transmitter)
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Figure 5.2: Channel NRMSE versus Output SNR

for simulation. The precoding sequences are chosen as (4.9) with m = 0 and τ = 0.5878.

Figure 5.3 shows the NRMSE increases with increasing channel order overestimation. With

the channel order fixed at L = 2, the NRMSE increases from -22.5dB to -16dB as the (L̂−L)

increases from 0 to 6. The proposed method is quite robust to channel order overestimation

since the NRMSE still maintains a low value (about -16dB) when (L̂ − L) = 6.

3) Simulation 3 – a 3-input 2-output channel

In this simulation, we use the 3-input 2-output model

H(z) =

[
1.6 0.88 0.66

0.8 0.44 0.33

]

︸ ︷︷ ︸
H(0)

+

[
−0.44 0.35 0.14

−0.14 0.37 0.23

]

︸ ︷︷ ︸
H(1)

z−1 +

[
0.13 0.01 0.08

0.26 0.02 0.16

]

︸ ︷︷ ︸
H(2)

z−2 (5.5)

to illustrate the performance of the proposed method for channel with more inputs than

outputs. Note that this model is not irreducible [15] because H(0) is not full rank, and it

is not column reduced [15] either because H(2) is not full rank. It satisfies the condition

(L + 1)Mr ≥ Mt given at the end in Section 3.1 and H is full column rank. The precoding

sequences (N = 4) are given as in Simulation 1 for m = 0 and m = 3. Figures 5.4 shows

NRMSE versus the number of data samples with SNR=10 dB. Figure 5.5 shows NRMSE

versus SNR with the number of data samples (for each transmitter) fixed at 1000.

4) Simulation 4 – a 2-input 3-output channel
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Figure 5.3: Channel NRMSE versus (L̂ − L)
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Figure 5.5: 3-input 2-output Model: Channel NRMSE versus Output SNR

In this simulation, we use the 2-input 3-output model

H(z) =




1 0

0 1

1 1




︸ ︷︷ ︸
H(0)

+




−0.6 −0.5

0 0

−1.2 −1




︸ ︷︷ ︸
H(1)

z−1 (5.6)

given in [15]. We compare the performance of the proposed method with the outer-product-

decomposition-algorithm (OPDA) method [14, 15]. The SNR is fixed at 10 dB. Note that

this model is irreducible because H(0) is full rank, but not column reduced because H(1) is

not full rank. The precoding sequences (N = 4) are given as in Simulation 1 for m = 0 and

m = 3. As seen in Figure 5.6, with the optimal precoding sequence, the proposed method

yields lower NRMSE than that of OPDA method, although with the selection of m = 3 (peak

at the end), the resulting NRMSE is about 3dB higher than that of OPDA method.

5) Simulation 5 – comparison with the method in [10]

In this simulation, the performance of the proposed method is compared with that of [10],

which also use periodic precoding to induce cyclostationarity at the transmitter. We use the
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Figure 5.6: 2-input 3-output Model: Channel NRMSE versus Output SNR

channel (after normalized)

H(z) =

[
0.4082 0.5392

0.6396 0.4264

]

︸ ︷︷ ︸
H(0)

+

[
−0.4082 0.5392

−0.4264 −0.6396

]

︸ ︷︷ ︸
H(1)

z−1 +

[
0.8164 0.6470

0.6396 0.6396

]

︸ ︷︷ ︸
H(2)

z−2 (5.7)

given in [10]. For the proposed method, we use three precoding sequences. Precoding se-

quences 1 and 2 are those given in Simulation 1 for m = 0 and m = 3 (N = 4), respectively.

Precoding sequence 3 is {1.1 1.1 1.1 1 1 1}, which is the same given in [10]. We use 1200

i.i.d. 4-QAM symbols, 2000 Monte Carlo trials, and the same definitions of SNR and MSE

given in [10, 11]. Figure 5.7 shows that the proposed method performs better than the method

in [10].

6 Conclusions

We propose a method for blind identification of FIR MIMO channels using periodic pre-

coding sequence. Since the cyclostationarity is induced at the transmitter, the identifiability

condition imposed on the channel is minimum: it only requires that channel impulse response

matrix H = [H(0)T H(1)T · · · H(L)T ]T is full column rank. The channel transfer matrix is

not required to be irreducible or column reduced. The channel can have more outputs or more
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Figure 5.7: Proposed Method versus the method in [10]

inputs. The method is shown to be robust with respect to channel order overestimation. The

performance of the algorithm depends on the precoding sequence which is optimally designed

to reduce the effect of noise and error in estimating the covariance matrix of the received data.

Simulation results show that the method yields good performance.

Appendix

A Proof of Proposition 4.1 and 4.2

Preliminary :

For each j, let Nj ∈ R(N−j)×(L−j+1) be similarly defined as (3.13), except that IMr
is re-

placed by 1. It can be easily check that there exists permutation matrices Plj ∈ RMr(N−j)×Mr(N−j)

and Prj ∈ RMr(L−j+1)×Mr(L−j+1) such that PljMjPrj = diag[Nj,Nj, · · · ,Nj] = Dj ∈ RMr(N−j)×Mr(L−j+1)

is a block diagonal matrix with each block of dimension (N−j)×(L−j+1). Since Plj
T = Plj

−1

and Prj
T = Prj

−1 [19, p.110], we have Mj = Plj
TDjPrj

T . Hence Mj is full column rank if

and only if Nj is full column rank for j = 0, 1, · · · , L.

Also, MT
j Mj = (PrjD

T
j Plj)(Plj

TDjPrj
T ) = PrjD

T
j DjPrj

T = Prjdiag[NT
j Nj, · · · ,NT

j Nj]Prj
T .

Let λ(A) denote the spectrum of A [19, p.310], that is, the set of eigenvalues of A. Then

λ(MT
j Mj) = λ(NT

j Nj).
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Proof of Proposition 4.1 :

If at N − L + 1 ≤ m ≤ N − 2, it can be checked that Nj, j = 2, 3, · · · , L − 1 is not of full

column rank since it has two columns both equal to [τ τ · · · τ ]T which implies that at least

one Mj is rank deficient and vice versa.

Proof of Proposition 4.2 :

From the Preliminary, since λ(MT
j Mj) = λ(NT

j Nj), the condition number of MT
j Mj

is identical to that of NT
j Nj, i.e., κ(MT

j Mj) = κ(NT
j Nj). Thus we need only compute the

condition number of NT
j Nj.

Case (a): For m = 0, m = 1, · · · , and m = N − L − 1, we know

NT
j Nj = a · IL−j+1 + (2b + cj) · [1 · · ·1]T [1 · · · 1] (A.1)

where a = N 2(1 − τ)2, b = Nτ(1 − τ), cj = (N − j)τ 2. Hence the maximum and minimum

eigenvalues are a+(L−j+1)(2b+cj) and a respectively. Thus the condition number of MT
j Mj

is 1+ [(L− j +1)(2b+ cj)/a] which is a decreasing function of j. Therefore the corresponding

µ is equal to µ1 = 1 + [(L + 1)(2b + c0)/a].

Case (b): For m = N − L and m = N − 1, we consider the j = 0 case and j 6= 0 case

for Nj separately. For j = 0 with m = N − L or m = N − 1, direct multiplication of NT
0 N0

gives the same matrix as (A.1), and the condition number of MT
0 M0 is µ1. For j 6= 0 with

m = N − L, direct multiplication of NT
j Nj yields

NT
j Nj =




a + 2b + cj 2b + cj 2b + cj · · · 2b + cj b + cj

2b + cj a + 2b + cj 2b + cj · · · 2b + cj b + cj

...
...

. . .
...

...
...

2b + cj 2b + cj 2b + cj · · · a + 2b + cj b + cj

b + cj b + cj b + cj · · · b + cj cj




∈ R
(L−j+1)×(L−j+1)

(A.2)

The eigenvalues of NT
j Nj in ascending order, are αj, a, βj, where a has a multiplicity L−j−1,

and βj = 1
2
{(L− j)(2b + cj) + (a + cj) +

√
[(L − j)(2b + cj) + (a − cj)]2 + 4(L − j)(b + cj)2},

αj = 1
2
{(L − j)(2b + cj) + (a + cj) −

√
[(L − j)(2b + cj) + (a − cj)]2 + 4(L − j)(b + cj)2}. All

of the eigenvalues are positive and real. (A proof is given in Appendix B). It can be similarly

shown that for j 6= 0 with m = N − 1, NT
j Nj has the same eigenvalues αj, a, βj. Hence for

j = 1, 2, · · · , L, λ(MT
j Mj) = {αj, a, βj} and the condition number is

κ(MT
j Mj) =

βj

αj

= 1 +
χ2

j − 4(N − L)b2 + χj

√
χ2

j − 4(N − L)b2

2(N − L)b2
(A.3)

where χj = (L − j)(2b + cj) + a + cj. Since βj/αj is also a decreasing function of j, then the
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maximum value is β1/α1. Therefore, combining the two cases (j = 0, j 6= 0), the corresponding

µ is µ2 = max{µ1, β1/α1} ≥ µ1.

B The Eigenvalues of NT
j Nj for m = N − L

Proof :

Let Aj = NT
j Nj defined in (A.2), then Aj is positive definite since Nj is full column rank.

It can be checked that the eigenvectors corresponding to (L − j − 1) multiple eigenvalue a

are: [1,−1, 0, 0, · · · , 0]T , [1, 1,−2, 0, · · · , 0]T , · · · , [1, 1, · · · , 1,−(L−j−1), 0]T . The remaining

eigenvectors are [1, 1, · · · , 1, x]T ∈ RL−j+1. Hence

Aj




1
...

1

x




=




a + (L − j)(2b + cj) + (b + cj)x
...

a + (L − j)(2b + cj) + (b + cj)x

(L − j)(b + cj) + cjx




= λj




1
...

1

x




(B.1)

which implies the following two equations

a + (L − j)(2b + cj) + (b + cj)x = λj (B.2)

(L − j)(b + cj) + cjx = λjx (B.3)

Substitute (B.2) into (B.3), we can get an second order equation of x. Solving this equation

can lead to two solutions of x. Bring these two x into (B.2) and we can obtain the two

eigenvalues βj, αj. In addition, βj ≥ a because of (B.4)

βj =
1

2
{(L − j)(2b + cj) + (a + cj) +

√
[(L − j)(2b + cj) + a − cj]2 + 4(L − j)(b + cj)2}

≥ 1

2
{(L − j)(2b + cj) + (a + cj) +

√
[(L − j)(2b + cj) + a − cj]2}

=
1

2
{[(L − j)(2b + cj) + (a + cj) + [(L − j)(2b + cj) + a − cj]}

= a + (L − j)(2b + cj)

≥ a (B.4)

and αj ≤ a because of the interlacing property [19, p.396].
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