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ABSTRACT 
 
This report is for the second year of a three year project. This report mainly deals with 
a very practical issue which considers the maximum control input delay, i.e., the 
maximum allowable computational time to find controller, so that the closed-loop 
system is stable. The report for the first year (i.e., last year) assumes no control input 
delay to obtain the on-line intelligent adaptive controller.  This second year report 
proposes another new closed-loop configuration to account for the inevitable control 
input delay of all computer-controlled systems. Critical Stability Constraints (CSC) 
criteria are applied to find the maximum computational time (i.e., maximum control 
input delay) for generating on-line controller, so that the closed-loop system can still 
meet the design specifications.  Based on this information, a set of feasible computer 
hardware can be chosen to minimize the implementation cost. The inverted pendulum 
system, which is fully illustrated in the previous year report, will be illustrated again 
in this report to show the effectiveness of this new approach. Simulation results of the 
inverted pendulum system show excellent results of this new intelligent adaptive 
controller with maximum computational time for complicated controller, such as the 
FNN controller. 
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1. INTRODUCTION 
 
Most existing design techniques to control unknown nonlinear dynamical systems are 
based on a good understanding of the plant under consideration and its environment. 
However, in a number of instances, the plant to be controlled is too complex and the 
basic physical processes in it are not fully understood. Hence, design methods need to 
be augmented with an identification technique [1]-[4] aimed at obtaining a 
progressively better understanding of the plant to be controlled. For a well-specified 
nonlinear system, such as the inverted pendulum system, the mass damper system and 
the Chua’s chaotic circuit, the linearized Takagi-Sugeno fuzzy model [4] can be 
obtained by using the Jacobian matrix to locally linearize the nonlinear systems. Thus 
the well-specified nonlinear system can be well-controlled by all means, such as the 
local and global optimal controllers [5]-[7]. For unknown nonlinear dynamical 
systems, the linearized TS-type fuzzy model can not be obtained. Therefore a special 
type (i.e., the Ishidori-Byrnes canonical form [8]) of unknown nonlinear dynamical 
system was thus brought into discussion and both direct and indirect adaptive FNN 
(IAC FNN and DAC FNN) controllers are obtained [9]-[11] for the tracking of a 
sinusoidal signal. If the unknown nonlinear dynamical system is not in the 
Ishidori-Byrnes canonical form, then FNN (or Recurrent FNN) is applied as the 
on-line identifier and using the command error to fine tune the classical PID 
controller with sliding mode learning convergence [12]. However the sliding mode 
training will cause chattering effects in order to have faster convergence [12] and the 
determination of sliding surface is very complicated and may not be feasible for 
on-line purpose. Further we must know that all the FNN-based adaptive controllers or 
FNN-based closed-loop control system will require significant computational time. 
They are actually the sample-data control systems. However, all the existing research 
literature [1] - [12] neglected the computational time and sampling process to present 
their simulation results. In actual hardware implementation, if the computational time 
does not include as the time delay, all the design algorithms are doom to fail in real 
implementation. 
 
The main theme of this report is to follow the results from the first year of this project, 
which assumed no computational delay for the FNN controller, to develop an off-line 
algorithm for the finding the maximum computational time, so that the overall 
closed-loop will be stable. First an equivalent mathematical sampled-data system, 
which can describe the effect of computational time delay on the closed-loop control 
system, will be proposed. The sampling time of the converted closed-loop sampled 
data system is actually the computational time delay of the FNN controller. We adopt 



 3

Jury stability test [13, 14] on the closed-loop system with linearized TS-type fuzzy 
model. Then the maximum computational time delay can be determined easily from 
four graphical plots of critical constraint functions. This implies that control signal 
must be generated within the maximum allowable time so that the plant can be well 
controlled to maintain the overall stability. The inverted pendulum is applied as the 
illustrating example to show the effectiveness of this approach. Excellent results are 
obtained which shows the agreement of theoretical and simulating results.   
 

 
2. Equivalent Model for the Computation of Controller 

  
For a computer controlled system, it is obvious that the computer has to wait for its 
input and needs time to compute next controller signal for the plant to be controlled. 
In other words, the current FNN-based adaptive controllers or FNN-based closed-loop 
control system requires significant computational time which can not be neglected. 
Otherwise, it is will be failed in hardware implementation. Figure 1 shows the timing 
sequences with fixed Td to account for the required computational time of the 
controller.. 

∞=> t<= 0t

 
Fig. 1. Time interval [ti-1 ti] with fixed Td for computing controller 

 
Furthermore, Fig. 2 shows the inclusion of a pure time delay sTde− in front of the 
controller. This is to account for the fact that the controller can only have the error 
signal e(t) delayed by time Td and the controller will then take time less than Td to 
compute U(s). Therefore Td is a vital factor for selecting the computer and other 
relevant components in actual hardware implementation. 



 4

sTde−

 
Fig. 2. Closed-loop system with time delay 

 
We assume that the time of the signal propagation can be neglected. From Figs. 1 and 
2, we know that at time instant ti-1 the computer obtains input data (error between the 
actual system output and the reference) and finishes computing controller signal 
before ti. Once time t reaches ti, the plant receives the controller signal as input to 
control its operation. Thus the difference between ti and ti-1 (i.e., Td) can be treated as 
the time required for the computation of the controller. Therefore the determination of 
maximum allowable Td to guarantee the stability of the closed-loop system is a critical 
issue which will be discussed in the next section. 

 
3. Critical Stability Constraints for Finding the Maximum Td 
 
Let Gp(s) in Eq.(1) be a continuous-time transfer function of a strictly proper and 
rational system and be sampled by a zero-order hold device shown in Fig. 2. 
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The transformed form of the sampled system can be found as 
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Suppose a discrete-time polynomial function C(z)∈ℜ[z]n of the form 

C(z) =
0

n
i

i
i

c z
=
∑ = c0+c1z+c2z 2+ +cn-1z n-1+cnzn               (3) 

cn > 0 
and let C(z) = 0 be the characteristic equation of the closed-loop system in Fig. 2. For 
simplicity, the above equation is normalized and rewritten as 
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D(z) = c0/cn+ c1/cn z+ c2/cn z 2+ + cn-1/cn z n-1+ cn/cn zn 

= d0 + d1 z+ d2 z 2+ +dn-1 z n-1+ zn                     (4) 

To ensure all roots of (4) are inside the unit circle, the following four Critical Stability 
Constraints of Jury’s Test [13, 14] should be satisfied: 

 
T0 = dn = 1 >0, 
T1 = D(1) > 0,                           (5) 
T2 = (-1)nD(-1) >0,                       (6) 

T3 = 1 1n n− −Φ − Ψ  >0                    (7) 
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Equations (5), (6) and (7) are actually functions of sampling-time Td. By taking 
advantage of the embedded power of a symbolic manipulation package such as Maple 
or Matlab, we can easily resolve issue of finding the sampling-time range which can 
satisfy all the constraints of T0 >0, T1(T) > 0, T2 (T) > 0, and T3(T) > 0. 
 
 
4. The Inverted Pendulum System with Maximum Td 
 
In this section, we will apply our optimal on-line training to design a tracking 
controller to control the inverted pendulum to track a sinusoidal signal. For robustness 
test, the inverted pendulum system will be added with extra 50% of mass to simulate 
the case of sudden model change or noise at any time instant. Theoretically, the whole 
procedure is divided into off-line and on-line stages. In the off-line stage, the main 
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goal is to find the sampling time range and then specify a sampling time for the 
following on-line stage. 
 
Example 1: Consider the inverted pendulum system [14] as shown in Fig.3. Let x1 = θ  
be the angle of the pendulum with respect to the vertical line. 

 

u

mgv sin(x1)

x1

mc  

l

x2

 

Fig. 3 The inverted pendulum system 
 

The dynamic equations of the inverted pendulum system [15] are 
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and gv = 9.8meter/sec2 is the acceleration due to gravity, mc is the mass of the cart, l is 
the half-length of the pole, m is the mass of the pole and u is the control input. In this 
example, we assume that mc = 2kg, m = 0.21kg and l = 0.75 meter. 
 
We define three membership functions for each state variable as shown in Fig. 4. The 
Median membership function is defined as: 
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The positive and negative membership functions (Mp and Mn) are defined as: 
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For state x1, ]4.004.0[1 −=center  and ]2.02.02.0[1 =width .  For state x2, 

]101[2 −=center  and ]5.05.05.0[2 =width . 
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Fig. 4. The membership functions for inverted pendulum system 

 

Following the design procedure as discussed in the report of the previous year, the 
intelligent closed-loop indirect adaptive controller design for inverted pendulum can 
be shown in the following steps: 
 
[Step 1]: Apply a light input u = 0.1sin(t) to excite the nonlinear uncertain system, 

then measure sufficient data information of  x(t), )(tx  and u(t). 
[Step 2]: Apply Algorithm I of the report of the previous year to perform the 

dynamical optimal training of TS-type fuzzy model with least-squared 
initialization. The initial parameters for the nine linear subsystems are: 
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By applying fuzzy defuzzification, the initial state space equation of the 
linear system can be obtained as: 
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Compute the range of the sampling-time, and then select a sampling-time 
Td. 

[Step 3]: Specify closed-loop poles as -10 and –15 and apply Algorithm II of the 
report of the previous year to design an on-line stable tracking controller for 
the closed-loop system. 

[Step 4]: Apply Algorithm III, the Adaptive Rules of the report of the previous year, 
to update the TS-type fuzzy model and tracking controller to stabilize the 
closed-loop system in Fig. 3. 

 
We assume the initial states of x1 is [-0.5 1.2]T. The reference trajectory for state x1 is 
yr = 0.2sin(2πt) and the reference trajectory for state x2 is ry = 0.4πcos(2πt). 
 
Putting the state space in [Step 2] into Matlab control command ss2tf to compute the 
transfer function of the system, we have  

2

0.8238
0.7069 20.6317s s− −

 

Using the theorem of CSC, Matlab commands and Maple related commands, we can 
obtain T0(T) and the equations (36)-(38) of T1(T), and T2(T), and T3(T). 
 

T0(T) = 1         
 

T1(T) = -7.3188+7.3188 4.9094Te +7.3188
122.3247 10 Te− × +7.3188 4.2025Te−  

-7.3188 4.2025Te−  
122.3247 10 Te− × -7.3188 4.9094Te

122.3247 10 Te− × -7.3188 0.7069Te  
+7.3188 0.7069Te  

122.3247 10 Te− ×          (11) 
 

T2(T) = - 7.3188+ 6.0191 4.9094Te - 9.3188
122.3247 10 Te− × -4.0191 4.2025Te−  

-4.0191 4.2025Te− 122.3247 10 Te− × + 6.0191 4.9094Te
122.3247 10 Te− × +9.3188 0.7069Te  

+9.3188 0.7069Te
122.3247 10 Te− ×              (12) 

 
As the equation of T3(T) is very complicated and long, it is omitted here. 
 
Figures 5, 6 and 7 are trajectories of T1(t), T2(T) and T3(T), respectively. 
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Fig. 5. Trajectory of T1. 

 

 
Fig. 6. Trajectory of T2. 
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Fig. 7. Trajectory of T3.and the upper bound of Td = 0.033 seconds. 

 
From the above three figures, we can conclude that the upper bound of the range of 
the sampling-time is close to 0.033 seconds. Assume that re-training of the TS-type 
model is occurred, and the new transfer function is obtained as 

2

0.9204
0.3376 19.9208s s− −

. The trajectories of new T1(t), T2(t) are similar to those in Figs. 

5 and 6. However the new T3(t) is plotted in Fig. 8, which shows that the upper bound 
of the range of sampling-time of this new transfer function is shifted from to 0.0336 
seconds. 

 

Fig. 8. Trajectory of T3.and the upper bound of Td= 0.0336 seconds. 
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Assume that re-training of the TS-type model is occurred again, and the new transfer 

function is obtained as 2

0.9166
0.1118 21.1264s s+ −

. Another upper bound of the range of 

the sampling-time can be decided by the trajectory in Fig. 9, which is shifted to 
0.0341 seconds. 

 
Fig. 9. Trajectory of T3.and the limit of Td = 0.0341 second. 

 
Hence, we see that the chosen sampling-time Td should not be beyond 0.033 second 
which is a minimum value of the three figures. The above process is actually the 
observations of simulation by following the design procedure in above design steps. 
 
To test the robustness of the proposed controller, we increase the weight of the car 
from 2kgs to 3kgs at t = 8 seconds. The results are shown in the Fig. 10 and 11. The 
states of the nonlinear system with two different chosen sampling-times 0.029 
seconds, 0.0327 seconds can finally converge to the reference state. We can see that 
the tracking performance of the case with Td = 0.029 seconds is better than that of the 
case with Td = 0.0327 seconds. The tracking can be well maintained even when there 
is a 50% increase of mc, no matter Td is 0.029 seconds or 0.0327 seconds. 
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Fig. 10. Trajectories of reference yr (solid line), (a) state x1 (dotted line) with Td = 

0.029 seconds, (b) state x1 (dotted line) with Td = 0.0327seconds. 
 

 
Fig. 11. Trajectories of reference ry (solid line), (a) state x2 (dotted line) with Td = 

0.029 seconds, (b) state x2 (dotted line) with Td = 0.0327 seconds. 
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the output track the reference successfully. Fig. 11 (b) shows the enlarged u for 7.65 < 
t < 9.4 sec. 

 

Fig. 12. (a) Input u for case with Td =0.029 sec. (b) u is zoomed for 7.65 < t < 9.4 sec. 
 
Similarly, input u(t) with Td = 0.0327 seconds is shown in Fig. 13 (a). The input u(t) 
can return to be normal after 12 seconds although the system is disturbed when t is at 
8 seconds too. Fig. 13(b) shows the enlarged u for t < 1.6 sec. 
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t < 1.6 sec. 
 
The time instants when the update of the TS-type fuzzy model is necessary, i.e., when 

)(tε >Threshold=0.05, are recorded as pth time interval > 0.1. This phenomenon can  

be observed obviously from Figs. 10 and 11 since the initial conditions of x1 and x2 
will generate large tracking error (for 0≤ t <3) and thus the re-training needs to be 
performed frequently in the beginning. We use Td = 0.0327 seconds to illustrate the 

training process. At t = 0.3041 seconds, )(tε = 3.3258 > 0.05, so the optimal 

learning rate can be found as 5.8649×10-5 and the re-trained TS-type fuzzy model and 
Kp are: 

⎥
⎦

⎤
⎢
⎣

⎡
=

0.060221.0861
10

fA , ⎥
⎦

⎤
⎢
⎣

⎡
=

0.9230
0

fB , [ ]27.2599186.4474=pK . 

After t>12 seconds, the tracking performance reaches the stable steady state so that 
the update of the overall indirect adaptive controller is no longer necessary. The next 
figure shows the performance of extra case with Td = 0.035 seconds selected. 
Apparently the trajectory of the state x1 can not track the reference yr and is 
completely divergent. 
 

 

Fig. 14. Trajectories of reference yr (solid line), state (dashed line) x1 with Td =0.035s. 
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5. CONCLUSION 
 

The Jury’s stability test of critical stability constraint (CSC) are applied successfully 
for the determination of maximum computational time for complicated controllers, 
such as the on-line adaptive FNN controller. Based on this maximum sampling time, 
the suitable computing power with other relevant components can be selected with 
minimum cost in actual hardware implementation. One of popular nonlinear systems, 
i.e., inverted pendulum system, is assumed to be uncertain and the on-line indirect 
intelligent adaptive tracking controllers are designed to track sinusoidal signals with 
maximum computational time. Excellent agreement of the theoretical maximum 
computational with that obtained by simulation is achieved. The robustness of this 
new approach is also demonstrated via the inverted pendulum system by adding an 
extra 50% of mass at a certain time instant. 
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