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Abstract

We obtain defining equations of modular curves X()
9  constructing modular functions using generahzed@ede nd

describe a method of obtaining a basis for the spac usp
11 subgroup. We also use our model of X(37) exp
elliptic curves of conductor 37.
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1. Background

17 1.1. Defining j f modular curves

Let " be a congruence subgro
19 ned to be the quotients o

the gruence subgroup
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1
Fl(N)z{yeSLz(Z):yE:I:< *> modN},
0 1

<

1 0
F(N):{yeSLZ(Z):yE:I:< )modN}, o
0 1
1 and the modular curves I'\H* associated with the above congruence subgroups wil@
ace.

denoted by Xo(N), X1(N), and X (N), respectively.
3 It turns out that a modular curve has the structure of a compact Riemann

is isomorphic to the field of meromorphic functions on the modular\c
7  homogeneous polynomials defining C are often referred to as defining

9  to drop the non-singular condition, and call any polynomials that yield~an isomorphic
function field defining equations of a modular curve.
11 When the genus g of a modular curve is less than 3
is, a 2-fold covering of PI(C) branched at 2@—2 paints ), th

13 defining equations. For example, if the genus i t e
and the defining equation is the zero poly - e genus d curve is
15 an elliptic curve, and an affine defining” equation tal the form y Xy +azy =
3 or the e is hyperelli an affine defining

x3+arx?+asx+ag. When the gen
17  equation can be taken to be y? = some polynomiakf, (Note that when the

are standard forms for
e’is isomorphic to P!(C),

degree of f is greater than 3, the curve f(x) has larity at infinity.) A

19 non-hyperelliptic curve of genus.3 has a plane quartic 4§ a ning equation, while a

f 4. is the complete interseetion of a degree 2 surface

21 i see [10]). When <t@gnus exceeds 4, the geometry
licated, ‘and there are no si andard forms.

23 e. i the type X@g ere is a canonical equation for it

‘ e ely, let j(t) be the classical modular

25 is generated by j(r) and j(Nt), and a

1 = 0, where Fy is a symmetric polynomial
27 i imal~polynomial of j(Nt) over C(j). This model of

29
coefficients are gigantic. example, when N = 2, the largest coefficient in F» is
ady 157464 000 000 000.

1.2. Obtaining equations using the canonical embedding

Let C be an algebraic curve, and let g be its genus. Let {wi, ..., wg} be a basis
of the space of holomorphic differentials. Suppose that g > 2. Then we can define a
35  canonical map C —> ps—! by P +— [w1(P),..., wg(P)], where P denotes a point
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on C. When the curve is non-hyperelliptic, this map is in fact injective, and we call it
the canonical embedding (see [10, p. 341]).

In our modular curve setting, the above projective map is equivalent to the map
T+ [f1(1), ..., fg(v)], where {f1,..., f,} is a basis of the space S>(I') of cusp
forms of weight 2 on I'. Since any homogeneous polynomial of fi,..., f; of de-
gree k is a cusp form of weight 2k and dim Sy (I') grows roughly in the speeé>
of 2gk, there is linear dependence among homogeneous polynomials of fi,..., f,
of the same sufficiently large degree. In many cases, these relations give a projec-

tive model of a modular curve. This approach has been adopted by Galbrai
Murabayashi [17], Shimura [21], and others to obtain defining equations for_modu-
e
fr

lar curves of the type Xo(XN). (Note that this method requires the kno
Fourier coefficients of cusp forms of weight 2. One may obtain such inf
e

Stein’s modular form database [22], whose method of computing the
cients in turn is originated from Merel [15,16].) This approa
drawbacks.

Firstly, ironically, the above method does not work
or 2, which presumably should be easier than those of higher genus, because there
are not sufficient data. The method does not work fo erelliptic modular curve
either because the map is two to one. (Note.that equations of hyperelliptic modular
curves Xo(N) are also obtained by Galbrait@ 1, @ [9], and Shimura [21].
Their methods are similar, except [9].) Secon % , 1t is difﬁ(@determine

curvi

whether one has enough equations fora-gi large genus&

<
equations

ar curves X1(N) have be ied by several authors.

be\ interpreted as modul@ces of isomorphic classes

jctures, Reichert ‘omputed equations of X (N),

ised them to@ ine torsion structures of elliptic

computation becomes tedious as

@nbolic, and does not reveal what the
function fields are.

1er coeffi-
T, several

1.3. Other methods of determining defi

Explicit equations of modu

Veierstrass o-functions. Thus, the relation between these two functions defines the
urve X1(N). A similar method is also used to obtain defining equations of X (N) by
Ishida [11]. In general, though, the degree of the equations obtained in this fashion is
not optimal. For example, the modular curves X;(14) and X;(15) are both of genus
1. Thus, the defining equations can be taken to be y2 = x3 + ax + b. However, the
equations they obtained are of degree 4 and 5, respectively. (This, of course, can be

XQ
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1 remedied by finding suitable birational maps. But it is still something to be taken
care of.)

<
3 1.4. Goals of the present note & @
In this note we will describe a systematic way of constructing modular functions o x
d

5 congruence subgroups with desired behavior at cusps using the generalized Dede
n-functions. (See the next section for the definition of these functions.) Our niet!
7  of constructing modular functions enables us to solve a variety of problems r d to
the theory of modular functions and modular curves, including the main e
9  present note, namely, determining defining equations of modular cutves.
A distinct feature of our method is that the modular functions constructed have
11 poles only at infinity. (Thus, they can be regarded as ana uptmoduls for
congruence subgroups of higher genus.) This feature makes the ion of defining
13 equations relatively simple (see the discussion in Secti the equations
obtained using our method are all plane curves, whic ay be more preferable in
15 applications than those obtained from the canonical
Our method of finding defining equations,.wor
17  X1(N), and X(N), regardless of the genus o e
least in theory. To actually obtain equations

rve is hyperelliptic. (At
urves of l@vel in the
19  range of hundreds, the solving of the ﬁ: ted. integer.programming p could take
O
Our

hours of computer time. Though, for ‘the cur listed in the of the article the
ethod does not requir owledge of cusp

of all types Xo(N),

21  computation takes only seconds.

forms of weight 2 either. On the contrary, our method i provides a way of
23 finding a basis for the space-of cusp forms of weigh congruence subgroups.
Furthermore, our model 0f X in many cases, can bexgsed to determine explicitly

25  the modular functions\pa izing a rational E@%urve. In this note, we will
work out the case ipti ¢s of conduc

27 The rest of the sarized as follo@ction 2, we will give the definition

1€5-0 e\ generalized Dedeki ~functions, and describe our method of

29 i ing equations of modular cu using them. In Section 3, we will give

ove. In Section 4, we list defining equations
2 for X{(N), and up to N = 12 for X(N).

31

33

2. A’new approach

Let C be a modular curve of non-zero genus, and let K (C) denote the function field

of C. Our method of finding defining equations of C use the following basic idea, which

37 is also used in [12]. Here, for f € K(C), we let deg,, f denote the total number of
poles of f.
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1 Lemma 1. Suppose that X and Y are in K(C) such that gcd(deg,, X, deg,, Y) = 1.
Then one has K(C) = C(X,Y), and thus a defining equation of C can be taken to

3 be F(x,y) = 0, where F(x,y) is a polynomial such that F(X,y) is the minimal <
polynomial for Y over C[X]. Moreover, F(x,y) is a polynomial of degree n in x and

5  of degree m in y. o Q

Proof. Let m = deg,, X and n = deg,, Y, and assume that gcd(m,n) = 1. Then w
7 have [K(C) : C(X)] = m and [K(C) : C(Y)] = n (see, for example, [7, p. 19

It follows that [K(C) : C(X,Y)] divides both m and n. Since ged(m,n) =
9  conclude that [K(C) : C(X,Y)] = 1. That is, K(C) = C(X,Y), [C(X,Y) : (D( =m,

and [C(X,Y) : C(Y)] = n. Then the assertion about F(x, y) follows immediate
11 proves the lemma. [

As mentioned in the introduction, the functions we construct will have poles-only at
13 infinity. In this case, the polynomial F(x, y) in Lemma 1 can cribed as follows.

Lemma 2. Suppose that X and Y are functions on C with.a unique pole of orders m

15 and n, respectively, at infinity such that gcd(m,n) =1 _and that the leading Fourier
coefficients are both 1. Then the polynomial 5(x y 1 takes the form

%@O Sy

takes the form b<m ca,bx“yb. Let

17

19
max{am + bn w7 O}

21 is, estdegree am @terms with ¢, 5 # 0. In order to
bon at in @nere must be another pair (ai, b;) of

23 - i b%% aiym + bin. Since ged(m,n) = 1, we
suppose that none of the integers ap and aj is

25

27 , by = 0. ows that the polynomial F(x,y) takes the claimed

practice, Lemma 2 means that, to find a relation between given X and Y with
he ‘prescribed properties, we can compute the Fourier expansion of X" — Y™ and use
suitable products X?Y? to cancel the poles at infinity recursively until we reach the
constant term.
In light of Lemmas 1 and 2, to obtain defining equations of modular curves, it
suffices to find functions with poles only at infinity. We now describe our method of
35  constructing such functions.
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1 2.1. Generalized Dedekind n-functions

Let 7 € H, and set ¢ = ¢>™7. The ordinary Dedekind #-function is defined to be

n@=q"* [0 —-q".

n=1
This classical function has been extensively used to construct modular functi
5 modular forms on congruence groups containing ['g(N). For example, a tab e
7
9
11
13 and we find that generalized Dedekind n-functions a

Following the notation by Yang [25], we @x a ,» iti
15 classes of generalized Dedekind #-functions

Egu(1) = gB8&/N/2 l—[ /N g m= g/N (1

17

a et al. [2]. In this note we will make use of the above functions to construct
lar functions that parameterize modular curves. Here, we recall the properties of
¢ Televant to our consideration.

Proposition 1 (Yang [25, Theorem 1]). The functions Egq j satisfy

27 EeyNnn=E_g_p= —C_hEg,h, EgniN = Eg . (1)
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a

b
Moreover, let y = < > € SLy(Z). Then we have, for ¢ =0,

c d

Egn(t+b) = e™PBECINE, 1o (1),

3 and, for ¢ #0,
Egn(y7) = ea. b, ¢, d)e™° Ey 1y (1), %
5  where
emi(bd(1=cDrelatd=3)/6 4 ¢ s

¢a,b,c,d) = { _jemilaci—d®)+db—c+3)/6
g2ab +2ghbc + h%cd  gb %— 1
7 0= N2 -

&

and

& W)=(g h) . o
9 ¢’ d @

Proposition 2 (Yang [25, ollary 2]). The functions Fg fy

&
%

<&
11 Iy =FE_, = —E§\ 2)
Moreover, [ e I'h(N). for ¢ =0,
d
<&
13 Eg( 2 eﬂ:ibNB(g/N)Eg(T),

an rc#0,

E¢(y0) = £(a, bN, ¢, d)e™ &N E (1), 3)
D where

IR - -
17 ga,b,c,d) = {enl(bd(l ) if ¢is odd,

—jemilac=d)+db=c+3)/6 ir g s odd.
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Proposition 3 (Yang [25, Corollary 3]). Consider the function f(t) = ]—[g Eq(1)%,
where g and ey are integers with ¢ = 0mod N. Suppose that one has

Y eg=0mod12, " ge,=0mod2. (4)
8 8 Q

Then f is invariant under the action of I'(N). Moreover, if, in addition to (4), one also Q
has
3 g%¢; = 0mod2N. &)
g

Then f is a modular function on I'{(N).
Furthermore, for the cases where N is a positive odd integer, conditions(4)-and (5)
can be reduced to

> ey =0mod 12

and &
3 @ S

8
respectively. & 30&

Proposition 4 (Yang [25, Lemma 2]). The vuder of the f ¢ at a cusp a/c with

(a,c)=11is (¢, N)Pr(ag/(c, N + 1/6 and {x} denotes

the fractional part of o ye ber X. o

We now show that n inctions with «'@ at infinity can be constructed
using the above functi his requires a r@ F Yu [26].

In [26] the ¢N) that lie ove 0 on Xo(p) for all primes p|N are

referred the_cusps) of the first type. \Leét ]-”? (N) denote the group of functions
on Xy(N) that have divisors suppo on the cusps of the first type. Moreover, let
ions of the type 1—[;1\7:—]1 Eo 5 (7)%" satisfying the

mod N  for odd N,

hz—:l € = O{ mod2N for even N,
and
Z ep, =0 for all p|N and for all congruence classes a.

h=xamod N/p

Then Yu proves the following result.



YAIMA2536

Y. Yang/Advances in Mathematics 111 (1111) 11111 9

1 Proposition 5 (Yu [26, Theorem 4]). We have f?(N) = F|(N), and they are of rank
$(N)/2 — 1.

3 Now observe that the action of the Atkin—Lehner involution wpy sends the cusps
of the first type to the cusps that are equivalent to oo under I'g(N), and that, byQ

5  Proposition 1,
Eog(—1/N7) = e M8/NE, o(NT) = e M8V Ey(1). @

7  Thus, we have the following result.
Proposition 6. Assume N >3. Let F{°(N) denote the group of m la@s on
0

X nd let

)¢s satisfying

N—1
Z g, = 0{ mod N  for odd ©)

1 o mod 2NQ for@ﬁ

>

and &
Z eg =0 for P nd for.all congrue@ses a

(N
13 g=+amod N/p @
Then one has Fi°(N) and they are of rank @/Z -1
o
15 We remark that,(b , condition d (7) imply that the product is
a modular function .\ ; and, by Pro 4, condition (7) implies that the

17  function ha
under ['g(V).
19 We rove
the asfumptions-in

nor zeroes at %@ ps that are not equivalent to infinity

esult stating th. ¢an always find functions X and Y satisfying
L.emma 2. Th requires the following lemma.

21 emma. 3.—Let cZ" b odule of rank n — 1 such that a1+ ---+a, =0
or v = (ay,...,ap) 7 Let d be the greatest common divisor of all ay in

= (ay,...,ay) € V. Then there is an element(—md, ay, ..., a,) in V such that
a ., an =0 for all sufficiently large integer m.

roof. We first choose any vector vy in V with vg = (—d, ba,...,b,), and let b =
> maxa<k<n |bk|. Now consider the vector vi = (1 —n, 1,...,1) € Z". It is contained
in the subspace W C Z" consisting of all vectors whose sums of entries are equal to
zero. Since W is also of rank n — 1, there is a positive integer a such that av; € V.
b 29  Choose a sufficient large integer k such that ak > b. Then both av; and kav;+vg are in
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V and they are of the form (—md, as, ..., a,) with aa, ..., a, >0. Then the assertion
follows immediately. [J

<
Proposition 7. The group F7°(N) contains at least two functions that have poles only
at infinity and whose orders of poles are relatively prime. o Q

Proof. Assume that N >3. By Proposition 6 and Lemma 3, it suffices to prove th
the group F°(N) contains a function having a simple pole at infinity.

When N is a prime greater than 3, we find (E2 JE1E3)" is such a functlon Wh
a prime power p® > 8, a >2, we consider functions of the type fi= k +N/p /Ex N/p>
k%= N/pmod N. It is easy to verify that the divisors are supported at cusps_eqg nt
to infinity under I'g(N). If k is an integer such that k +2N/p > D, then
the order of f; at infinity is

N (2Ba(k/N +1/p) = Ba(k/N) — B2(k/N +2/p = 1)) /2 =k —

. Thus, if k is an integer
k+1 has a simple pole

where B;(x) = x> —x+1/6 is the second Bernoulli p
such that k+2N/p >N >k+N/p—1, thebthe
at infinity.

When N is a product p®q”, p < g, of t ers, we co@ the func-
tion fi = Ekn/pEk+N/q/(EkEk+N/pN/q)s %‘ —N}fp,—N/q, — /q mod N.

Again, these functions have poles a eroes at the cusp uiya ent to infinity
that k + N/p + N/q >@+ N/p, then the

under I'g(N). When k is chosen §
order of f; at infinity is

n+ N/g— N/(]@g.ﬁ
k + N/pen fr/fr+1 has a simple pole at

Thus, if K+ N/p
infinity.

. of at leastthree prime powers, the exact description
dwe shall only sketch our idea. Let Py denote
P of Py we let cp denote the sum Zpep 1/p.

~1 ~1
p) ( k+5p +p2) < k+1>1+172+ﬁ
P YARY 2 P1:P2,P3

where the products run over all subsets P of Py, and let k vary. Let m(x) denote
the greatest integer less than or equal to x. Then the order of f; at infinity, after

Il
IS
S
—
Ry
T
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1 simplifying, is equal to

C—k Y mk/N+cp)+ Y Ncpm(k/N +cp)
PCPy PCPy

J% > (m(k/N +cp)® +mk/N + CP)) ,

where C is a constant depending only on N. Now choose ki and k> such that
3 integers m(k;/N + cp) = m(ka/N + cp) for all P C Py with only one exceptidn Pj,
where m (ki /N +cp,;) = 0 and m(ky/N +cp,;) = 1. Then the function f,/fi-has order

(ki —k2) Y mk/N +cp)—ky+C
5 P#P

nd P;. Finallyyif k; + 1 and
m((kp + 1)/N + cp) for
= 1, then the function
des the proof of the

at infinity, where C; is a constant depending only on
7 ko + 1 also satisfy the property that m((k; + 1)/N + cp
P # Py and m((ky + 1)/N +cp)) =0, m((ko + 1)/N >k c
9 fio+1fi/(fiy+1fx,) has a simple pole at i@nity his™con
theorem. [J

ve C uted 3o far, we ﬁn%@t it is always

odula I'1(N) and have @ unique pole of
13 order m at infinity for each non-gap int m. It is reasonable\toconjecture that it is

always the case, but we are unable to prove it at this poin
15 We also remark that sin N) is normal in I'g(N){ ifsfs a function on I'j(N),

then
Q>
VEFO(N)%@

11  Remarks. For the curves X;(N) we
possible to find a product of Eg t

17
is a Proposition 7 implies that we can always find
19  mod ue pole of order m at infinity for sufficiently
large S conjugate to a congruence subgroup containing
21 1(N ill generate the function field on X (N) as well.

the following sections we will work out some simple examples to illustrate the
procedures of constructing modular functions using our method.

.2. Equations for X1(N)

Let us take the genus 1 curve X (11) for example. From Property (2) in Proposition 2
we see that there are essentially only five distinct E. In order to fulfill the conditions
27 in Proposition 3 we follow the notation of Fine [6], and set Wy = Eu4/E>. (The
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setting of Wy = E4i/Eo instead of Eo;/Ej is to get rid of the factor involving e™b in
formula (3) so that the transformation formula for W; becomes simpler.) It is obvious
that any product of Wy will satisfy condition (4) in Proposition 3 automatically. Thus,
if ex are integers such that > k%e; = Omod 11, then I W,fk is modular on I'j(11).
Furthermore, from Proposition 4 we see that the only poles or zeroes of W; are a
cusps equivalent to ¢; = j/11, j =1,...,5. Let vk(c;) denote the order of Wy at c;.

The values of vy are given in the followmg table.
€] € €3 ¢4 C5
1lvy|—=5 2 10 -3 —4

1Mvy| 2 =3 -4 10 =5
11v3|10 —4 2 =5 =3
1lvg|=3 10 =5 —4 2

10

1lvs|—4 =5 =3 2

Thus, finding a function X with a pole of order 2 at infinity and ana elsewhere is
equivalent to solving the integer programming problem

—5x1 4+ 2xp 4+ 10x3 — 364 —
2x1 — 3x2 — 4x3 + 10

‘1+4 +64°+5¢° +3¢" =’ + -,
O@Kdegree 3 function Y to be
+7¢7 " +13+19q +24¢% +25¢° - - -.
as a Fourier expansion

Y2 X =—g* =3¢ -9 — 197" =35 94g +---.
sing X? to cancel the pole of order 4, we find

Y2 - X34 X2 =3 43¢7 2 +7¢7 413419 +--- =Y.

Thus, a defining equation is Y — Y = X3 — X2,

=3
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1 In general, to find an equation for X;(N) we solve integer programming problems
analogous to that for X;(11) and find two modular functions X and Y with minimal

3 orders of pole at infinity so that ged(deg,, X, deg,,Y) = 1. Then we compute the <

relation between X and Y as above.

&

5  2.3. Equations for Xo(N) XQ

For curves Xo(N) the basic idea is the same, though the implementation is different

7 and in many cases we can just use the Dedekind eta function. (See [18] for pr
of the Dedekind eta function.)

9 To construct a modular function with a pole of order k at infinity n
elsewhere, we first find a function F on I'j(N) that has a pole of(ord 1

11 poles of order < k at other cusps equivalent to infinity under I'o( re
any other points. Then the function

x= ) Fl,

13 yelo(N)/T(N)

nity,
ar at

g

is modular on I'o(N) with the desired prop@t' S,
15  representatives of I'o(N)/I'{(N). Take Xo(1
gramming problem

runs over aset of coset
¢. We solve @teger pro-
<&
—5x1 4+ 2x24 10 3x4 —4x5s = =2

2x1 —3xp — 4x3 + 10x4 — S5x5 >

@

+2x3 — 5x4 — 3 %—1],
— S5x3 —4x @2 —11,
—x2—3x3+% Oxs > —11
17  and set o
= wew3| = E3E,
= - wl= Y P
el 11D yelo(1)/Ty(11y 10

_ EjEy | EjEs  ELEs | EfEy  EjEn
R R >
10 20 30 40 50
> _ EjE; E3E, N E?Es EZE; N E3E,
- 37 T3 3 g3 3
E; E3 E3 E} E?

G 4207 +4+5¢+87 + P+
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Likewise, we let

2

yelo(1D/I (1)

Y = Wi3Wal, =g +3¢ 77 +7q""

Then the functions satisfy ¥Y? — X3 + X2 4+ 3Y + 10X 4 22 = 0, which we take as a
defining equation of Xo(11). (In the result section we modify the choice of Y so t
the equation is in conformity with that of Birch and Swinnerton-Dyer [23] or th
Cremona [4].)
A modification of the above method is to utilize the fact that any inter

Ws. Moreover, the cusp oo splits into five cusps 1/31,

Y. Yang/Advances in Mathematics 111 (1111) 100001

+ 12417 +26¢% +---.

of

iate

I' for any integer k not
Wi, Wa, W3, Wy, and

I'. The orders of Wj at those cusps are as foll@x
1/31 2/&3/&31
3 —4 2,

| S
Wi -1 @0
Wyl O 2 -1 -4
Wil —4 3 21 0 2 @ ®
-1 0 -4 3
sl —l\=4 2 3 -0,
It follows that the i0

L]
7

v
/T

is.invariant under I'g(31) and h

2.4. u s for X(N)

unique pole of order 3 at infinity.

e method is identical to that for X;(N). We take I'(7) for example, and let

Wi

E4x/ Eox. From Propositions 2 and 3 we see that Wy is a modular function on

(7). Moreover, the only possible poles of Wy occur at the cusps 1/7, 2/7, and 3/7,
and Wy is regular at any other points. Solving integer programming problems similar

to those mentioned earlier, we set

-3
X=-WiW;=q7° +q5 + g — ¢

4

<

OXQ
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and

Y = WiW5 =g, 4245 + 207 + 1% — a7+,

where g7 = ¢*™%/7 is a local parameter at infinity. (Note that the gap sequence is
{1,2,4}.) Thus, a defining equation of X(7) can be taken to be Y3 XSQ
(Setting ¥ = yx, X = —x, we obtain a non-singular model x4y = O Wthh

is the famous Klein curve.)

2.5. Remarks

and the range of variables, the amount of time needed to find require
on the level, not the type of congruence subgroups. (That is, it w11

the former curve involves only 14 variables, while the\latter involves 113 variables.)
It seems to us that to successfully apply our methods o rves of large level, one
roblems involved into

would need to take the symmetry of the 1nte er pr
account. @
3. Applications @ 3&

Q
3.1. Cusp forms of weight 2 on congrue subgroups

7 is a holomorphic differential
sarily a cusp form of weight 2 on
of cusp forms of weight 2 on a

genus is 5, and the gap sequence is 1,...,4,6.

EZE1Eg/(ETExB3) =q > +2¢ 4 +4¢> +7¢ 2+ 11g ' 4 -+,

E2EE}/(E3ED) =q 7 +3¢7 0 +8¢7 5+ 16g7* +30g7 +

A defining equation is hence
—(@X — DY *+(6X>=3X)Y — (X*+4X> = 5X%> + X)Y?
+X3Ux-DHXxX -1y -xx-1=0.
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1 From the defining equation we deduce that the space of cusp forms of weight 2 are

spanned by
—X(2X? —2X3 —Y + X?Y)qdX/dq ) 5 4 . <
= q-—2q° +3q" —2q° —q° +-
fX,Y) o
(=5X3 +3X* +3XY —Y¥HqdX/dg
=q>—4q° +7¢* = 5¢° —4¢° +10q" + -
fX, )
X(X?=X*-Y +XY)qdX/dq 5 4. 6 7 s 9
=q —-29"+q —q +3¢ —q +-
(X, Y)
-X(X-Y)YqdX/dg 4, s ¢ . .7
=q =29 —q +39" =4 \t+4q
f(X,Y)
=q =3¢ +q +3q g+
f(X,Y)
3 Where
F(X,Y) = 4X° —2X4Y—5X4+}g§— 2+ 10X%Y
—2XY — 16Y3X —9y? @
5 [ elliptic curves @
re states th ?y rational elliptic curve
7 . The trut is conjecture has been
owever, in general, it is difficult to explicitly write
9 at para eterize an ell curve. Here we will demonstrate

and

Y =

21 7elo37)/T

EcE3E 14

liptic curves of conductor 37 using

37) is of gen @i thus hyperelliptic. The hyperelliptic
Q, but it d
fs

come from the normahzer of F 0(37) in

37)/(w37wy,) are of genus 1. We now construct
ese two elliptic curves.

n(o)?

~ n(370)?

—5X + 174.
E3E4E7 1y
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Then one has
Y3 4+ (7X —259)Y% — (7X% —259X)Y = X*(X — 36)(X — 37), )

which we take as the defining equation of X (37).

From Kenku [13] we know that there are four rational points on Xo(37). In the
above model we can easily locate four rational points, namely, oo, (0, 259), (36,
and (37,0). (The singular point (0, 0) is not a rational point. Blowing up the point
(0,0) we obtain a non-singular model y — tx = 0, >x — x> + 7t?x — Ttx +
2597 + 259¢ — 1332 = 0. We can easily see that the point corresponding to

Y = 0 is not a rational point.) The point co corresponds to the cusp
transformation formula for the Dedekind eta function we ob&

371)2
x| =37 7“'2)
w37 n(t)

and thus X (0) = 37. Hence, the rational points (37, O rresponds to the cusp O.

The other two points (0,259) and (36, 0) must be of the cusps under the
hyperelliptic involution. Since the birational map

Y3 +7XY? —7X %ﬁ 518X X2
LT+ 2Y +73X% +

&
74(Tu® — Tu + 36) o T4u(Tu? —m@%)

W+ Tu2 —Tu—v+73" —u3+7@<7)—u+73

u =

Y
X 9

@@
W4 35u” + 48 : u? + 14u + 1,

ion-wy sends t@nt (37,0) to (36,0) and the point co
icit modular”parameterization of X¢(37)/w37 we first
]y at oo and (37, 0) such that s has a double
ost 2 at (37,0) and ¢ has a triple pole at oo and a
hen the functions x = s +s| Wi and y =1+ t|ws7
e urve X0(37)/ws7. Likewise, to obtain explicit modular
meterization of X (37) /(w37wp), we construct functions s and ¢ with poles of order
d 3, respectively, at oo and (36, 0), and then proceed as usual. For the purpose
nstructing such functions, we shall first study the behavior of X and Y under wy,
37, and w37wy,.
The involution wj, sends u to u and v to —v. It follows that

74(Tu? — Tu + 36) 37(7Y2 —7XY 4 36X?)
X| = = (11)
wy w3+ Tul—Tu+v+73 X3
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and

o T4u(Tu? —Tu+36) 37V (7Y2 - TXY + 36X2)
wy W+ Tu2—Tu+v+73 X4

12)

&

From (10) we have

X

To express Y‘w; in terms of X and Y, we utilize Proposition 1. We hav @
Eo| = EpoB70)| = Ego(=1/0) = ey o
w37

w37

From this we deduce that
_ 2 3 4 v
Y =37(q +3q°+29g° +7 +q

w37

At the cusp 0, the function X — 37 has nction Y ple zero,

and the function Y’w has a quadrupl , 37 (X-=-37)Y nction with
a unique pole of order 6 at co. U expansions ecabove functions
we find that
37X (X —36 @
SIXEZ (14
Y(X-37)

nd’ (14), we hay @
(7x2 — 7@@1/2)()( —37

w Y2(X - 36)

Therefore, by (11), )

5)

and

7X2 —7XY +36Y%) (X — 37
y + )( ). (16)
— Y3(X — 36)

Alternatively, we can use divisors of the functions X, X — 37, and Y to guess that
|w37 =cX(X—-36)/((X—37)Y) for some constant c. Then, since the choice of ¢ = 37

makes the map (X, Y) —> (37(X —36)/(X —37),37X(X —36)/((X —37)Y)) an invo-

lIution on the curve (9), we conclude that Y|w27 has indeed the indicated expression.)

We now construct functions to parameterize Xo(37)/w37. For a given function f on a
curve we let div f denote the divisor of the function f. In our model of Xy(37) we have

_ 37(X —36) X
w37 o X —37 ’ &

<
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div X = —3(00) +2(0,0) + (0, 259) and div Y = —4(c0) 4+ 2(0, 0) + (36, 0) + (37, 0).
It follows that the function s = X (X —36)/Y has poles of order 2 at co and a simple
pole at (37,0), and regular everywhere. Thus, s ~|—s‘w37 is a function on X¢(37)/w37 <

with a unique pole of order 2 at co. Using (9), (13), and (14), we express s —i—s\w37 as
&
X —T73X% +1332X + 12

S = (X —37)Y ' X
Furthermore, the function X has a unique pole of order 3 at oo on X¢(37). Therefore,
37(X —36)  X?—-1332
w37 X —37 X —37

is a function with a unique pole of order 3 at co on X (37 Finally, setting

X3 = 73X% + 1332X .1

= 13 = 13
* S+Sw37+ (X —=37)Y d
a7 +297" +5+9g + 18g7+ 29 @4 82¢° + -
and X @

5x — 80 ©

X+ X

g~ + 21 + 460"+ 92¢% + 329¢% + - - -,

tion of the elli curve 37A1: y2 +y = x3 —x.
¢/ calculate th ier expansion of

we obtain

37)/(w37wp), the points co and (36, 0) are identified
59) together. Thus, to find a function on the quotient
e with a unique pole of order 2 at oo, we first look for a function on X((37) that
asha double pole at oo and a pole of order at most 2 at (36,0). From the divisors
div X = —3(c0) + 2(0,0) + (0,259) and Y = —4(oc0) 4+ 2(0, 0) 4+ (36, 0) 4+ (37,0) we
easily see that X (X — 37)/Y has the desired properties. By (15) and (16), we have

X (X —37) N X (X —37) X3 —66X?+1073X — 7XY +259Y — Y?

Y Y w37Wwy, Y(X —36)
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1 This is a function on X¢(37)/(w37wy) with a double pole at co. Likewise, the function

(7X%2 —7XY 4+ 36Y%)(X —37)
X+X =X+
w37wy, Y2(X — 36)

3 s a function with a triple pole at co. Finally, setting

X3 — 66X2 + 1073X —7XY + 259y — Y2 s X
X =
Y(X — 36) &

= ¢ —14+q+5¢" = ¢’ +10¢* —4¢° + 15¢° + - -
and

7X%2 —7XY + 36Y%)(X — 37
y =X+ ( i ) ) 2x —72
Y2(X — 36)

=q 3 —qg '+ 1-4g—2¢> - 12¢°

5 we have y? 4+ y = x> 4+ x> — 23x — 50. ThiSGIS heelli rve 37B1 in Cremona’s

table. Again, we check that &}X
dx/d
7 _u:q+q3_ 7—2q 3q11_2q@1®+

2y +1

agrees with the Fourier expansion of the normalized eige of weight 2 on I'p(37)

9  with f|w27 =—f.
We remark that the 2

11  that are in fact qu

d will certainly<$ork for all rational elliptic curves
o(N) by A@ hner involutions.

4. Results
13
15 integer programming problems for finding required
t the use of Amp1l is not essential in our computation
ecause it serves mainly as a user-solver interface. In fact, the software 1p_solve
e will suffice for our purpose.) Once required modular functions X and Y are found,
e use the computer algebra software Maple to determine the equation satisfied by X
and Y, which by the remark following Lemma 2 is nothing more than computing the
g-expansions of X and Y and finding suitable combination of X and Y to cancel the
negative powers of ¢ in the expression X” — Y™, where m and n are the orders of pole
23 of X and Y at infinity, respectively. To give the reader a clearer idea of what kind of

b computation is involved, we shall work out the case I'¢g(31) in details.
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1 Let I' be the congruence subgroup generated by I'{(31) and the matrix < 351 :é
as given in the last paragraph of Section 2.3. Then the index of I' in I'¢(31) is [Ip(31) : <
3 T]=S5, and a set of coset representatives is given by {y* : k =0, ...,4}, where y =
(321 —116> For an integer k not divisible by 31, we let Wy = Eer Eaek E3ok/(E2k E108 >

5  Eizr). The functions Wy are modular on I' and have poles and zeroes only at 1/31, Q
2/31, 3/31, 4/31, and 8/31. There are only five essentially different Wy and t

7 orders at the above cusps are given in (8). Moreover, the action of y on those
verified to be

9 Wy = Wy, W2y=W4, W4“/=W8’ Wg| = Ws,

Y

Now the genus of I'g(31) is 2. Thus we need to find modu
11 TI'g(31) with a pole of order 3 and 4 at infinity (or equivalently
The corresponding inequalities are

respectively.

3x1 + O0xo —4x3 + 2X4<7 1x

Ox1 +2x2 + 3x3 — 1x4 + 1,
x5 —m + 1,
Q
—m +
—1lx; —4x2 + 2x3 + 3%+ 0x5 > — v
13 with m = 3 and 4. We ihg 1p_ solve) an choose (x1, x2, X3, X4, X5) =

0,0,1,1,1) and ] gspectively.
15 Now we set

W1+ WaW Wy + WgWo Wy — 10
EsEg E3E3E\s | E1EsEe ExEwEnR _ 10
E\EsEe | ExEwEws  EsErEn | EsEsEw  EsEnsEns

B 4272 8- +3¢° +2¢° +¢* +2¢° —3¢7 +2¢° +2¢° —¢'0 + -

> an
W3‘ +3X +50
k 0
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1

=g 44973+ 77+ 7 =5 =29 +12¢% + 747 + 4¢* + 6¢° + 4¢°

—10g" +10¢® +8¢° —2¢'0 + - - .. ¢

By Lemma 2, the functions X and Y satisfy

&

voxte Y capX'Y" =0 XQ

a,b>0,3a+4b<12

for some rational numbers ¢, ;. To find the coefficients ¢, 5, we start from the\Fourier
expansion

—1709¢~* 4 5501¢ > 4 10958¢ 2 + 2382¢~
—11257 — 7145q + 6637¢% + - - -.

From this we see that the coefficient cj > must be

Y3 — x*—4axy? = Sq_10+51q_9+2 &Q +616q@%2q_5
—201g~* 4/ 3&

we get c2,1 = —5. Continuing this way,

ing the g-expansion of

Y3 — x* —4xy 2Y—11X3—31Y2—@Y—31X2=0.

Q>
of our metho@

@ms for Xo(N). Here, in general, we choose
qurier coefficients 1. However, starting from X((34),

edekind #-functions or a’sum of products of generalized Dedekind #n-functions.
r brevity, a product of Dedekind #-functions ]_[n(a,-‘c)”" will be abbreviated as

*. The symbol E, is the generalized Dedekind #-function introduced in Section 2.1.
The notation ), [] E;g represents

> e

yelo(N)/T ’
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where I is the intermediate subgroup between I'{(N) and ['g(N) with [To(N) : '] = k.
(In all the cases where this notation occurs, I'o(N)/I'{(N) is cyclic, and there is no
ambiguity about I'.) 4

Whenever the genus of Xo(N) is 1, we adjust the choice of X and Y so that the
equation is in agreement with Cremona’s table. When the genus is greater than 1, the
equation is always singular. In those cases, we adjust the functions X and Y so that
the (0,0) is one of the singularities, provided that this adjustment will preserve th
rationality of the coefficients.

Special attention should be given to the curve X((43). The genus is 3, and t
oo is not a Weierstrass point. Thus, up to a constant displacement, there is
modular function with a unique pole of order 4 at oo with leading Fourie
1. We find that this function is

&

q_4+%q_3+ +c+2q+q

whose coefficients are not all integral. We have no exp ion for this phenomenon.

N |Functions

EyES E}

1 .Y = 541 %Y X3 - 3@2
25: ? 25?53 Q
4|x =% +1, 2.7 X + Y24 XY +Y +4X -6
1-147 TR
N ©
15 1 155 %ﬁ Y%)@:X*Hﬂ—lox—lo
13 159 12 ((\Q
EsE E \§
17]x = Z 378\ \4) 8+1 (} XY +Y=X3—X2—X—14

19X = — Y24y =x3+x2

-9X —15

20,

Y2 = (X +1)(X2 +4)

=y

11

E4EZE2

1L 4+7X 4385

Y24 Xy =Xx3—-4x -1
}/y— 3072 3.77 *
T 12.216 1.217
EE 1 (28114 17113\ |Y3+3x - 1)Y2 + X2y
ngzz 859 1oy [ +(4 3) +2
> E2E3 11\ 14.228 23.207 =X*-9x3 +22x
_Z EgE1p
. E|Es —(7X 4+ 69)Y2 — (12X2 + 230X)Y
EgE2 E? = X* +37X3 + 3452
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24| X = 68 _4-812 =X - DX -2)(X+2)
T 2.2437 77 2.6.246 -
24.132 E3Eq — (4X +52)Y2 — (4X% +52X)
26|X="—""—13, Y=Y ——" 43X+35
12. 264 ; E1Es = X* +25X3 +156X2
94 33
27| X=——, Y= Y24+y=x3-7
3.273 273
28 x—44'142 _4 Y3 +5x%y = x4 —7x2
T 02.0847 7 T 2.087 N (
EgE
X = Z 859
. EyEs —(5X 4292 — X%y
E4E¢E|oE = Xx* +10x3 +29x2
v — 2461014+4x+25 + +
ErE;EsEq )/)
B -66-102-15g
T 22.33.5.306"
63103 - 150 Y44+ BX + 1573 + 3X )Y
30V = —————
2.52.159
1-2:5-6-10-153
s Y 5X-20
3.307
E E7E
X = Z EabrEu
E|EsEg
31 EsE 1x3 +31x2
Y = Z ;;E +3X +50 +
6 - 4 2 I(\\ -
16 84.16
NI X=——7, V=—"77—— 2-x3 414x @
82 . 304 42 . 304 @
E7E E Y4+ (5x% — 4x3 — 11x2)Y
33XZ710 Ly 3Ei6 +(5 @M; )
E1E4 =X’ =11 22X
Y4 1k rr 21x2 — 13X)r2
34|X = 1 2%.172 LBXI- 14X2 4+ 6X)Y
C1712.34%° @ 5 4 3 2
=11x5 +2xt —3x3 yox? - x
1 4
X=— L3l - (6X +2)Y3 + (7X% + 2X)¥?
35 1 2 p —(12x3 + 5%y
12 5 4 3
= =35X3 +31X* +7X
35 5 5E¢6
2.183
36)(% (Y= y2=x3+1
12 Y3 4+ (7X —259)Y2 — (7X2 — 259X)Y
<X_7+37’ + 0 )2 - (X2~ 259)
372 = X* —73X° +1332X
] - 0 2Y5 4+ (36X — 87)Y* + (148X2 + 18X — 148)Y3
X=> kil Plad bl L I +(28X3 +217X2 4+ 32X — 84)Y2
38 85 E1EakrEie 38 (66X* — 12X3 — 148X2 — 48X + 16)Y
_ 1 EyE9E13E14E15E16 17 6 5 4 3
T “EEsEsEeErE1; 38 =76X0 + 148X° + 128X* + 24X
—36X2 — 16X
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1313
% 131.393 Y4 - 3X +3)Y3 — 3x2 +3x)r2
1 E11Eq9 51 —(3X3 +3X%)y = 13X +25x* + 12X3
Y=— +5X + —
13 - EyEq 13
43 .20 2.8-204
4|x ==y Y4+ @x2 +20x)r2% = X5+ 9x4 +20x3
8 - 403 10 - 405 ¢ )
Ei6E
X:Z 16520 6.
" o E2E18 Y4 — (6X +41)Y3 + (6X% +41X)Y?2
E|E —(5X3 +41x%Y = X3 +18X* +38
y=Y S 4 ax 432 OX7+41X% * +
o E4Es
YO — (X + 7)Y 4+ (7X? X
X= . 1.6° 142 217 §4x+3 )48;—2( 18;
T 7 22.33.7.426 ’ + + +
42 +(16X* 4+ 55X3 + 18x2
=1y Liefo 48 +(18X5 + 60X
7 E,Es 7
6 =7X7+18X% + 12
1 EsERE13 15
X=—y 22220 = 4_ 3 2 2
e EEcE, 13 327% — (88X 2 )Y + (166X2 + 34X + 5)Y
43 ' 7 B b E EoiE 0 —(14 49 7X)Y
v = L 2B9E11 ElpE14E) 9 o 3 2 11x3 —2x2
43 7 E\E4E¢E7E|5E19 43
1 4%.222 1 Ei6E 2 ) ZN4X%Y? + (13 2yy
gy L2, 1 16E18 | 2 2\@ +( )
1122 . 444 11 = E4Eq 1 = 11X% 6x* + x?2
93.15
X = ©
45 3-45 Y* +10x72 + X3y 25x2
p_ 918 1.5.92.15 X @
"~ 3.455 3.452/
1 E1E4E15E6E7E g 19
X == oL YO 4+ (5% 23 12x2 + 46X)v4
2%: EsEqE7E3 EgEnn 2 +( +0 ;(3 * 4) S
46 . + 138X2)y3 + (22X4 + 115x3)Y
16 £2 4 7 6
Y = A\ 184x%) = X7 + 8X
; E2E7(\X§ +18 ) +8
) 17 7,
el + 02X —2)7* — (X2 +9x)73
0 o —(14X3 +22x%) Y2 — (40X* +35x3)Y
+3X + =47X6 +81Xx° 4 35x*
N 4 5 4 3
5T Y4 = x5 —7x% + 12X
vl{ e . Y24 xy=x3-x2-2x-1
y="2L 57 24 ox g
E7  Ej  Ey
22.25
X = -5,
% 1-502 Y3 - 2X +10Y% - X2 +5X)Y
po L(10025® 1210057 15 = xt 40X 420X
T2\ 52.504 2.5.504 2
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4.2. Equations for X1(N)

Here the notation [] af"

represents [] EL.

N |Functions

Equation

3-4.5 43.5
jx="""" y=—""-1 Y24y =x3-x2
12.2 13.2
42.5.6 4.6
BlX=3"" v=—— Sox-nr2-xy=x*+ O
12.2.3 13.2 ( )
3.42.7 4.52.6
14| x = _1, Y= —1|Y24+XY+Y=X3-X
1.-22.5 1.22.3
5|lx=47 4 y—4'5'62 Y24 XY +Y = X34 x2
T1e2 T T 1.2.32 B
5.6-7 4.72.8
16|X = LY = 1 Y3+ (X —1y2 = 4 x3
1.2-3 1-22-3+ o )
4 \3 3X)Y3
6%-7-8 6%.7-82 - 4 X)y?
17X = L Y= ( +%)
12.2.3 13.22 ~ 1y
_1)
4.5.9 5.6.7-8 *+XY>\9<2X2 2X)Y
18X = .Y = gl
1-2-3 1-2-3-4 X4—3X*+2X2

YO N(5x — 3)r5 — \’\—) 5X2 4 14X — 3)r4

+(X — DHOx* +7X2—1)Y3
—X2(X b 20X3 +13X2 — X —2)Y2
@3 6X2 +2X +1)Y
_ 1)4

20|x =880 \i\§

Y4 +X(2X—3)Y2
4)9(2)(2 —DY=x*x-1

Y1X (6X — 4)Y* + 2X — D(TX —6)¥3
—3(X — (X3 +3X2 —4X 4+ Y2
+F3X2(X - 1D2RX - DY =X*x—1)3

2|x=""""" Y =

YO+ (X +5)Y° — (4X2 +2X — 8)v?
—2X3 +16X% + 14X —4)Y3
+(6X* +11X3 —6X2 — 12X)Y2
F2X2(X + (X2 +6X +6)Y

=X3(X + D2(x +2)?

4.3. Equations for X (N)

. ) b;
Again, the notation [] g;

represents [ | EZ; .
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N |Functions Equation
_ nennen’ <
naonen? s
6 y2=x3+1 -
_ neo*nen? - N
CRIGR < S
7(x=3/1, y=2-3/12 |y3-xy=Xx°
/
8|X=3/1, Y =2-4/12 |¥*= XX - DX + DX +1)? N
9|X=4/1, Y=3-4/12 |[YO—XX3+1DY3=Xx3X3+1)?
. 3.
o|x=22 y o 25 0 x4 12— 182+ X — 1)
1-2 12.2.3 /
g4 4 Yo+’ =x2 -y + 1!
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