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The Study of Cellular Neural Network for Seismic Pattern Recognition
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Abstract

Cellular neural network is adopted for
seismic pattern recognition. We design
cellular neural network to behave as
associative memory according to the stored
patterns, and finish the process of network
training. Then we use this associative
memory to recognize seismic patterns.
Seismic pattern recognition can help the
analysis and interpretation of seismic data.

Keywords: Cellular neural network, pattern
recognition, seismic patterns.
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Seismic pattern recognition can help us
to analyze and interpret seismic data. We
use associative memories to store seismic
patterns and recognize noisy seismic
patterns. Cellular neural network (CNN) is
used for associative memory. Each memory
pattern corresponds to a unique globally
asymptotically stable equilibrium point of
the network.

Fig. 1(@ shows a simulated
seismogram. A seismogram consists of
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many seismic traces. Each trace contains
many peaks (wavelets). We can extract peak
data from seismogram. Then we transform
peak data to bipolar data. The seismogram
passes through preprocessing to extract peak
data. Fig. 1(b) shows the result of
preprocessing of Fig. 1(a), the value of pixel
“1” is for peak point and *“0” is for
background. Fig. 2 shows the preprocessing
steps of seismogram. It contains enveloping,
thresholding,  peaking, thinning, and
compression in the time direction. Fig. 3
shows the seismic pattern recognition
system using CNN. The process of seismic
pattern recognition is composed by two
parts. In the training part, the training
patterns can construct the associative
memory using cellular neural network. In
the recognition part, associative memory can
recognize the input test pattern.

The process of CNN network training

is summarized in the following. Given m
bipolar training patterns as input vectors

u'and output vectors y',i=1,2, ..., m, for

each u', there is only one equilibrium point
x' satisfying the equation of motion:

X' =Ay' +Bu' +e,i=1,2,...,m (1)
The equation (1) can be expressed as
compact matrix form:

X=AY +BU+J (2)
where X =[x* x* --- x"],
Y=[y'y* - y"], U=[u'u?
and J=[ee - €].

.um],

Equation (2) can be rewritten as equation

3):
BU+J=X-AY (3)

Matrix A can be designed to a circulant



matrix. The eigenvalues of A can be derived
as follows:

S(2zq/n)= Zr:a(h)e"'z”"“’n ,
h=-r
g=0,1,2,...,n-1. 4)
Discrete time CNN with circulant matrix A
are globally asymptotically stable if and
only if
S2zq/n)<1,4=0,1,2,...,n-1  (5)

Notice that equation (3) must be solved
for B and J. The steps are as follows. Let all

training patterns be u' and y'. Then we

can get matrices U and Y. Choose a
sequence

a-r - ay a0 a@ - a(r)}
for which the stability criterion (5) holds.
Then design matrix A as a circulant matrix.
Let X = a Y with a>1. Band J in equation
(3) can be computed using pseudo-inversion
techniques.

Algorithm 1: Design a cellular neural
network to behave as an
associative memory in the training

part.
Input: m bipolar patterns u',i=1,...... ,m
Output: Band e
Methods:
(1) Calculate matrix U from training
patterns u'.

U=[u" u®--u"]

(2) Establish matrix Y = matrix U.

Y=U

(3) Design matrix A as the circulant matrix
which satisfies globally asymptotically
stable condition.

(4) Set the value of «
calculate X = a Y.

(5) From BU + J = X - AY, using
pseudo-inverse technique to calculate B
and J. And from J, select one column of
Jase.

(a> 1), and

After training, the process of recognition
is summarized in the following. Input

the test pattern as u and A, B, e to the
equation of motion, x(t+1) = Ay + Bu +
e. After getting the state value x(t+1) at
the next time, we use output function to
calculate the output y(t+1) at the next
time. We calculate the state value and
the output until all output values are not
changed anymore, then final output is
the classification of the test pattern.

Algorithm 2: Use associative memory to
recognize the test pattern
Input: Test pattern u and A, B, e in the
equation of motion
Output: Classification of the test pattern u
Methods:
(1) Set up initial output vector vy, its
element values are all in [-1, 1] interval.
(2) Input test pattern u and A, B, e into the
equation of motion to get x(t+1)
X(t+1)=Ay{t)+Bu+e
(3) Input x(t + 1) into activation function,
get new output y(t + 1).
For activation function:
x>1, theny=1
—1<x<1, theny=x
Xx<-1 theny=-1
(4) Compare new output y(t + 1) and y(t).
Check whether they are the same. If
they are the same, then stop, otherwise
input new output y(t + 1) into equation
of motion again. Repeat (2) to (4) until
output y is not changed.
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The two simulated peak data of bright
spot pattern and pinch-out pattern is shown
in Fig. 4(a) and 4(b). The size of input data
is 19x29. We use these two patterns as the
training patterns. Fig. 4(c) is the first noisy
test pattern. Fig. 4(d) is the second noisy test
pattern. We set a = 3 and neighborhood

radius r = 3. The recognition results are



shown in Fig. 5.
The value of ¢ and matrix A do not

affect the network performance. The
network performance strongly depends on
the number of patterns to be stored.
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Fig. 1. (@) Simulated seismogram.
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Fig. 1. (b) Preprocessing from Fig. 1(a).
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Fig. 2. Preprocessing steps of seismogram.
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Fig. 3. Seismic pattern recognition system
using cellular neural network.
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Fig. 4. Two simulated seismic training
patterns and two noisy test
patterns.
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Fig. 5. Two recovered seismic patterns.



