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Information Extraction In Biomedical Domain (1/2)

We propose to develop an efficient information extraction
system useful for biomedical literature by using natural language
processing and textual mining techniques. This system will
mainly address the tasks such as named entity identification,
anaphora resolution, relation identification and extraction. We
will employ both statistical and linguistic models for named
entities identification. We will use textual mining to deal with
those sortal anaphora problems. Meanwhile, the proposed
relation recognition mechanism will take into account both the
biomedical information encoded in the existing databases as well
as the information directly mined from the literature. Besides the
problems associated with the linguistic varieties will be tackled
by using the proposed association rules.

Keywords: natural language processing, textual mining,
information extraction, named entity identification, anaphora
resolution, relation identification.
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Abstract. Named Entily Recognition {NER) [rom biomedical literature
is erucial in biomedical knowledge base antomation. In Lhis paper, both
empirical rule and scatistical approaches to prolein entity recognition
are presented and investigaled on a goneral corpus GERLA 3.02p and
a new doman-specific corpus SRC, Experimental results show the rules
dorived from SRO are uselul though Lhey are simphr aned more general
than the one wsed by other rule-based approaches. Meanwhile, a conciso
HMM-bascd model with rich gel of featires = presonted and prioved to
be robust and competitive while comparing il 4 edber suceessful hybrid
milels. Begides, the resolution of coardination variants eommon in enti-
ties recognition 18 addressed. Dy applying heuristic rules and elostering
steategy, Lhe prosanted resolvor 8 proved o e [easible

1 Introduction

Nowadays efficient automation of biomedical knowledge bases is wrgently de-
manded to cope with the proliferasion of biomedical researches. One crucial task
involved in the automation is named entity recognition (NER) from bicmedical
literature. Similar to the recognition in general domains. the ssues associated
with biomedical entity recognition are open vocabulary, synonvims, boundaries
and scnse disambignation. For exsunple, the munber of entries SwissProtl, a
protein knowledge base, inereascs 277,367 in recent ten years. Each protein en-
tity contains 2.54 synonyms in average, and ench synonym contains 2.74 tokens
in AVerage.

Recent textisl mining approaches useful to biomedical NER can e divided
into rule-based, statistical and hybrid methods. Generally, rule-based approaches
employ the information of terms and hand-craft rules to produce candidates
which are then verified by using lexical analysis |1. 2. 5]. Yet rule-based meth-
ods require more domain knowledge and essentially lack of scalability. On the
ather band. statistical models have been widely emploved for their portabilicy
and scalahility, such as Hidden Markov Model (HMM), Support Vector Madel
(SVM], Maximum Entropy (ME), and etc.. The recognition accuracy achieved
by these medels gencrally depends on a well-tagged training corpus sad a well wet

! Ywisal*rot: hitp:/ s expasy.org/sprotf

A, Montayo et al. (Edas. ) MLOE 2003, LNOS 3513, pp. GG -6, 3NS5,
&) Springer-Verlng Berlin Heidelberg 05
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of features [, 6, 7, 9, 10]. Recently, hybrld approaches are proposed by combin-
ing coded rules, statistical model and dictionaries [4, %]. As pointed in [10}, it is
expected that systems on a specified evaluation corpus with help of dictionaries
tend to perform better than the general ones without help of any dictionarles. For
example, the recognition performance is significantly improved when dictionary
and rules are applied at post-processing together with a ME-based recognition
moechanism in [4).

In this paper, recognition for protein entities from PubMed? corpus is ad-
dressed so a3 to facilitate the automation of protein interaction databases con-
struction. In order to mine more features relevant Lo protein entities, wo assem-
bied & domain-specific protein corpus SRC {SwissProt Reference Corpus) which
were extracted from SwisaProt reference articles and we tagged it by simply
matching SwissProt entry collection, Experimental results show that this new
domain corpus is indeed helpful in generating informative patterns used in both
rule-based and statistical models. It s also found that though the derived rules
are fower and less complicated than the ones used i the rule-based systems Kex
[1} or Yapex [5], the presented model outperforms these two systems in terms of
higher F-scores on a general corpus like GENIA 3.02p ® and the domain-specific
SRC,

On the other hand, a concise HMM-based model is presented with a back-off
stratery to overcome data sparseness. With a rich set of features, the presented
approaches could achieve promiging results, by showing 76-77% F-seores on both
GENIA corpus and SRC. Compared to the results achieved by some successful
gysteme (the best TEY F-score for protein instances in [9)) which employ dic-
tionaries or semantic lexicon lists, our results are competitive for three reasons,
First, the recognition is done without any help of dictionaries or predefined lex-
jcon lists, Second, the presented concise HMM is easily implemented and robust
for different corpora. Third, our results are evaluated with strict annotation and
enetities with the longest annotation are adopted in case they are in the nested
forma.

Besides, this paper addresses the issue of coordination vanants while we
tackle with NER problems in written texts. To resolve such term variants, a
method based on heuristic rules and clustering strategy s presented. Experi-
mental results on GENIA corpus 3.0 proved its feasibility by achieving RE.51%
recall and 57.04% precision on a test of 1850 sentences, including 174 variants.

2 Corpus Preparation

In order to boost protein entities recognition by mining wore relevant infor-
mwation, we assembled a domain-specific corpus ‘SwissProt Ref Corpus’ (*5RC°
for short), other than the widely-used tagged corpus like GENIA 3.02p. The
new corpus was processed by employing Sentence Splitter® and Penn Treebank

?-E.’_uhMe-d: hetp: f fwww.nchinlm.nih.gov fentrez,/query. fegi ?Tdb=Pubmed
4 htip:/ fwww-tsujiiis.a.u-tokyo.sc jp/GENTA
! Sentence Splitter: htip:/ /12r.cs winc.edu/ "cogeomp/
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Tokenizer® for sentence segmentation and tokenization respectively. The POS-
tagging is processed by a HMM-based POS tagger which was developed in our
lab. By using GENIA 3.02p as training set, our POS-tagger could yicld 95% F-
score. For the sake of saving human efforts, annotating SRC with all the target
entities was simply implemented with the following steps:

1. Tokens are split by space and hyphen.

2. Each token is converted to lower case except its initial character.
3. Entity is recognized if it matches an entity from SwissProt version 42.0.

The final specific SHC corpus is composed of 2 804 abstracts, which were par-
ticularly selected from SWISSPORT 82.740 reference articles in such a way that
each of them contains at least six target entities. Table 1 lists the basic statistics
for SRC and GENIA 3.02p.

Table 1. The statistics of SAC corpus and GENIA corpus 3.02p.

SHC GENIA

CoaIml average m:aunt| average

Abstract () 2,554 e
Sentemce [5) 28.154| 973 {s/a)| 18.5TH 9.29 (s/a)
Token (t) TA0,001|265.70 {s/a)| 450 4&9114_5.56 [t/a)
26.28 (t.fq) 26.41 [t/s)
Protein (p) 31,.077| 11.03 (p/a)| 32,325 11.05 {p/a)
Entity 1.14 [pfs) 1.14 {pfa)
Entity Token (t)| 57578] LEI{r/p)| 38,2000 1.79 (t/p)

3 Coordination Variants Resolution

Coordination variants are gne common type of variants in general written texts
like MEDLINE records. For example there are 1598 coordination variants in
GENIA 3.02p corpus and each variant contains 2.1 entities in average. Table
2lista three types of the regular expressions generalized from the GENIA 3.02p
training corpus of 16,684 zentences {in which 1421 coordination variants arc
distributed in 1329 sentences). There #, H, T, and R indicate core, head, tail,
and coordinate terms respectively. For example, in the coordination "91 and B4
kDa proteins’, "01" and ‘84" are the core terms, ‘kDa proteins” is the tail term,
and ‘and’ i the coordinate term.

The variant resolution was implemented with fnite state machines (FSM)
which are verified by & test set of 1850 sentences in which 174 variants are
distributed in 165 sentences. Experimental results showed that this approach
viclded 91.38% recall and 42.06% precision (indicated as baseline approachin
Table 3). In practice, the precision can be improved by presenting more number
of FSMs s0 as to cover all possible vaniant patterns, yvet it will slow down the
rescolving throughput, In order to increase the sensitivity of coordination iden-
tification, a simple term clustering ie employed. Supposc terms &, ¢ co-ocour

* http:/ feww cis.upenn.edu/ " treebank ftokenization himl
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Tahle 2. Original paiterns, expanded patterns, pnd examples.

Rogular Fxpression |Example

Cngmal[HF{R#)" [human chromesomes 11pla and 11pld

Expanded|[11# AL17 L [lumman chromosomes 11pl6 and muman chromoso s l'm'
Origimal|# [H#] T |c-foa, c-yun, snd ECR2 mRNA

Epﬁaﬂd T T |o-fos miNA, cun mHNA, snd EGR2 mRNA

Original| HZ R4 Tihuresn T and B lymphocyies
|ﬁpu.ndﬂ #T'ER#}‘TlEmnn T lvmphocytes and hunan B lj'm‘phn-::.rlm

in one coordination variant, and terms f;, tx co-oceur in another one. Then we
puk &, t; and iy into one cluster. The clustering procedure was implemented re-
cursively. With such term clustering strategy {indicated as ‘unlimited-distance
in Table 3), the resolution precision is increased by 4%. This showed that the
elustering approach is helpful to restrict the path movement in FSMs. To dis-
tinguish the closeness of the terms in the same cluster, we furthermore applied
the Floyd-Warshall algorithm o cluster sets. That is, if terms #;, #; co-occur in
a santence and terms £, {g co-occur in ancther one but t;, ty do not co-oceur
in any sentence, then the dist(t; . f) = 2. With this clustering strategy, the pre-
cision becane 57.04% {increasing 15% with respect to the baseline method) at
the expense of lower recall.

Table 3. Accurrcy of coordination variants identification in CENIA 3.02p.

dist.  |Variants|tp+ip[tp [Recall [Precision|F-Score
Buaseline Kia 174 378 |15% Ell.lﬁ_ﬂ 42.06% |57.61%

Term  (unlimited|174 T38| 158|080 46,757 |61.727%
Clusterin 1 |i74 F0 | 1GA| 88,510 5T |W.a

4 Protein Entity Recognition

In this paper, protein entity recognition 18 approached and investigated by hoth
rule basad and HMM models, The performance verification is implemented by
wsing both SRC and GENIA 3.02p corpora in such & way that the corpora are
divided into 90% for training phase and 109 for testing phase.

4.1 Rule-Based Approach

The rule-based recognition is implemented by employing the pakterns of the
protein nomenclatire mined from SRC and GENIA corpora. The patterns are
fisrmed in terms of core, function or predefined terms, Core terms show the closest
resemmblance to regular proper names. Function terms describe the functions or
characteristics of a protein. Table 4 shows the frequent regular expressions which
‘" indicates core term, ‘F" indicates function term, and ‘P’ indicates predefined
terrn. namely specifier, amino acid and unit.
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Table 4. Top & reguler expressions of protein entities in SRC and GENIA 3.02p.

Regular Expression]SRC  |[Regular Expression| GENLA
ol 5. T0%|CT 60.64%.
CTFT 21.22%|CTFT B.145%
FT 15570 PT EEi% |
F*pT 12 62RIFTC 2.91%
ICTET 9360 |F* 3 A% |

The function terms may be head or tail function term depending on the
pogition they appear texts, From our ohservation of SRC, 5E.48% head function
terms appear before un initia! uppercase token, and 74.07% tail function terms
appear after an initial uppercase token or a specihier. We define 217 head function
terms and 127 tail function terms. The rest of the terms other than predefined
and function terms are treated as core terms candidates. The candidates may
be the composition of common strings which are useful for identifying unknown
words. For exaniple, a common string ‘CD' is acquired {rom a core term “CD23,
and then an unknown word “CD25" will be seen as & core Lerm.

The extraction of protein entities is done by six steps. The first three steps
are aimed to produce the candidates by using term information. If & token is
one of the three type terms, it will be annotated. Steps 4-6 are aimed to acquire
protein entities as many as possinle.

Step 1: boundary confirmation We scan the chunk forward (left Lo right) and
backward (right to lcft) to fix entity boandaries by exploiting POS pattern in-
formation of proteln entities, as shown in Tables 5 and 6.

Table 5. Top 5 POS patterns in SHC and GENIA.

POS Pattern] SRCIPOS Pattern|GENIA
MR 79,350 NI 61577
NK.CD 12,047 1 NN T.13%
I NN ENELATRE TR
1NN AR 2,047
CDNKN 0.26% |NN,CD {1.965

Table 6. The top frequent POS tags at the first and the last positions af chunks.

First POS tag | Last POS tag
POS | SRO|GEMIA| SRU|GENIA
CD | 0.279% 0.43%|15.1 1.01%
77 | 6.325%| 13.23%| 3.087 0.57%
NI [98.129%| B3.200%| 63,437 83,505
INNS [ 0.01% 2 24% 0.08%| 13.66%
VDIN| 0.14% 0.31%| 0.08%| 0.01%

10
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Step 2 remove invalid single-token chunks A single-token chunk will be treated
as invalid if (a) its characters are in lower case, and the token is not a protein
entity in training data or (b} it s a predefined term only.

Step 3: remove iuvalid multi-token chunks by using a general set of domain-
independent rules. A chunk will be removed if it composes of the ollowings: {a)
the predefined terms, (b} the single uppercase English letters, (¢} the punctua-
tion marks, and {d) the conjunctions. After the three steps, 68.21% and 52.53%
invalid tokens in SRC and GENIA are remaved 98.58% and 96.93% accuracy
rates respoctively.

Step 4: mine the tokens surrownding protein entities This step s to acquire
mare protein entities, The patiern & formulated as < T_5,T_q,#, 71,77 >,
where “#’ is token's number of the protein entity, and the token *T;" I8 the §*°
token relative to the protein entity. Twe measurements namely, confidence and
pccurrence are used to justify the usefulness of the patterns. Confidence is the
ratio of the number of correct instances divided by the number of all instances
in training data, and occurrence is the number of all instances in training data.
Pattorns are selected whenever their occurrence and confidence are greater than
ane and 0.8 respectively, because our svstem is expected to achieve 80% correct
rate, which is the ratio of the number of corroct instanees divided by the number
of all retrigved instances.

Step 5: mine the bag-of-word surrounding proteiu entities For each protein entity
we collect its preceding two tokens and tollowing two tokens. The non-confidence
is used to filter the candidates and it is defined as the ratio of the negative
instances to all instances. Patterns are recognized whenever non-confidence 18
areater than 0.8 since our system is expected to yield 80% correct rate.

Step 6: employ syntactic rules Hypernyms may appear in front of hyponyms, and
one common pattern is * N F; such as {NP,, NPy, ..., (and|or} } NP,". So we can
mine those clue words by collecting the tokens preceding ‘such as’ and ‘e.g.". For
example, ‘protein’ is the clue token of ' .. proteins, such as CBL and VAV, were
phesphorylated on .. .°. The clue words are the tokens of UMLS concepts and
their corresponding synonyms which are tagged with ‘protein’ semantic type.

The model performance is evaluated in terms of precision {P}, recall (R) and
F-score (F) which iz 2PR/(R+F). To present performance of rule-based systems,
we use the notations of correct matching defined in [5]. Table 7 shows that the
strict measure, which the proposed hit matches one answer key exactly, can yield
51%-52% F-Score. Table T shows that we can get higher F-score if we measure
the performance with PNP {'protein name parts'], meaning cach proposed token
matches any token of the answer key. For example “CD surface receptor’ is treated
as ‘PNP’ of *activation of the CD28 surface receptor’. In practice, such kind of
annotation result is aceeptable. In addition, Table 7 also shows that the terms,
mined from SRC, are adaptable since we can obtain almost the same performance
results frore GENIA corpus. Table 8 shows the improvement is obvious for steps
1 to 3. but steps 4 to 6 have little effect. On the other hand, the precizion can
be hoosted obviously but not much for recall.

11
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Table T. Experimental results by rule-based approach.

Notation |tp+snftp+ip| tp | recall [precision|F-Beore
] i ATRZ |Z0A7T| 02, 36%| 62460 | T4.507

TP 3234 | 4782 (285088 40| 59,797, 1719000
SRC [STRICT | 3234 | 4752 [207764.22%| 43.43% [5182%
TEFT | 3234 | 4782 [2620|81.01% | 54.70% |65.37% |
RIGHT | 3234 | 4752 | 2363 73.070%| 49.41%; |58.567
Lork 234 | 4752 |200T|B0.B0%| GO 79 | 12,5500
Naotation [tp+sn(tp+ip| tp | recall [precision|F-Score
SLOPPY| 3451 | 4023 [3010987.220%| 61,147 |71.80%
PNP 3451 | 4927|2837 |Re.215%| a1.63%% |BT. 700
GENIA[STRICT | 3451 | 4923 [2123]61. 43.12% |50.70%
LEFT | 3451 | 4923 | 2765|860, 100, 56167 | 66.04% |
RIGHT | 3451 | 4023 [2206]66.537 46.64% | 54.84% |
Laoell 451 | 4003 | 2908|65.13%| G0.087 | 10177

Table 8. The intermediate results of rule-based approach.

Procedure |tp+sn[tp+ip| tp | recall [precision|F-Scoze
stepl 3234 (104802061 |68.42%] 19570 | 20910 |
stepl2 | 3204 | 5a9a [2043163.1706| o7.10% |46.820% |
SRC [stepl-3 | 3204 | 4911 |2040|63.087%| 41.54% [50.09%
stepl-4 | 3204 | 4077 2104|6500 42,37 | 51257
Stepl-b | 3234 | 4781 [2077)04 0000 43.33% | 51837
Stepi-6 | 3234 | 4782 |2077)64 200 434306 | 51520
Procedure|tp+snltp+fp| tp | recall |precision|P-Score
stepl 3451 | TO11 |2160,62.50% 27507 | 38.02%
stepl-2 | 3451 | 5173 |2128(61.60%] 41.16% 49377
CGENIA[stepl-3 | 3451 | GOBZ | 2127|6160 41857 | 495577 ]
stepl-d | 3951 | 5164 |21a5|62 400 41.73% | S0.047%
stepl-5 | 3451 | 4016 1212061 30| 45.13% | G685 ]
Sepl-B | G451 | 4003 |2123|51.525% 43127 | ). 70|

4.2 HMM-Based Approaches

The statistical approach for NER is implemented by a concise HMM model
{(Concisc-HM M) which employs a rich set of input features, Its perfurmance is
verified with SRC and GENIA 3.02p by comparing two other models, namely,
rraditional model {Traditional-HMM) and mutual information model {M1-HMM)
whicli was presented in [9] and produced high F-scores in MUC-6 and MUC-T.
The comparison is made in the same environment settings

In thiz paper, all the madels are trained with the same set of useful {eatures
including internal, external and global features. Internal features are those sur-
face clues in tokens (e.g. initial character is upper case). There are 17 internal
features mined from the training corpus. Externul features indicate the exter-
nal information associated with tokens. We treated POS tags as our external
features. Global features are the trigwer nouns extracted from whole training

12
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corpus by using Chi-square test. Desides, the complete-link clustering algorithm
i applied to the mined nouns so as to reduce their dimensions. For window size
af three sentences, we have 214 and 142 noun clusters in SRC and GENLA corpus

respeckively.

Traditiona! HMM. Given a token scquence T = tity ... 1y, the goal is to
find an optimal state sequence ST = £83... a8y that maximizes log PriST|T7),
the logarithim probability of state sequence ST corresponding to the given token
sequence T7. By applying Bayes's rule to

Prisy [TV}

PrSTITY) = “5oim

(1)

we have
arg "2* log Pr{5; |1’} = arg g log PriST|T7) + kg PriSY)) {2}

where

Pr(TyiST) = [ Pritils:) 3
]
ﬂ.ﬂd b1l
Pr(57) =[] Prisisi-s) (4)

i=]
with the assumption of conditional probability independence and considering
preceding stale. Therefore equation (2] can be rewritten as:

arg ™3 log Pr{ST|TY") = arg "§" (Zﬂﬁs Prit,|s:) + log Prfmsf-m] (5)
1—1

MI-HMM. Different from traditional HMM, MI-HMM is aimed to maximiec
the equation:

Pri{sT f
-mm. ]DEPT{Shlf]_ } = arg --nu (]U-E Py fS‘“] + Loy Pr I:S“_:I Pi"l:;;-']_ ]:I) (6]

In order to eimplify the computation, the mutual information independence is
assumed to be:

MI{SP. TP =Y MI(s,T7) (7)
=]

or
log

Pr(S1.T7) E Pris:, T}
(&)
P“r‘

Fr(3}) s Pr{TT) {s;}e PriI7)
Applying it %o equation (), we have:

arg ™ log Pr{S7 |17 =arg "4* (h:g Pr(SP)-3 "log Pr{si)+3 log Prts.IT{‘J)
1=] =]
(@)

13
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Concise HMM. The presented concise HMM is based on the idea of maxi-
mizing the fundamental log Pr{S}[T7). In the equation (9], [og Pr(57 17"} and
":’=1 log Pris,} are found to carry less meaning because the weak probabilities
of states and state transitions are merely 3-by-d and 3-by-1 matrices respec-
tively. Thus, & concise HMM can be cbtained by simplifying the formula (9) w
be equation (10):

kL
arg " log Pr(S}|T7") = arg "¢" log Pr{S7} - » _log Pris|TT)  (10)
i=]

Since the concise HMM does not take its state transition into account, we put
previous state in the model to ensure correct state induction, Because the pre-
sented HMM approach concerned many features mentioned above, it is possible
to train a high-accuracy probability model. Te overcome spareseness problein,
we use a back-off strategy which aims at the token sequence T3 in Pr{&T/IT)
or in Pr{s|T]") where T] represents not only a token sequence but also the full
set of sequence’s features, There are two back-off levels. First level i based on
different combinations of tokens and their features, and T7° will be assigned in
the descending order:

< H_],t_hfﬂ,fg >, = 3-1._1‘.:}1f|] >y 3_1,E_J.I[| =, 3_|,_,|:|:| >
where f; represents the feature set including internal, external and global fea-
tures. #; is & token, s, expresses a HMM state, and i is the ' cne relative to
current token. Second level is based on different combinations of fentures, and
i in first level is assigned in the descending order:

<t <>
where £/ | fF and f% represent internal, external and global features, respec
Lively.

4.3 Method Comparisons

Method comparisons for the three HMM-based models were made on both SRC
corpus and GENIA corpus in the same environment settings. We used the same
back-off model for concise and mutual information HMM, but not for traditional
HMM. Table 9 shows that concise HMM with rule-hased features (Le. concise-
ruled) yielded the best result. Traditional HMM obtains good high precision.
but low recall since we chose a severe probability model to get the best F-
score. It is also noticed that the performance of MI-HMM turned out te be the
worst becausc the back-off model was used to optimize concise HMM. On the
other hand, Table 10 shows all kinds of features turned out to be positive cffect
(f€ = f1 > %) for concise HMM. Such result is similaz to that concluded from
[10]. Table 11 lists the comparisons of the preseuted approaches to other well-
known approaches on the public evaluation GENIA 3.x corpus. It is noticed that
the presented rule-based approach with its simple general rules outperformed the
other two complicated rule-based systems. On the other hand, the performance
af the presented concise HMM-based models is comparable to the best model
presented in [4]. However, we do not need any dictionary or rules in our model.
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Future work includes the manuwal annotation correction of SRC for fine clas-

sification, exploitation of dictionaries for better recognition performance and the
improvemant of the resolution for coordination varianta by using the semantic
type information of bomedical thesaorus like UMLS. In addition, novel minimg
technigues to resclve other types of term variants should be explored for full
NER sutornation.
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