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一、中文摘要 

全光分波多工網路通常包含多重粗細粒度交換

能力之全光交錯連接器，譬如以交換於單一波長、

一個波段或整條光纖為基準。此外，在任意一個分

波多工網狀網路進行路由與波長分配(RWA)是屬

於NP-complete問題。在本篇報告中，我們提出一種

高效率的近似法，稱作Lagrangean Relaxation with 
Heuristics (LRH)，打算解決多重粗細粒度之分波多

工網路內之RWA問題，特別是在具有波長與光纖

交換器之網路。首先將問題公式化為將瓶頸鏈結使

用率降低至最小化之組合性最佳化問題。LRH方法

執行限制解限並且根據由subgradient為基礎之疊代

法產生之Lagrangean multipliers集合導出下限指標

解。同時利用已產生之Lagrangean multipliers，LRH
使用一種新的heuristic演算法去達到一個近乎最佳

上限解。在具備上下限之情形下，我們對LRH的正

確性與匯合速度在不同參數設定之下進行績效研

究，並進一步以模擬隨機產生與幾個廣為人知的大

型網路的方式，對LRH和現存實際方法進行比較。

結果顯示出LRH勝過現有方法，不論是在準確性或

者計算時間複雜度上，特別是應用於較大型網路。 

關鍵詞：波長分波多工(WDM)，多重粗細粒度交換

能力、路由與波長分配 (RWA)、組合性最佳化問

題、Lagrangean relaxation。 

二、英文摘要 

Optical WDM networks often include optical 
cross-connects with multi-granularity switching 
capability, such as switching on a single lambda, a 
waveband, or an entire fiber basis. In addition, it has 
been shown that Routing and Wavelength Assignment 
(RWA) in an arbitrary mesh WDM network is an 
NP-complete problem. In this report, we propose an 
efficient approximation approach, called Lagrangean 
Relaxation with Heuristics (LRH), aimed to resolve 
RWA in multi-granularity WDM networks 
particularly with lambda and fiber switches. The task 

is first formulated as a combinatorial optimization 
problem in which the bottleneck link utilization is to 
be minimized. The LRH approach performs constraint 
relaxation and derives a lower-bound solution index 
according to a set of Lagrangean multipliers 
generated through subgradient-based iterations. In 
parallel, using the generated Lagrangean multipliers, 
the LRH approach employs a new heuristic algorithm 
to arrive at a near-optimal upper-bound solution. With 
lower and upper bounds, we conduct a performance 
study on LRH with respect to accuracy and 
convergence speed under different parameter settings. 
We further draw comparisons between LRH and an 
existing practical approach via experiments over 
randomly generated and several well-known large 
sized networks. Numerical results demonstrate that 
LRH outperforms the existing approach in both 
accuracy and computational time complexity, 
particularly for larger sized networks. 

Keywords: Wavelength Division Multiplexing 
(WDM), Multi-granularity switching capabilities, 
Routing and Wavelength Assignment (RWA), 
Combinatorial optimization problem, Lagrangean 
relaxation. 

三、計畫緣由與目的 

With advances in optical Wavelength Division 
Multiplexing (WDM) technologies [1] and its 
potential of providing virtually unlimited bandwidth, 
optical WDM networks have been widely recognized 
as the dominant transport infrastructure for future 
Internet backbone networks. To maintain high 
scalability and flexibility at low cost, WDM networks 
often include switching devices with different 
wavelength conversion powers [2,3] (e.g., no, limited- 
or full-range), and multi-granularity switching 
capability [4,5]. In particular, examples of 
Multi-Granularity Optical crossconnects (MG-OXCs) 
include switching on a single lambda, a waveband 
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(i.e., multiple lambdas), an entire fiber, or a 
combination of above. 

One major traffic engineering challenge in such 
WDM networks has been the Routing and 
Wavelength Assignment (RWA) problem [3,6]. The 
problem deals with routing and wavelength 
assignment between source and destination nodes 
subject to the wavelength-continuity constraint [7] in 
the absence of wavelength converters. It has been 
shown that RWA is an NP-complete problem [7]. 
Numerous approximation algorithms [3,6] have been 
proposed with the aim of balancing the trade-off 
between accuracy and computational time complexity. 
In general, some algorithms [8,9] focused on the 
problem in the presence of sparse, limited, or 
full-range wavelength converters. Some others made 
an effort to either reduce computational complexity 
by solving the routing and wavelength assignment 
sub-problems separately [7], or increase accuracy by 
considering the two sub-problems [10] jointly. 
However, with the multi-granularity switching 
capability taken into consideration, most existing 
algorithms become functionally or economically 
unviable. 

In this report, our aim is to resolve the RWA 
problem in multi-granularity WDM networks 
particularly with Fiber Switch Capable (FSC-OXC) 
and Lambda Switch Capable (LSC-OXC) devices. It 
is worth mentioning that, as shown in Figure 1, an 
MG-OXC node is logically identical to an individual 
FSC-OXC node in conjunction with an external 
separated LSC-OXC node. For ease of illustration, we 
adopt the separated node form throughout the rest of 
the report. 

The problem is in short referred to as RWA+. To 
tackle the problem, we propose an efficient 
approximation approach, called Lagrangean 

Relaxation with Heuristics (LRH). RWA+ is first 
formulated as a combinatorial optimization problem 
in which the bottleneck link utilization is to be 
minimized. The LRH approach performs constraint 
relaxation and derives a lower-bound solution index 
according to a set of Lagrangean multipliers 
generated through subgradient-based iterations. In 
parallel, using the generated Lagrangean multipliers, 
the LRH approach employs a new primal heuristic 
algorithm to arrive at a near-optimal upper-bound 
solution. With lower and upper bounds, we conduct a 
performance study on LRH with respect to accuracy 
and convergence speed under different parameter 
settings and termination criteria. We further draw 
comparisons between LRH and an existing practical 
approach [7] via experiments over randomly 
generated and several well-known large sized 
networks. Numerical results demonstrate that LRH 
outperforms the existing approach in both accuracy 
and computational time complexity, particularly for 
larger sized networks. 

The remainder of this report is organized as 
follows. In Section 4.1, we first give the RWA+ 
problem formulation. In Section 4.2, we present the 
LRH approach and its primal heuristic algorithm. In 
Section 4.3, we demonstrate numerical results of the 
performance study and comparisons under randomly 
generated and large sized networks. Finally, 
concluding remarks are made in Section 4.4. 

四、成果與討論 

4.1. RWA+ : Problem Formulation 
The RWA+ problem is formulated as a linear 

integer problem stated as follows. Given a physical 
topology (with FSC-OXCs and LSC-OXCs) and 
available wavelengths on each link, and requested 
lightpath demands between all source-destination 
pairs, determine the routes and wavelengths of 
lightpaths, such that the maximum number of 
lightpaths on the most congested link is minimized, 
subject to the wavelength continuity constraint. For 
ease of illustration, we assume in the sequel that the 
number of available wavelengths on each link is the 
same. 

Due to the existence of FSC nodes, a graph 
transformation is first required. For each FSC node 
with K input (and output) fibers, it is replaced by a 
bipartite subgraph with K phantom nodes connecting 
to input fibers, and another K phantom nodes 
connecting to output fibers. Besides, there are 

(a) An MG-OXC node 

MG-OXC 
(B) 

A 

C 
FSC-OXC 

(B1) 

LSC-OXC
(B2)

A

C

Figure 1. A combined MG-OXC node and its logically 
identical separated node form. 

(b) FSC-OXC and LSC-OXC nodes
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additional K×K phantom links connecting the 2K 
phantom nodes. These phantom links describe 
possible configuration combinations inside an FSC 
node. For ease of description, we summarize the 
notation used in the formulation as follows. 

Input values: 

NF : the set of FSC nodes in the network; 
NL  : the set of LSC nodes in the network; 
L : the set of physical optical links; 
LF : the set of phantom links within FSC nodes; 

in
nV  : the set of phantom input nodes for node n; 
out

nV  : the set of phantom output nodes for node n; 
W : the set of available wavelengths on each link; 

(assumed to be the same for simplicity); 
S : the set of source-destination (SD) pairs 

requesting lightpath set-up; 
Sn : the set of SD pairs where node n is the source 

node; 
Psd : candidate path set for SD pair sd; 
ysd : lightpath demand for SD pair sd; 
δpl : =1, if path p includes link l; =0, otherwise; 
σlv  : =1, if link l is incident to node v; =0, 

otherwise; 
Decision variables: 
α  : most congested link utilization (lightpath 

no./|W|); 
xpw  : =1, if lightpath p uses wavelength w; =0, 

otherwise; 
zl : =1, if phantom link l is selected; =0, otherwise; 

Problem (P): 
 min   α  
subject to 
   

sd

pw pl
sd S p P w W

x W
∈ ∈ ∈

≤∑ ∑ ∑ δ α  l L∀ ∈   (1) 

  =  
sd

pw sd
p P w W

x y
∈ ∈
∑ ∑  sd S∀ ∈  (2) 

    1
sd

pw pl
sd S p P

x
∈ ∈

≤∑ ∑ δ  ,l L w W∀ ∈ ∈  (3) 

    
sd

pw pl l
sd S p P

x z
∈ ∈

≤∑ ∑ δ  ,Fl L w W∀ ∈ ∈  (4) 

   =  1
F

l lv
l L

z
∈
∑ σ  ,in F

nv V n N∀ ∈ ∈  (5) 

   =  1
F

l lv
l L

z
∈
∑ σ  ,out F

nv V n N∀ ∈ ∈  (6) 

  0  1pwx or=  , ,sdp P sd S w W∀ ∈ ∈ ∈  (7) 
 0    1≤ ≤α   (8) 
  = 0 or 1lz   Fl L∀ ∈  (9) 

 1
n sd

pw pl
sd S p P

x
∈ ∈

≤∑ ∑ δ  , ,L Fn N l L L w W∀ ∈ ∈ ∪ ∈  (10) 

The objective function is to minimize the highest 
utilization (α ), namely the utilization on the most 
congested fiber link with the maximum number of 
lightpaths passing through. Constraint (1) requires 
that the number of wavelengths used on every link be 
less than that of the most congested link. Constraint (2) 
is the lightpath routing constraint, and restricts the 
lightpaths demands of all SD pairs to be satisfied. 
Constraint (3) indicates that for each link, there can be 
at most one lightpath using each wavelength. 
Constraints (3) and (7) jointly correspond to the 
wavelength continuity constraint. In particular, due to 
FSC nodes, Constraints (5), (6), and (9) delineate the 
possible configuration of FSC nodes. Constraint (4) 
states that paths can only pass through the phantom 
links determined by (5), (6), and (9). Finally, 
Constraint (10) is a redundant constraint [11] to 
Constraints (3) and (4), which is added for 
optimization purpose. 

The problem is NP-complete [7], and is unlikely 
to obtain an exact solution for realistic networks in 
real-time. The problem is approximated using the 
LRH approach presented in the next section. 

4.2. The Lagrangean Relaxation with Heuristics 
(LRH) Approach 

The Lagrangean relaxation (LR) method [12,13,14] 
has been successfully employed to solve complex 
mathematical problems by means of constraint 
relaxation and problem decomposition. Particularly 
for solving linear integer problem, unlike the 
traditional linear programming approach that relaxes 
integer into non-integer constraints, the LR method 
generally leaves integer constraints in the constraint 
sets while relaxing complex constraints such that the 
relaxed problem can be decomposed into independent 
manageable subproblems. Through such relaxation 
and decomposition, the LR method as will be shown 
provides tighter bounds and shorter computation time 
on the optimal values of objective functions than 
those provided by the linear programming relaxation 
approach in many instances [14]. 

Essentially, the original primal problem is first 
simplified and transformed into a dual problem after 
some constraints are relaxed. If the objective of the 
primal problem is a minimization (maximization) 
function, the solution to the dual problem is a lower 
(upper) bound to the original problem. Such 
Lagrangean lower bound is a useful by-product in 
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resolving the Lagrangean relaxation problem. Next, 
due to constraint relaxation, the lower bound solutions 
generated during the computation might be infeasible 
for the original primal problem. However, these 
solutions and the generated Lagrangean multipliers 
can serve as a base to develop efficient primal 
heuristic algorithms for achieving a near-optimal 
upper-bound solution to the original problem. Based 
on LR, the work reported in [15] and [16] resolved the 
RWA problems for multi-fiber WDM networks and 
WDM networks with limited-range wavelength 
converters, respectively. To the best of our knowledge, 
the LR approach is first time used in this report to 
resolve an RWA problem for multi-granularity WDM 
networks. 

In the sequel, we first give the transformed dual 
problem and the derivation of the lower bound. We 
then present the primal heuristic algorithm for 
obtaining the upper-bound solution. 

4.2.1. The Dual Problem and Lower Bound 
In the relaxation process, Constraints (1), (3), and 

(4) are first relaxed from the constraint set. As shown 
in the first line of Equation (11), the three expressions 
corresponding to the three constraints, are 
respectively multiplied by Lagrangean multipliers s, q, 
and r, and then summed with the original objective 
function. Problem (P) is thus transformed into a dual 
problem, called Dual_P, given as follows: 

Problem (Dual_P): 

( ) min 1

            

sd

sd

F
sd

l pw pl
l L sd S p P w W

dual lw pw pl
l L w W sd S p P

lw pw pl l
w W sd S p Pl L

s x W

Z q x

r x z

α δ α

ρ δ

δ

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

∈ ∈ ∈∈

⎡ ⎤⎛ ⎞
+ −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥⎛ ⎞
= + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥⎛ ⎞
+ −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑∑

∑∑ ∑∑

∑∑ ∑∑

 

(1 )

min ( ( ) )
F

sd

F

l
l L

l lw pl lw pl pw
sd S p P w W l L l L

lw l lw
w W l L w Wl L

s W

s q r x

r z q

α

δ δ
∈

∈ ∈ ∈ ∈ ∈

∈ ∈ ∈∈

⎡ ⎤
−⎢ ⎥

⎢ ⎥
= + + +⎢ ⎥

⎢ ⎥
− −⎢ ⎥
⎣ ⎦

∑
∑ ∑∑ ∑ ∑
∑∑ ∑∑

 (11) 

subject to Constraints (2), (5), (6), (7), (8), (9) and (10) 
where ρ= (q, r, s) is the non-negative Lagrangean 
multiplier vector. To compute the Lagrangean 
multipliers, we adopt the subgradient method as 
delineated in the Lagrangean Relaxation with 
Heuristics (LRH) algorithm outlined in Figure 2. By 
separating decision variable α, and decision variable 

vectors, x, z, Problem (Dual_P) in Equation (11) can 
be decomposed into three independent sub-problems- 
S1, S2 and S3. Specifically, we have 

1 2 3dual S S S lw
l L w W

Z Z Z Z q
∈ ∈

= + + −∑∑ ,  (12) 

where sub-problem S1 is given by 
1( ) min(1 )S l

l L

Z s s W α
∈

= −∑ , subject to Constraint (8); 

sub-problem S2 is given by 
2 ( , ) min( ( ( ) ) )

F
sd

S l lw pl lw pl pw
sd S p P w W l L l L

Z q r s q r x
∈ ∈ ∈ ∈ ∈

= + +∑ ∑ ∑ ∑ ∑δ δ , 

subject to Constraints (2), (7) and (10); and 
sub-problem S3 is given by 

3( ) min  ( )
F

S lw l
w Wl L

Z r r z
∈∈

= − ∑∑ , subject to Constraints (5), 

(6) and (9). 

First, sub-problem S1 is to determine the decision 
variable, α. Clearly, α is set to 1 if the corresponding 
cost 1 l

l L
s W

∈

−∑  is negative; otherwise α  is set to 0. 

Thus, S1 requires O(L) computation time. Second, 
sub-problem S2 is to compute the decision variable 
vector, x. There exist |Sn| (one for each source node) 
independent problems, each of which is an 
edge-disjoint-path problem, starting from the given 
source node and destined to all destination nodes of 

Algorithm LRH; 
begin 

initialize the Lagrangean multiplier vector 
s:= 0, q:=0 and r:=0; 
UB:=1 and LB:=0;  /*upper and lower bounds on α */
quiescence_age:=0; 
step size coefficient λ:=2; 
for each k:=1 to Iteration_Number do 
begin 

Solve sub-problem S1; 
Solve sub-problem S2; /* by MSSP Algorithm */ 
Solve sub-problem S3; 
Zdual=Zs1+Zs2+Zs3−∑∑

∈ ∈Ll Ww
lwq ;   /*Equation (12)*/

if Zdual>LB  
then LB:=Zdual and quiescence_age:=0; 
else quiescence_age:=quiescence_age+1; 

if quiescence_age ≥ Quiescence_Threshold  
then  λ:=λ/2 and quiescence_age:=0; 

run Primal Heuristic Algorithm; 
/* ub is the newly computed upper bound */ 
if ub<UB then UB:=ub; 
/* by subgradient method */ 
update the step size and multiplier vector; 

end; 
end. 

Figure 2. Lagrangean Relaxation with Heuristics (LRH).
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the SD pairs with non-zero lightpath demands. Due to 
multiple wavelengths on each link, the network can 
be viewed as a layered graph with a total of |W| layers, 
where each layer corresponds to each wavelength. 
Each layer then contains (L+LF) links and (NL+NF) 
nodes. Notice that each link can be designated with 
unit flow capacity and a non-negative cost, for 
example, sl+qlw, for each non-phantom link. 

Accordingly, the edge-disjoint-path problem for 
each source corresponds to a minimum-cost flow 
problem. Ultimately, with |W| layers considered as a 
whole, the minimum-cost flow problem can be solved 
by the Successive Shortest Path (SSP) algorithm [14]. 
However, the integrated problem requires high 
computational time complexity provided with large 
values of |W|. To reduce the complexity, we employ a 
modified successive shortest path (MSSP) algorithm 
as shown in Figure 3. In the algorithm, we treat each 
layer graph individually and perform incremental 
selection of minimum-cost edge-disjoint path (from 
one layer). The computational complexity of MSSP 
for each SD pair is O(k(m+nlog n)), where m=L+LF, 
n=NL+NF, and k = max{ysd, |W|}. All decision 
variables x’s for S2 can be obtained by repeatedly 
applying the MSSP algorithm for all sources. Finally, 
sub-problem S3 is to resolve decision variable vector, 
z. The problem can be further decomposed into |NF| 
(one for each FSC node) independent problems, each 
of which can be optimally solved by a bipartite 
weighted matching algorithm. Thus for an n× n 
bipartite graph, the problem requires O(n3) 
computation time. 

According to the weak Lagrangean duality 
theorem [14], dualZ  in Equation (12) is a lower bound 
of the original Problem (P) for any non-negative 
Lagrangean multiplier vector ρ= (q, r, s) ≥ 0. Clearly, 
we are to determine the greatest lower bound. 
Equation (12) can be solved by the subgradient 
method, as shown as a part of the LRH approach in 
Figure 2. As shown in Figure 2, the algorithm is run 
for a fixed number of iterations (i.e., 
Iteration_Number). (Notice that the algorithm can 
also be driven by given a termination requirement, as 
will be shown in the next subsection). In every 
iteration, the three sub-problems (S1-S3) are solved 
(described above), resulting in the generation of a 
new Lagrangean multiplier vector value. Then, 
according to Equation (12), a new lower bound is 
generated. If the new lower bound is tighter (greater) 
than the current best achievable lower bound (LB), 

the new lower bound is designated as the LB. 
Otherwise, the LB value remains unchanged. 

Significantly, if the LB value remains unimproved 
for a number of iterations that exceeds a threshold, 
called Quiescence_Threshold (QT), the step size 
coefficient (λ) of the subgradient method is halved, in 
an attempt to reduce oscillation possibility. 
Specifically, to update the step size and multiplier 
vector as specified in Figure 2, the Lagrangean 

Algorithm MSSP; 
begin 

for each LSC node src∈NL do   
begin   

for each wavelength w∈W do   /* initialization */ 
begin  

x:=0;   /*decision variable vector*/ 
πw:=0;   /*node potential vector*/ 
for each link l∈LF do  costlw:=rlw; /* link cost */ 
for each link l∈L do  costlw:=sl+qlw; 

end; 
for each SD pair sd∈|Ssrc| do 
begin 

dest=destination(sd); 
for each w∈W do 
begin 

ready_layerw:=”Unknown”; num-path-setupsd:=0;
end; 
repeat 

for each w∈W do  
begin  

if  ready_layerw=”Unknown” then  
begin 

run Dijkstra’s-shortest-path(cost, src, dest)
on layer w; 

if the shortest path exists  
then denote the path cost as kw; 

ready_layerw:=”Yes”; 
else  /* no more path on the layer for sd */

ready_layerw:=”No”; 
end; 

end; 
if there exists a layer (w*) with smallest cost kw*  
and ready_layerw*=”Yes” then 

begin 
update xpw*, πw*, costlw* ; /* SSP algorithm 
*/ 
num-path-setupsd:= num-path-setupsd+1; 
ready_layerw*:=”Unknown”; 

end; 
else  /* all ready_layer’s are “No” */ 

return “infeasible”; 
until num-path-setupsd=ysd ; 

end; 
end; 

end. 

Figure 3. MSSP Algorithm.
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multiplier vector ρ is updated as 1k k k kbρ ρ θ+ = + , 
where kθ  is the step size, determined by 

2( ( )) /k k dual k kUB Z bθ λ ρ= − , in which λk is the step 
size coefficient, UB is the current achievable least 
upper bound obtained from the Primal Heuristic 
Algorithm described next, and bk is a subgradient of 
Zdual(ρ) with vector size |L+LW + LFW|. 

4.2.2. The Primal Heuristic Algorithm and Upper 
Bound 

The primal heuristic algorithm in the LRH 
approach is used to find an updated upper bound ub. 
Similar to the lower bound case, as given in Figure 2, 
if the new upper bound (ub) is tighter (smaller) than 
the current best achievable upper bound (UB), the 
new upper bound is designated as the UB. 

As shown in Figure 4, the algorithm first settles 
the phantom links suggested by the solution to 
sub-problem S3 for all FSC nodes, reducing the 
problem complexity. The cost of each link is 
designated as the Lagrangean multipliers previously 
obtained. Clearly, the cost of unaccepted phantom 
links are set to ∞, excluding them from subsequent 
path consideration. The algorithm then repeatedly 
applies the Dijkstra’s shortest path algorithm in an 
effort to satisfy the lightpath demands of all SD pairs. 

At the end of the computation, the costs of those 
links associated with the selected wavelengths/paths 
are set to ∞ to prevent the links from being considered 
by other upcoming iterations. If the number of 
wavelengths (lightpaths) used on a link is greater than 
the current tightest lower bound multiplied by |W|, 
indicating potential congestion, the cost of the link is 
then scaled by multiplying by a constant, referred to 
as the penalty term. This is to avoid further lightpath 
set-up through this link. The process repeats until 
either the lightpath demands of all SD pairs are 
satisfied (i.e., feasible), or there is no remaining 
resource (i.e., infeasible) in the network. 

4.3. Experimental Results 
We have carried out a performance study on the 

LRH approach, and drawn comparisons between LRH 
and the Banerjee&Mukherjee approach [7] via 
experiments over randomly generated networks. 
Given the total number of nodes, say n, the greatest 
possible number of bi-directional links is ( ,2)C n , 
where C is the combination operation. Then, for a 
network with n nodes and connectivity v, it is 

generated by randomly selecting ( ,2)C n v×  out of 
the ( ,2)C n  bi-directional links of the network. In the 
experiments, we used 32 wavelengths on each fiber 
link (i.e., |W|=32) for all networks. 

4.3.1. Performance Study 
We carried out two sets of experiments over 

15-node random networks with two connectivities 
v=0.4 and 0.8, which correspond to sparse and dense 
networks, respectively. In the first set of experiments, 
the LRH algorithm was terminated when the gap 
between the UB and the LB on  α was less than or 
equal to one out of the maximum number of 
wavelengths, or the number of iterations exceeds 
2000. While the former condition corresponds to 
reaching a near-optimal upper bound solution, the 
latter condition represents abnormal termination due 

Algorithm Primal Heuristic; 
begin 

for each wavelength w∈W do  
begin 

for each link l∈LF do 
if zl:=1 then costlw:=rlw else costlw:=∞; 

for each link l∈L do  costlw:=sl+qlw; 
end;  
for each SD pair sd:=1 to |S| do num-path-setupsd:=0; 
repeat 

for each SD pair sd:=1 to |S| do 
begin 

if num-path-setupsd<ysd then 
begin 

src=source(sd); 
dest=destination(sd); 
run Dijkstra’s-shortest-path(cost, src, dest) on 

each wavelength layer;  /* cost is vector of 
costs of all wavelengths and links*/ 

if the shortest path exists then 
begin 

designate the wavelength associated with the 
shortest path as w* ; 
for all links l on the shortest path do  
begin  costlw*:=∞; 

if # of allocated paths on link l > LB×|W|  
then 
for each wavelength w∈W do 

costlw:= costlw×Penalty; 
end; 

end; 
else  return “infeasible”; 

end; 
end; 

until all SD demand satisfied; 
update upper bound ub; 

end. 

Figure 4. Primal Heuristic Algorithm.
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to the failure of achieving such accuracy or solution 
infeasibility. We examine the total number of 
iterations required as a function of the mean lightpath 
demand under different QT values. Numerical results 
are plotted in Figure 5. Notice that the absence of data 
under certain demands corresponds to abnormal 
termination. 

First, we observe that the dense network in 
general requires less number of iterations before 
reaching a near-optimal solution. Significantly, we 
discover from the figure that parameter QT plays a 
key role in the performance trade-off between 
convergence speed and accuracy. Smaller values of 
QT, which imply frequent updates of the subgradient 
step-size coefficient, yield faster convergence to 
near-optimal solutions but at the cost of failing to 
reach accurate solutions under heavier lightpath 
demands. Greater QT values on the other hand result 
in completely opposite performance. 

In the second set of experiments, the LRH 
algorithm was terminated when the number of 
iteration exceeded a pre-determined Iteration_Number, 

ranging from 0 to 1500. Numerical results are 
displayed in Figure 6. We study both the lower and 
upper bounds on α  under different QT values.  We 
observe that while the upper bound performance is 
irrelevant to QT, the lower bound performance is 
highly dependent on the QT setting in the same 
manner as above. Specifically, smaller QT values 
yield faster convergence but only to looser lower 
bounds, while larger QT values result in tighter lower 
bounds through gradual convergence over a larger 
number of iterations. This fact reveals that, by 
adjusting the QT value, the LRH approach is capable 
of balancing the trade-off between accuracy and 
efficiency for resolving various types of RWA 
problems. 

4.3.2. Performance Comparisons 
We further draw comparisons of accuracy and 

computation time between our LRH approach and a 
Linear Programming Relaxation (LPR)-based method, 
i.e., Banerjee&Mukherjee [7]. For generating 
networks, it is impractical to experiment on networks 
with smaller numbers of nodes and links. However, 
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for networks with greater than 11 nodes, we 
experienced that the computation time using the LPR 
method became unmanageable. Accordingly in the 
experiment, we considered three random networks, 
NET1, NET2, and NET3, as shown in Figure 7. NET1 
consists of 7 nodes including 2 FSC nodes, and 14 
bi-directional links, corresponding to a connectivity (v) 
of 0.66 . NET2 consists of 10 nodes including 2 FSC 
(nodes 1-2) or 4 FSC (nodes 1-4) nodes, and 20 
bi-directional links, corresponding to a connectivity (v) 
of 0.44 . Finally, NET3 consists of 11 nodes 
including 2 FSC (nodes 1-2) or 4 FSC (nodes 1-4) 
nodes, and 22 bi-directional links, corresponding to a 
connectivity (v) of 0.4. Results are plotted in Figures 
8-10. 

In the computation using our LRH approach, we 
adopted QT=50 and three different termination 
criteria. The three criteria are: Iteration_Number 
=1000, 2000, and requirement (UB-LB)≤1/32. The 
algorithm was written in the C language and operated 
on a PC running Windows XP with a 2.53GHz CPU 
power. In the LPR-based method, by removing 
Constraints (7) and (9), the original Integer Linear 
Programming (ILP) problem is relaxed to a Linear 

Programming (LP) problem. Thus, the solution to the 
relaxed problem is a legitimate lower bound of the 
original ILP problem. The upper bound is then 
obtained according to the randomization procedure 
proposed in [7]. In the experiment, the LP problem 
was solved using the CPLEX software, operating in 
the same PC environment. For both approaches, the 
accuracy is measured in terms of the Gap(%) which is 
defined as the ratio of the difference of the UB and 
LB values to the LB value in percentage. 

First of all, we draw comparisons of accuracy and 
computation time between the LRH approach and the 
LPR method for random network NET1, as plotted in 
Figure 8. Notice that the LRH approach using fixed 
iteration numbers outperforms the LPR method in 
accuracy under all lightpath demands. However, it 
appears that the LRH method using the termination 
requirement yields a high gap under low demands. 
This is only due to the magnification of the gap 
resulting from being divided by a small LB value 
under low demands. In particular, under demand=1, 
the algorithm was terminated with UB=2/32 and 
LB=1/32, resulting a 100% gap. Surprisingly, we 
discover from part (b) of Figure 8 that the LPR 
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method requires less computation time than that of the 
LRH approach using fixed iterations. This indicates 
that LPR is an efficient approach particularly for 
smaller size networks. 

For random networks with size over 10 nodes 
(NET2 and NET3) as shown in Figures 9 and 10, the 
LPR method yields larger gaps, namely poorer 
accuracy, and demands exponentially increasing 
computation time. In contrast, the LRH approach 
achieves identical lower and upper bounds, namely 
the optimal solutions under several lightpath demand 
cases. In fact, we discover that, both LRH and LPR 
approaches achieve tight lower bounds. Significantly, 
the LRH heuristic algorithm arrives at much improved 
upper bounds due to the use of the Lagrangean 
multipliers derived upon seeking the Lagrangean 
relaxation solution. It is worth noticing that the results 
of the LRH approach using the termination 
requirement are not shown in Figures 9 and 10. This 
is due to its high accuracy and low computation time, 
yielding impossible plotting within the figures. 
Specifically, we discover from Figure 9 that the LRH 
approach using the 1000 iterations achieves as high 
accuracy as that using the 2000 iterations under most 

demand cases. Significantly, the approach using the 
(UB-LB)≤1/32 requirement for NET2 reaches the 
small gap within only a total of 
(8,40,164,480,339,287,137,424) iterations for 
lightpath demands ranging from 1 to 8, respectively. 

Furthermore, as shown in Figure 10, the LRH 
approach outperforms the LPR method in 
computation time by at least one order of magnitude 
under all cases. Notice that, the LRH approach using 
the termination requirement incurs exceptionally low 
computation times that are equal to (0,1,7,24,18,17,9, 
31) for eight lightpath demands, respectively. In this 
case, compared to the LPR method, the LRH 
approach offers an improvement of computation time 
by more than two orders of magnitude. 

To observe the performance of our LRH approach 
for large sized networks, we carried out experiments 
on two well-known networks, i.e., USA and ARPA, 
as shown in Figures 11(a) and 12(a). The USA 
network consists of 28 nodes including 3 FSC nodes 
and 90 bi-directional links, corresponding to a 
connectivity (v) of 0.12. The ARPA network has 61 
nodes including 4 FSC nodes and 148 bi-directional 
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links, which corresponds to a connectivity (v) of 0.04. 
There are 64 wavelengths on each fiber for both 
networks. Numerical results are displayed in Figures 
11 and 12. 

In the experiment, we adopted QT=50 and two 
different termination criteria, namely 
Iteration_Number=500 and 1000. For the USA 
network, LRH achieves a guarantee of no more than 
8% Gap between the upper and lower bounds under 
both termination criteria. For the ARPA network, the 
LRH achieves a guarantee of no more than 9.3% Gap 
in less than 9400 sec computation time. We 
particularly observe from Figure 12(c) that the 
accuracy of the LRH approach based on the 
500-iteration termination criterion is as high as that 
based on the 1000-iteration termination criterion 
under most lightpath demand cases. This again 
demonstrates the superiority of the LRH approach to 
the RWA+ problem with respect to both computation 
accuracy and time complexity for large sized 
networks. 

4.4. Conclusions 

In this report, we have resolved a RWA+ problem 
using the LRH method, which is a Lagrangean 
Relaxation based approach augmented with an 
efficient primal heuristic algorithm. With the aid of 
generated Lagrangean multipliers and lower bound 
indexes, the primal heuristic algorithm of LRH 
achieves a near-optimal upper-bound solution. A 
performance study delineated that the performance 
trade-off between accuracy and convergence speed 
can be manipulated via adjusting the Quiescence 
Threshold parameter in the algorithm. We have drawn 
comparisons of accuracy and computation time 
between LRH and the Linear Programming 
Relaxation (LPR)-based method, under three random 
networks. Experimental results demonstrated that, 
particularly for small to medium sized networks, the 
LRH approach using a termination requirement 
profoundly outperforms the LPR method and 
fixed-iteration-based LRH, in both accuracy and 
computational time complexity. Furthermore, for 
large sized networks, i.e., the USA and ARPA 
networks, numerical results showed that LRH 
achieves a near optimal solution within acceptable 
computation time. The above numerical results justify 
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Figure 10. Comparison of computation time for random networks NET2 and NET3.
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that the LRH approach can be used as a dynamic 
RWA+ algorithm for small to medium sized networks, 
and as a static RWA+ algorithm for large sized 
networks. 

五、計畫成果自評 

A complete version of the report has been 
published in IEEE J. Selected Areas in 
Communications, vol. 22, no. 9, Nov. 2004, pp. 
1741–1751. 

Figure 12. The ARPA network and LRH results.
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