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In this year of the project, the idea that the channel-with-memory nature can be nearly
weakened to blockwise independence by the insertive transmission of “random bits” between two
consecutive blocks is experimented. We further conjecture that these “‘random bits" can be
another parity check bits generated due to interleaved information bits such that additional coding
information can be provided to improve the system performance. A simplest exemplified
structure that follows this idea is perhaps the parallel concatenated convolutional code (PCCC).
We thus derived its respective iterative MAP algorithm for time-varying channel with first-order
Gauss-Markov fading, and tested whether or not the receiver can treat the received vector as
blockwise independence with 2-bit blocks periodically separated by single parity-check bit from
the second component recursive systematic convolutional (RSC) code encoder. In addition, we
research on the capacity of the time-varying Gauss-Markov fading channels for comparison with
the proposed system-under-test. We first remark on four different definitions of channel capacities
according to whether the transmitter and the receiver have or have not the channel state
information (CSI). We then provide detailed derivations for the channel transition probability of
the Gauss-Markov channels. As the true capacity formula for blind-CSI in both transmitter and
receiver is hard to obtain, we derive its independent upper bound instead, and establish a
close-form expression of the independent bound for any memory order M. Discussions are finally
given by numerical evaluation of the independent bounds.

Keywords: Time-varying multipath fading channel, Channel estimation, Channel

equalization, Error correcting coding
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2.1 Introduction and motivations:

The main technology obstacle for high-bit-rate transmission under high mobility is the
seemingly highly time-varying channel characteristic due to movement; such a characteristic
enforces the dependence between consecutive symbols, and further effects the difficulty in
compensating the intersymbol interference. In principle, the temporal channel memory can be
eliminated by an intersymbol space longer than the channel memory spread. An example is the
IEEE 802.11a standard, in which 0.8-us “intersymbol space” is added between two consecutive
3.2-us OFDM symbols to combat any delay spread less than 800 nano seconds. In order to take
advantage of the circular convolution technique, the 0.8-us “intersymbol space” is designed to be
the leading 0.8-p portion of the 3.2-us OFDM symbol, which is often named the cyclic prefix [5].
Motivated by this, we experiment on a different view in the neutralization of channel memory,
where the “intersymbol space” may be of use to enhance the system performance. Details will be
introduced in subsequent sections.

In order to examine the performance of our proposed system, we tempted to establish the
capacity of the time-varying fading channel experimented. There have been several publications
investigating the capacity of fading channels in the literatures. The capacity of the flat Rayleigh
fading channel has been studied in [6] under the assumption that the state of channel fading is
perfectly known to both the transmitter and the receiver. While neither the transmitter nor the
receiver knows the channel state information (CSI), investigation of the capacity of memoryless

Rayleigh fading channels can be found in [1].

2.2 The research procedures in this project:

In this year, there are two questions on which we concentrate. The first is to experiment on a
different view in the neutralization of channel memory, where the “intersymbol space” may be of
use to enhance the system performance. The second question that the research aims at is that what
the capacity of a time-varying channel, like Gauss-Markov [2][3], is. Seldom publications have
been emerged in the capacity study of Gauss-Markov channels. The understanding of this
quantity helps the researchers to be fully understood of the gap between a transmission scheme

and the underlying limit.

2.2.1 Gauss-Markov channel

The channel model considered in this work is a complex-valued time-varying channel with
Gauss-Markov fading; therefore, the received signal at time j is given by r; = x; h; + z;, where x; =
[, Xj-1, ..., Xjr+1]" is the channel input vector consisting of the current input and the previous
(M-1) inputs, h; = [h;1, hjo, ..., hj,M]T is a complex column vector containing the channel impulse

response coefficients at time j , [z, z2, ..., zy] is an i.i.d. complex-valued Gaussian-distributed
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noise sequence with zero marginal mean and marginal variance E[z /.zj.] = o, and M is the time
spread or temporal channel memory. The channel coefficient &; is Gauss-Markov distributed,
satisfying that h; = o h;.; + v; for complex-valued scaling constant ¢, complex-valued initial
value hy, and i.i.d. complex-valued Gaussian-distributed process [vy, v, ..., vy] with mean g and
covariance matrix C. The complex-valued constant « is a first-order Markov factor usually
chosen according to |a] = ¢ ®’, where T is the system sampling period and /7 is the Doppler
spread [9]. Notably, although x; in our system is discrete real-valued (in fact, is either +1 or —1),
the resultant 7; is in general complex-valued due to its multiplication with complex h; and
addition with complex z;. Such a complex-valued system setting can mirror the practical effect of
possible unsynchronization between the transmitter and the receiver, in addition to the phase

delay due to channel fading.

2.2.2 Iterative MAP algorithm for Gauss-Markov channel of memory order one

In this subsection, we will denote the mean and variance of 4, by %, and &, respectively,
and denote the 1-by-1 covariance matrix C of [v, v,, ..., vy] by O'f.

We had established a framework of a systematic equalizer code in the time-varying
environment in the last year. The mathematical expression of the considered fading channels also
had been well-defined. In addition, based on the chosen channel model, we derived the
maximum-likelihood (ML) criterion which is useful for finding the subsequent decoding metric.

In this year, we experiment on the idea that whether the channel-with-memory nature can be
nearly weakened to blockwise independence by the insertive transmission of informationless
“random bits” (of length no less than the channel memory or channel spread) between two
consecutive blocks. We then begin the experiment from the simplest case along this idea, i.e.,
PCCC code and its respective iterative MAP decoder over a time-varying channel with first-order

Gauss-Markov fading. The structure of the iterative MAP decoder is as follows.
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We first derive the metric functions used for the first component MAP decoder. By assuming that

the [r341, 7342] 1s block-wisely independent in i, the a posteriori probability (APP) of i-th

information bit u; upon the reception of d = [ry, 72, 14, 7s, ..., F3x-2, 3x-1] can be represented as
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where “f” is used to represent the respective pdf function, 7' represents the node at level i with
state s over a convolutional code trellis, B’ is the set of trellis edges such that the edge
transition from node 7' to node 7 is due to information bit u; = u. The pdf f{T'",T!,d}

can be obtained in recursive form through {77, 7/,d}= B(T. (T y(T",T)), where
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The metric functions of the second component MAP decoder can be obtained by the same

recursive form, but different y() function:
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Simulation results hint that the iterative MAP decoder that is derived based on blockwise
independence assumption not only performs close to the CSI-aided decoding scheme (cf. Fig.
1(b)) but is at most 0.9 dB away from the Shannon limit (cf. Fig. 1(a)), thereby confirms the

feasibility of our proposal.

2.2.3 A lower bound of the Shannon limit:

There are four kinds of capacities according to different assumptions on the knowledge that
the transmitter and the receiver have. In notations, C(S) corresponds to that both the transmitter
and the receiver are unaware of the channel state, while C(S) is the capacity under the
assumption of perfect CSI knowledge to both the transmitter and the receiver. If only the receiver
knows the channel state, the capacity is denoted by C(S). If only the transmitter is aware of the
CSI, the capacity is denoted by C'”(S). Their formulas are listed below.
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After defining four definitions of channel capacity, we wish to evaluate the last one based on
the Gauss-Markov fading channel model. Unfortunately, the problem of finding the channel input
statistics that maximizes the channel input-output mutual information is beyond our management

at this stage. Thus, we turn to the determination of good upper bounds for capacities.
Theorem. Assume that there exists a complex number g4 such that g4, = p; 14 for some real

number p; for every 1 <i < M, where g4 = [fi1, the2, -- - tku]- Also, C is diagonal. Then, the
capacity-cost function for blind-CSI system is upper-bounded by:
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With the availability of capacity upper bounds, performance lower bounds for bit error rates

where

52=

(BERs) can be obtained by means of the rate-distortion theorem and the joint source-channel
coding theorem [7]. One can then evaluates the performance lower bound numerically in

comparison with the simulations of his developed coding scheme.

2.3 Achievement:

2.3.1 Iterative MAP algorithm for Gauss-Markov channel:

Figure 1 reveals the performance of our iterative MAP algorithm. The left one depicts the
difference between the performance of the iterative MAP algorithm and a lower bound of the
Shannon limit. The figure shows that when 0'3 = 0.001 and Ay = 1, the resultant performance
curve of the iterative MAP algorithm is only 0.9 dB away from the lower bound of the Shannon
limit at BER = 2x10™*. Therefore, the iterative MAP algorithm is at most 0.9 dB away from the
true Shannon limit at BER = 2x107",
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Figure 1: Parameters of Gauss-Markov channel are o = 0.995, O'f = 0.001 and Ay = 1. (a) (left) Performance
comparison between the iterative MAP decoder with 18 iterations and a lower bound of the Shannon limit. (b) (right)
Performances of punctured PCCC codes with code rates 1/2, 3/7 and 2/5. The CSIs are assumed known for the
iterative MAP decoder of these punctured codes. For comparison, the performance of the proposed blind-CSI
iterative MAP algorithm is also depicted. All of them are decoded with 18 iterations.

It is worth mentioning that the proposed iterative MAP algorithm only requires the
knowledge of channel statistics, and does not presume the existence of the channel estimation
circuitry at the receiver. Thus, the system we considered does not need to transmit, e.g., training
sequence for the estimation of channel states [4]. In Fig. 1(b), we simulated three kinds of
punctured PCCC codes with code rates 1/2, 3/7 and 2/5 under channel parameters o= 1 and &
= 0.001. Since these code rates are all higher than 1/3, we assume that the remaining transmitted
bits (i.e., N/3, 2N/9 and N/6 bits respectively for 1/2, 3/7 and 2/5 punctured codes) can be used as
training bits to establish perfect channel estimation of A = [hy, hy, ..., hy]. The iterative MAP
decoder, in such case, reduces to the conventional one derived for AWGN channels. The
simulation results show that only rate-2/5 and rate-3/7 punctured systems with perfect channel
state information (CSI) perform better than the proposed blind-CSI iterative MAP algorithm, but
the performance deviations are limited respectively within 0.2 and 0.1 dB at BER = 10™. Since it
is in general hard to achieve accurate channel estimation for a time-varying channel even with a
large number of training bits, the small performance derivation merits the usage of the proposed
blind-CSI iterative MAP algorithm.

2.3.2 A lower bound of the Shannon limit:

Figure 2 shows the independent bounds for Gauss-Markov channels of different memory
orders. By intuition, for fixed C;; and g4, the higher the channel memory order, the more involved
in received vector y at the receiver end. Thus, it is reasonable to expect a lower capacity for larger
M. However, the independent bound shows that C.(S) grows as M increases. This indicates that

in the case we considered, the independent bound could be looser for higher M.
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Figure 2: Illustration of C_ (.S) . Parameters for Gauss-Markov channels are: (a) (left.) C;; = Cyn = C35 = Cyy =
C5,5 = 10, = = = = Us = 1, a=0.7 and 02 =1. (b) (rlght) Cl,l = 1007, C2’2 = 1015, C3,3 = 102, C4’4 = 1025,
Css=10", == 5= = ps=1, =07 and o* = 1.
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Based on the result of last year, the aims of this year are to design channel codes which have
been considered the statistics properties of fading channels. In this work, we take the PCCC code
and its respective iterative MAP decoder as a test vehicle to experiment on the idea that the
temporal channel memory can be weakened to nearly blockwise time-independence by the
insertive transmission of “random bits” of sufficient length between two consecutive blocks, for
which these “random bits” are actually another parity check bits generated due to interleaved
information bits. The simulation results show that the metrics derived based on blockwise
independence with 2-bit blocks periodically separated by a single parity-check bit from the
second component RSC encoder perform close to the CSI-aided decoding scheme, and is at most
0.9 dB away from the Shannon limit at BER =2 x 10~ when /=1 and & = 0.001. The result
of the first part has been prepared for submission to IEEE communication letters. A natural future
work is to extend the channel memory to higher order, and further examine whether the same

idea can be applied to obtain well-acceptable system performance.
In the second part, we have remarked on four different definitions of channel capacities

according to the transmitter/receiver with/without channel state information. We then turn to the
derivation of the independent bounds for the channel capacity without CSI in both transmitter and
receiver. We then found that if there is no LOS signal existing, the capacity of the blind-CSI

system will be reduced to zero.



