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FE (Abstract )
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Studies of spin-dependent confinement and transport phenomena in semiconductor nanc
structures have been progressing significantly since spintronics became a focus of recent interes
The most promising application of spintronic devices can be found in the potential applications
for quantum information processing, and, in particular, in the design of a spin-based quantun
computer. For the recent years in our pioneering works we proposed to deploy the spin-orbi
interaction in conventional non-magnetic I11-V semiconductor nano-structures to build elements
of spintronic devices. In IlI-V and II-VI semiconductors the spin-orbit interaction lifts the
conduction state spin-degeneracy and has been used successfully to interpret experimental rest
in various semiconductor nano-structures: quantum wells, wires, nano-rings, and dots. The
semiconductor approach has the advantage of being compatible with conventional
semiconductor technology.

This report summarizes the major results obtained from the program of the “Coherent anc
non-coherent spin-dependent transport in semiconductor heterostructures” project. Three
subjects are discussed in the following including: spin-dependent coherent transmissior
probability and tunneling time for all-semiconductor symmetric double barrier structures; spin-
dependent scattering and the spin-dependent Hall effect in three-dimensional random arrays ¢
small semiconductor quantum dots and from impurities in two-dimensional channels; magnetic
properties of semiconductor multi-electron quantum dots and rings. In addition we investigated
magneto-optical properties of semiconductor nano-structured meta-materials built from non-
magnetic InAs/GaAs nano-rings. Those systems can exhibit simultaneously negative effective
permittivity and permeability over a certain optical frequency range — the main condition for
materials with negative refractive index.

Several publications were performed based on those results.

Keywords. Spintronics, Spin, Nanostructures, Semiconductor
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1. Introduction

In order to utilize spin in semiconductor nano-structures, one needs to be able to polarize
inject, transport, manipulate, store, and detect spin. That can make use in modern quantut
information, quantum cryptography, and quantum computing.

All of the needs necessarily require comprehensive quantitative understanding of the
physical processes controlling the electron spin in quantum semiconductor nano-structures. T
manufacture spintronics applications a large number of investigations need to be performed:

- explore transport, optical and magnetic properties of semiconductor nano-structures

with promising spin dependent properties;

- understand and control spin dependent interface effects and spin dependent transpo

across semiconductor interface and in multiple quantum well structures;

- explore issues in controlling spin optical, magnetic, magneto-optical, and magneto-

transport effects in quantum dots, arrays of quantum dots, antidotes and quanturr
wells and wires as well.

Structures of interest

Semiconductor quantum nano-structures (quantum wells, dots, antidots, and rings) on the base
semiconductors with strong electron spin-orbit interaction InAs/GaAs, InAs/Si, InSb/(GaAs,
InAs, GaSb, InP).

Phenomena, properties and characteristics of semiconductor quantum structures under
investigation

1. Time dependent characteristics of tunneling and transport with quantum spin states within
natural frequency scale given by spin splitting (GHz-THz). Spin dependent resonant
tunneling and spin filtering in multi-layer semiconductor structures.

2. Spin dependent transport and characteristics of electron scattering in antidot arrays an
impurities in semiconductor quantum wells.

3. Optical (infrared absorption and magneto photoluminescence) characteristics of
semiconductor quantum nano-structures (quantum wells, dots, and rings).

4. Spin dependent transport and characteristics to implement the “spin field-effect transistor” or
the “spin high electron mobility transistor”.

5. Magnetic characteristics (magnetization of single and multi-electron quantum dots and rings)

6. Magnetic and magneto-optics characteristics of quantum dot’s and ring’s arrays.

Theoretical problems must be solved

1. Spin dependent electron transport in semiconductor quantum nano-structures:

- spin dependent tunnel and spin dependent quasi ballistic electron transport in multi-
barrier structures;

- spin dependent electron transport in arrays of quantum dots (antidots) with external
electric and magnetic fields, and different mechanisms of the electron scattering in
semiconductor quantum wells.

2. Spin dependent electron confinement in small semiconductor quantum dots and nano-rings:

- electron spin state characteristics for various types of small quantum dots and rings of
semiconductors with strong spin-orbit interaction;

- electron spin states in small semiconductor quantum dots and rings in external
magnetic fields;

- magnetization of small magnetic semiconductor quantum dots and rings.

4



3. Spin dependent optical and magnetic phenomena in semiconductor quantum rings:
- Magneto-optical and luminescence spectra of semiconductor quantum nano-rings;
- effects of trapped magnetic flux interaction with electron spin in small quantum rings;
- optical characteristics of two and three dimensional arrays of them.

Exactly like it is mentioned above we performed the program of theoretical research, which
results we present in this report.



2. Spin-dependent coherent transmission in all-semiconductor symmetric double barrier
structures
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Abstract

In this work we briefly review the present day perspectives for exploiting conventional non-
magnetic semiconductor nano-technology to design high speed spin-filter devices. In recent
theoretical investigations a high spin polarization has been predicted for the ballistic tunneling current
in semiconductor single- and double-barrier asymmetric tunnel structures of M-V semiconductors
with strong Rashba spin—orbit coupling. We show in this paper that the polarization in the tunneling
can probability be sufficiently increased for producing realistic single-barrier structures by including
of the Dresselhaus term into consideration.
© 2004 Published by Elsevier Ltd

PACS: 73.23.-b; 73.63.-b

Keywords: Nano-structures; Spin—orbit interaction; Tunneling

Recently a new branch of electronics, so-called spintronics, became a focus of interest
(see for instance [1, 2]). For this reason the electronic spin polarization (filtering) in
solid-state systems has attracted considerable attention. Many possible structures were
investigated for achieving high level electronic spin filtering and injection. Most of them
consist of magnetic material elements (see [1-5] for references). But in principle one can
use the all-semiconductor appreach utilizing multi-layered nano-systems to generate and
detect the electron spin polarization [&]. The semiconductor approach has the advantage
of being compatible with conventional semiconductor technology. From this point of
view the most important property of semiconductors to be utilized in all semiconductor

* Corresponding address: Department of Electronics Engineering and Institute of Electronics, National
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fax: +886-03-5724361.
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spintronic nano-devices is the spin—orbit (SO) interaction [7-9]. The control of spin in
semiconductors together with modern semiconductor technology can guarantee the future
of the spintronics and result in valuable commercial interest.

The SO interaction comes from a relativistic correction to the electronic non-relativistic
Hamiltonian and manifests the lack of inversion symmetry in semiconductor compounds.
In the bulk of II-V and II-VI semicenductor materials the SO interaction lifts the
spin degeneracy of the conduction states in the center of the Brillouin zone [7]. This
part of the SO interaction is called of bulk inversion asymmetry (BIA) type and it is
represented by the effective Dresselhaus Hamiltonian. Macroscopic effective electric fields
in semiconductor nano-structures result in structural inversion asymmetry (SIA) and a
linear (in the electron wavevector k) term (or of Rashba type) of the SO interaction [8, 9].
Ample experimental evidence in recent years shows that the SO interaction becornes easy
to detect in semiconductor heterostructures by measurements of the Shubnikov—de Haas
oscillations [10], weak antilocalization [11], and electronic Raman scattering [12].

It has been found out recently that the Rashba spin—orbit coupling in conventional
III-V semiconductor tunnel barrier structures can lead to the spin-dependent tunneling
phenomenon [13-15]. The spin-polarization ratio in tunneling structures is defined as

T (oK) — T-(E, K
Te(Ee K) + T_(E, K)

where Ty (E, k) is the spin-up (spin-down) tunneling probability and E, is the part of the
electronic energy which corresponds to the motion perpendicular to the barrier (z-axis),
and K = (&, ky) is the component of the electronic wavevector parallel to the barrier.
In resonant tunnel heterostructures (due to the strict resonant tunnel conditions) the spin-
dependent asymmetry in the tunneling probability can gain a higher level. In symmetric
structures with the exceptional Rashba interaction included we need to apply an external
perpendicular electric field F, to generate asymmetry of the tunneling probability. At the
same time in asymmetric structures a difference between Ty and 7_ exists with zero
external electric field and it is possible to reverse the polarization by means of adjusting
the strength of the external electric field F;.

The calculation results show considerable influence of the SO interaction on the
tunneling transmission characteristics at zero external magnetic field and the dependence
can be controlled by an external electric field. In addition the SO interaction can provide
a big difference (a few orders of magnitude) between tunneling times of electrons of
different spin polarizations without additional magnetic fields [16]. The polarization of
the electronic current can gain about 40% for moderate electric fields.

The Dresselhaus coupling term can also lead to a dependence of the tunneling
probability on the spin orientation even for symmetrical barrier structures [17]. Results
from different authors suggest that the spin—orbit filtering for all-semiconductor tunnel
devices can reach almost 100% polarization for more sophisticated designs of the
devices [18, 19]. Recent investigations have shown that completely planar or linear designs
of the tunnel transistors can be achieved with present day technology [20]. Such a design
should have much better efficiency in spin filtering.

In this paper we further investigate the spin-dependent tunneling probability for
realistic symmetric tunneling structures, with consideration of both the Rashba and

P(E, k) = (1
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Dresselhaus couplings. Our calculation is performed for realistic semiconductor structures
on the basis of the effective electronic one-band Hamiltonian, energy- and position-
dependent electron effective mass approximation, and spin-dependent Ben Daniel-Duke
boundary conditions. We consider the spin-dependent Hamiltonian for a single-barrier
structure, which can be written as follows [13, 17, 21, 22]:

H=Hy+ Hp + Hg, 2
where
Bd 1 d B2k

S . S
and
I Lpz[ 2
m(E, 2y 342 | E — E(2)+ Eg(z) + V(2)

1
T ECEWrE@+ AR+ V(z)} ’

represents the energy- and position-dependent reciprocal effective mass. E.(z), Eg(z),
and A(z) stand for the position-dependent conduction-band edge, the band gap, and the
spin—orbit splitting in the valence band, V(z) = —eF;z is the potential energy due
to the external electric field in the barrier region (e is the electronic charge), and P
is the momentum matrix element. In Eq. (2) the Rashba and Dresselhaus terms (when
the kinetic energy of electrons is substantially smaller than the barrier height Vo) are
correspondingly [13, 17, 21]

5 . . dp(E, 2)
Hp = (kay - O'ykx) . Ts
and
. 2
Hp = y(0yky — Oyky)—,
D y (Oxky Oy y)dzz

where & = {0, &y, 6;} is the vector of the Pauli matrices,

B(E )*112 !
RIS [E—Ef(z)+Eg(z)+V(z)

1
CE—Ec) + Eplz) + Al + V(Z)]

is the Rashba spin-coupling parameter, and y is a material constant.
The wavefunction of the electron can be written in the form

Dy(x,y,2) = x4 Ua(2) expli (krx + kyy)]

where x4 are spinors, which correspond to electron spin states of opposite spin directions,
and ¥y satisfies the spin-dependent Ben Daniel-Duke boundary conditions in each
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Fig. 1. A sketch of a realistic Ing 53Gag 47As/Ing 57 Alp 43As/Ing 53Gag 47As symmetric single-barrier structure
of width 10 nm.

interface of the structure:

Ji(z)
{{[% Ty Gk~ k)| £ 4 BGE, — Bk} Pa(2)

= continuous at the boundary.

The standard solutions of the Schrédinger equation with the Hamiltonian (2) and
the spin-dependent boundary cenditions above allow us te calculate the spin-dependent
tunneling probability and polarization ratio (1) for symmetric single-barrier tunneling
structures [13, 23], as we demonstrate in Fig. 1. In Fig. 2 we present results of our
calculation for a realistic Ing 53Gag 47As/Ing s2Alp 48 As/Ing 53Gap 47As symmetric single-
barrier structure of width 10 nm. The band structure parameters are chosen as follows: for
Ing 53Gag 47As E, = 0.937eV, A = 0.361 eV, m*/mgy = 0.04368, y = 76.89 eV A3
for Ing 52AlpasAs E; = 1.289 eV, A = 0.332eV, m*/mo = 0.0840, y = 73.36 eV Al
band offset Vo = 0.278 eV [24, 25]. Parameters for compound materials are calculated
according to a linear interpolation formula. The polarization is quite significant even
without an electric field (symmetric structure, only the Dresselhaus coupling is included).
An additional possibility for manipulating the polarization ratio arises when an external
electric field is applied (the Rashba term included). Fig. 2(b) and (c) show how one can
manipulate with the polarization by means of the field.

To briefly conclude, in this paper we demonstrate that the transmission tunneling
probability for a realistic symmetric single-barrier structure can gain a well-recognizable
spin dependence for a not too large in-plane wavevector of the tunneling electrons.
In addition, one can control the magnitude of the polarization ratio by means of an
external electric field. The effect described can provide a basis for more advanced spin-
filtering techniques at zero magnetic field. Our calculation results show that the interplay
between the BIA and SIA interactions makes the spin-filtering processes richer and more
controllable.

10
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Fig. 2. (a) The polarization ratio for a Ing 53Gag 47As /Ing 55 Alg 43 As/Ing 53Gag 47As symmetric single-barrier
structure without an external electric field; (b) the polarization ratio for the same structure with the external
electric field F, = 435 x 10* vem™L; (¢) the polarization ratio for the same structure with the extemnal electric
field F; = —5x 10* VemL,
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dependence of the maximal delay time on the barrier thi
ness ¢ and the well width 4. The delay time increases with

=

increasing ¢ and 4, but has different functional dependencies

n each of them. From the calculation resulfs presented in
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2.3Main resultsand discussion

For the reason of spintonics development the electronic spin polarization (filtering) in
solid-state systems has attracted considerable attention. Many possible structures wer
investigated to reach high level electronic spin filtering and injection. Most of them consist of
magnetic material elements. But in principle one can use the all- semiconductor approact
utilizing multi-layered nano-systems to generate and detect the electron spin polarization. The
semiconductor approach has the advantage of being compatible with conventional
semiconductor technology. From this point of view the most important property of
semiconductors to be utilized in all semiconductor spintronic nano-devices is the spin-orbit (SO)
interaction. The control of spin in semiconductors together with modern semiconductor
technology can guarantee the future of the spintronics and result a valuable commercial interest.

In the bulk of 1lI-V and II-VI semiconductor materials the SO interaction lifts the spin-

degeneracy of the conduction states in the center of the Brillouin zone. This part of the SC
interaction is called the bulk inversion asymmetry (BIA) type and it is presented by the effective
Dresselhaus Hamiltonian. Macroscopic effective electric fields in semiconductor nano-structures
result the structural inversion asymmetry (SIA) and a linear (on the electron wavekyeeton
(or the Rashba type) of the SO interaction. It has been found out recently by us that the Rasht
spin-orbit coupling in conventional IlI-V semiconductor tunnel barrier structures can lead to the
spin-dependent tunneling phenomenon. The spin-polarization ratio in tunneling structures is
defined as de.«)-LEATEL whatdE, k) is spin-up(down) tunneling probability afd is
the part of the electronic energy which corresponds to the perpendicular motion to thezarrier (
axis), andk =(k,,k,) is parallel to the barrier component of the electronic wave vector. In

symmetric structures with the exceptional Rashba interaction included we need to apply ar
external perpendicular electric fiehd to generate the asymmetry of the tunneling probability. In
the same time asymmetric structures the difference betWeard T_ exists with zero external

electric field and there is a possibility to reverse the polarization by means of the change of the
external electric fieldF,. We further investigated spin-dependent tunneling probability for
realistic symmetric tunneling structures with account both the Rashba and Dresselhaus coupling
Our calculation is performed for realistic semiconductor structures on the base of the effective
electronic one band Hamiltonian, energy and position dependent electron effective mass
approximation, and spin-dependent Ben Daniel-Duke boundary conditions. We demonstratec
that the transmission tunneling probability for a realistic symmetric single barrier structure can
gain a well recognizable spin dependence for not too large in-plane wave vector of tunneling
electrons. In addition one can control the magnitude of the polarization ratio by external electric
field. The described effect can be a base for more advanced spin-filtering techniques at zer
magnetic field. Our calculation results show that interplay between BIA and SIA interactions
makes the spin filtering processes more rich and controllable.

The tunneling time is a basic characteristic that determines the dynamic range of tunneling
devices. Based on the stationary phase concept and the effective one-band Hamiltonian with tf
Dresselhaus spin-orbit coupling, we obtained numerical results on the tunneling time trough &
realistic InGaAs/InAlAs/InGaAs resonant symmetric structure. It was shown that the
polarization efficiency of the structure has a well defined resonance behavior that can lead to .
considerable spin polarization of electrons tunneling trough the structure. In the low energy
region, the ratio between the tunneling times of electrons with opposite spin orientation can
reach a few orders in magnitude. The results indicate that the Dresselhaus spin-orbit couplin:
separates the time dependent response for electrons tunneling with different spin polarizations
Further the large and tunable ratio of the tunneling times provides a possible way to construct
dynamic spin filter. The characteristic time of such devices have also been estimated anc
presented as a simple functional dependence on the barrier and well width. The relation betwee
the delay time and the width is simple and can be used as a design rule to select workin
frequencies of spintronic devices.
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3. Spin-dependent scattering and the spin-dependent Hall effect
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Abstract

We present a theoretical study of the spin-dependent electron scattering from spherical quantum dots (antidots) cmbedded
into I -V semicenductors. To calculate the elastic scattering cross-section we use the effective one electron band Hamiltonian
and spin-dependent boundary conditions generated by the spin—orbit interaction in the structures. It is demonstrated that the
spin—orbit interaction can lead to a recognizable magnitude of polarization tor single and double scattering at zero magnetic

ficld.
© 2003 Elsevier Science Ltd. All rights reserved.

PACS: 72.20.Dp; 72.25.Dc; 73.63 Kv

Kexwords: A. Nanostructures: A. Semiconductors; D. Electronic ransport; D. Spin—orbil effects

The asymmetric seattering of polarized electrons in gas
and metallic systems has been extensively studied for
decades (see Refs. [1-3] and references therein). The
reluxation of electron and hole spin polarization due to
spin-dependent scattering in semiconductor structures
was also of great interest and has been studied both
cxperimentally and thearetically [4—6]. Recently it was
discovered that most of the scattering events conserve
spin and the electron spin-relaxation time can become
surprisingly long in HI-V semiconductors (as 100 ns
[6]). The spin-diffusion length 1s much longer than the
electron mean frec path, and in some UI-V scmicon-
ductor nano-structures it may be of the order of the
sumple dimensions (100 pm [7]).

In semiconductors the most important interaction,
which causes spin-dependent processes is the spin—orbit

* Corresponding author. Tel: +886-3-5712121x54174; fax:
+88a-3-5724361.
E-mail address: vam@ce.nctu.edu.tw (0. Vaskoboynikov).
! Present address: Depatment of Electronies Engineeting and
Institute of Electronics, National Chiaxo Tung University, 1001 Ta
Hsuch Rd. Hsinchu 300, Taiwan, ROC.

interaction [8,9]. The Rashba spin—orbit coupling [9] is
an essential element of the spin field effect transistor
proposed by Datta and Das [I10]. A new branch of
spintronics | 11]
became under an extensive development recently. For
this reason, the spin-dependent kinetics of electrons in
traditional 111-V  semiconductor heterostructures
hecomes a topic of a great.

This paper describes a model of the spin-dependent
electron scattering from nano-scale semiconductor guantum
dots (antidots). Recent advances in semiconductor nano-
technology allow us to consider small spherical dots
(antidots) of L1-V semiconductors |12] as ‘artificial
defects” with controllable- parameters. We calculate the
pelarization (thc Sherman function 12,3]) after a single
scattering and investigate how the polarization changes after
the second seattering. In our calenlation we usc the offective
one band Hamiltonian with the spin-dependent boundary
conditions [13—15]. The rectangular hard-wall potential of
the dots (antidots) is induced by the discontinuity of the
conduction band edge of the system.

For three-dimensional semiconductor quantum dots
(antidots) the approximate ome elecironic band etfective

semiconductor  electronics  so  called

0038-1098/03/% - see frant matter € 2003 Elsevier Science Ltd. All rights reserved.

PII: S003R-1098¢G2)00850-5
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Hamiltonian is given in the form [13]
Bl

go_ Mo
. 2 "mE.T)

T + ViD) + Ve, ()
where Vr stands for the spatial gradient, m(E, v} is energy
and position-dependent electron effective mass
L@

7

mET 3

2 1
X[ Fi Egn — Vi) | E+ by — Vi + A ]

v(r) is the hard-wall confinement potential of the dots or
hard core repulsive potential of the antidots, E,(r) and A(r)
stand for position-dependent band gap and the spin—orbit
splitting in the valence band, P is the momentum matrix
element. The spin—orbit interaction V,(r) for conducting
band electrons is described by [9,14,15]

Vo) = 1V BE, 1) 16 X Vi, (2)
where

»
BlE.T) = .T

! 1
X[ ETRm-ViD  E+Eg) + 4w - VD) ] ®

is the spin—orhit coupling parameter, and & = { o, o, ;|
is the vector ol the Pauli matrices.

For systems with a sharp discontinuity of the conduction
band edge between the dot (antidot) (material 1) and the
crystal matrix (material 2) the scattering potential can be
presented as

Vg TEIL
V(r):{

0. re?’ &
where the potential barrier is chosen as ¥y = @ for dots and
¥y = 0 for antidots, From integration of the Shrédinger
equation with Hamiltonian (1) aleng direction perpendicular
to the interface (r,) we oblain the spin-dependent Ben
Daniel-Duke boundary conditions for the electron wave
function ¥(r)

() = W(r

#2 e o
{Z/mFE_r) V. — 1BE, nia X F,]}"‘Pl (r}

"

w2 G
= {En(?ﬂ Ve — e, o> "—r]} ¥a(r,)

where r, denotes the position of the system interface.
Considering dots {antidots) with spherical shapes we
choose the solution of the scatlering problem in spherical

21

coordinates (r, #, ¢ as [1,16,17]

Wy =@m2 Y I+ 02RO 6.9, (6)

Ly +1

where

Yib@y=s ¥ Cl+s/2,12

S=r1
X(1 = S W2 821 Y00 DX

Clx,v;z,w] are the Clehsh—Gordan coefficients |11,
¥,.,(6. @) are the spherical harmonics, 5 = *1 refers to the
electron spin polarization, and y' is a spin function upen
which the Pauli matrix vector operales:

o) ()

Substituting Fq. (6) into the Schrddinger equation, we
obtain

8 [1 d ,d _M+D

- 2 ((E) 2 dr 3 ]m;(f‘)

=({E+ V)R (5), r= 1y
6]

#? [1 d ,d W+

*m = ]Ry(r) = ER3(r),

i
2 dr dr P
r<

where o is the radius of the sphere. The spin-dependent
boundary conditions (5) for the spherical quantum dot
(antidot) can be written as

Ri(ro) = Ray(ro).

#od o d 2B E) — B(F)]
(B afﬁ,(r)m Py ERll(rU)l'ﬂ+ o
3
x[ 6+ b 10+ 1= 3 Rt
=0, 8)

where j = |1+ /21

The method of partial waves is convenient in this specific
case of spherical quantum dots (antidots) with short-range
potentials (4), when we can solve the scatlering problem
without additional assumptions. The proper selution of Eq,
(7) behaves like

Ry (r) = Ajgi(Kr),
_ ®
Riy(r) = Biljjkry - tan & mylkr)].

where 8 is the phase shift due to spin-dependent scattering,
Jjp and 7, are the spherical Bessel functions of the first and
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second kind, respectively

and g is a solution in the dot (antidot) region. For the dot
case:

girer) = ji(kr),
where

7
e JZm,(EiZ(E V) ,

while for the antidot case:

™
2lkry= ‘fm[u-vz(”),

V2 (E)(Vgl — E)
(&) — lfi .

(I 12(z) 18 the modificd Bessel function of the first kind).
The phase shift & can be obtained from the values of the
wave functions Rj(r) at the dot boundary {r = 7p)

"l‘?(k’ﬂ) - Yfﬁ(kroL

an & = i 10
O egtheg) — ¥imtry) (o
wher¢
o) 2my(B — 3
g 2B By Bl?[jq+1)fr(1+ h- Z]‘
m, g roht

and primes denote the lirst derivatives with respect to the
function argument.
The complex scattering amplitude [17] is defined as

F = [*(6) + (G-n)g' (D)]y's an

where

. 1 . .
Fe = . ,:Zn 1! + Viexp(iasin &

+I exp(idy Isin &; |Py(cos B),

and

B

£ = %-Z fexp(id Jsin & — exp(id; Jsin & 1P} {cos B).

=1

are the direct amplitude and the spin-flip amplitude,
correspondingly, ( is the scattering angle betwcen initial k;
and final k wave vectors,

k; X k;
[ e el
U Ty kg

is a unit veclor perpendicular ro the scattering plane,
Pi(cos Ay and P}(cos 8) are the Legendre polynomial and
Legendre associated function. respectively. The Mot scat-
tering cross-section for spin-polarived electrons can bc
wriltten in terms of the incident electron spin-polarization

22
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veetor Py
(= A1 + S(OPrnd, (12)
where
o = iFel’ + g oP,
is the differential cross-section for an un-polarized incident
beuam and

Faran
@l + ol
is the Sherman lunction [2,3]. The Sherman function
characterizes the left—right asymmetry in the scattering
cross-section for initially polarized clectron heams and the
average polarization after a single scattering P, for an
initially unpolirazed beam

P, =5(0n,.

S0 = a3

It follows from the equations above that the spin—orbit
interaction influences the phasc shifts with angular memen-
tum [ > 0. The effect is stronger [or pairs of materials with a
lager difference in the spin—orbit coupling parameters. Fig. 1

(a)

S@ 04

5(6) (10°)

E (meV)

A (radian)

Fig. 1. The Sherman functien for (a) spherical InAs/GuAs quantum
dot with 7y = 1.3 nm and (b) spherical GaAs/InAs antidot with
ry = 60m. Egraas = 0426V, Fugaas = 1520V, IVl =077 eV,
Apa. = 038 eV, Agaar = 034 eV, Pitaas () = 0.023mg,
Higaasd®) = 0.067my (my—the free electron mass) [13].
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presents the Sherman function versus the scattering angle
and the energy of the incoming electrons calculuted for a
nuno-seale quantum dot (InAs/GaAs) and antidot (GaAs/
InAs). In the case of quantum dots (Fig. 1(a)) we avoided an
additional complexity by ncglecting the interaction of the
scattered electrons with charges bound in the dots and the
resonance effects, This restricts us to use dot sizes, which do
not allow any bound states in the dots, The electron energy
is adjusted to the electron band edge of GaAs. In the dot
region the denorinators of the spin—orbit coupling
parameter (see Eq. (3)) are relatively large (Vo =077 ¢V,
E\y = Egrnas = 042 eV, 4, = dppa = 0.38 ¢V) that makes
B\, the totul ditference 8, — B, and the effect Tather small.
For the antidot case, the situwalion is quite different. In
antidot region the dominators are relutively small, so the
parameter 8, — B, is large. The Sherman function ampli-
tude becomes much lager than that for the quantum dot case
(see Fig. 1{b}).

Polarization produced by scattering of an unpolarized
electron beam aftects subsequent scatlering processes. The
first scattering generates a polarization that in the second
scattering results in the left—right asymmetry in the
scaltering cross-section, If the azimuthal asymmetry after
the second scatrering can be measured, the scallering
induced polarization can be found [1,16,17]. We consider
double scattering in the same x—y plane as it is presented in
Fig. 2. The polarization P» in the double scattering process is
parallel to m; and it is described by

51(P1) + 95,(8,)

Piia,, gy = S0 TERT)
W ) = 0088

when the second scattering occurs to the left of an observer
standing to Iy and

Si{th) — 8:(8)

PAR . 8,) = .
N XIS

when the second scattering occurs to the right of the
observer,

In Fig. 3 we present the caiculated result of the left
polarization for the double scatiering from GaAs/InAs
antidotes. The resnlts demonstrate a well recognizable
polarization after the second scattering. In addition, Fig. 4

right scattered (P})

I

unpolarized beam

Fig. 2. Schematic diagram of single and double scattering.
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& (radian) 0:(vadian)
Fig. 3. Polarization of double scattering to the left ¢P4(6,. ) =
P56y, — ) induced by scaltering from GaAs/TnAs antidotes with
ry=6nm and £ = 20 meV.

shows the cnergy dependence of the polariration of the
double scattering process with a fixed direction of the first
scaftering.

Subsequent scallerings (more than double) gencrate
more complicated angular dependencies of the polarization
[1,2] and could be investigated theorctically one after
another |2,17]. But in reality, the intensity of the polarized
clectrons is small. Tn addition the background scattering
processes (phonons, impurities, defects, plural scatterings,
etc.) should substantially randomize the subsequent polar-
ization process |2]. From other side, this randomization in
higher order scatterings provides some grounding in the
kinetic theory of the anomalous Hall effcct |18-21].

Following the method from [18-21], for degencraled
electronic system and a random three dimensional amray of
the quantum dots (antidots) at zero magnetic field the
anomalous Hall angle can be estimated as

oyl = =, (14}

E (meV)

0:(radian)

Fig. 4. Energy dependence of the left-right double scattering
polurizations induced by scattering from GaAs/TnAs antidotes with
p=6nmand 8, = —m/2.
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0 5 o 15w 2
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Fig. 5. The absolute value of the anomalous Hall angle for a random
array of GaAs/InAs antidots with radius r, = 6 nm.

where

% = 2mNyve I: de 181 — cos fsin (15
is the elastic scattering rate, and

J-H — 2aNyvp K dBHOS(B(1 — cos Gsin’ b, (16)

is the spin-flip scattering rate. All functions are 1aken at the
Fermi shell, ¥y is the concentration of the dots (antidotes),
v s the Fermi velocity, and it is assumed that the clectron
current is completely polarized. In Fig. 5 we present the
result calculated for the anomalous Hall angle as a function
on the Fermi energy for an urray of GaAs/InAs antidotes. It
should be noted, the anomalous Hall effect produced by
quantum antidots has a measurable magnitude.

In summary, we discussed the influence of the spin—orbit
interaction on the electron scattering trom semiconductor
quantum dots and antidols. The one electron band effective
Hamiltonian and the spin-dependent boundary conditions
tor spherical quantum dots (antidots) allowed us to calculate
a spin asymmetry in the electron scattering cross-scction.
We found a polarization produced by single and double
scattering of unpolirazed electron beams duc to the spin—
orhit interaction. We would like to stress that, the
polarization is caused by non-magnetic GaAs/InAs semi-
conductor structures without external magnetic fields. We
should mention, that in the anomaious Hall effect the Hall
angle is proportiona! to the Sherman function at the Fermi
energy shell [18,19]. Our calculation results suggest a small
but measurable magnitude of the Hall angle for antidots.
The unomalous Hall etfect produced by quantum antidots is
expected to be reduced by the electron impurity scattering,

24
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but should still have a significant magnitude. This effect is
potentially useful in integrated electron spin-polarization
devices based on all-semiconductor heterostructures.
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Spin-orbit interaction and electron elastic scaitering from impurities in quantum wells
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‘We present a theoretical study of the spin-dependent scattering of electrons from screened impurities in III-V
semiconductor quantum wells. Our calculation is based on the effective one-electronic-band Hamiltonian and
the spin-orbit coupling with the Coulombic potential of the impurities. We demonstrate that the spin-orbit
interaction can lead to recognizable magnitudes of spin asymmetry in the elastic-scattering cross section. Fairly
large values of the Sherman function (about 0.01) are obtained for repulsive and attractive impurities in

quantum wells of narrow gap semiconductors.

DOI: 10.1103/PhysRevB.67.195337

L INTRODUCTION

A large number of studies of the electron transport in
two-dimensional (2-D) semiconductor systems has been car-
ried out over the past 40 years (see, for instance, Refs. 1-8).
This is especially important for electronic applications.
Progress in modern semiconductor technologies has allowed
us to experimentally and theoretically model the various
scattering mechanisms in 2-D semiconductor structures
within a wide range of material parameters.*"® It is com-
monly accepted now that the electron mobility of a semicon-
ductor 2-D heterostructure is determined by impurity scatter-
ing at low temperatures and by the phonon scattering at high
temperatures.

Recently there has been renewed interest in spin-
dependent scattering and transport phenomena in semicon-
ductor heterostructures because a branch of semiconductor
electronics so called spintronics, has become a focus of in-
terest (see Refs. 9—12, and references therein). The extra
degree of freedom provided by the electron spin opens a new
field for the development of semiconductor devices. In prin-
ciple, one can use the semiconductor approach to generate,
control, and detect electron-spin polarization.!"** This ap-
proach has the advantage of being compatible with conven-
tional semiconductor technology.

In the absence of magnetic impurities, the main source of
spin-dependent scattering processes at low temperatures is
spin-orbit coupling to local defects. The effect of spin-orbit
interaction on spin relaxation for semiconductor 2-D systems
also has been studied for a long time.'"~17 Recently coherent
spin transport has been demonstrated in homogeneous semi-
conductors and heterostructures.*18 Unfortunately, the
theory of spin-dependent transport for semiconductor 2-D
systems is still far from being complete. For this reason we
recently investigated spin-dependent elastic-scattering pro-
cesses in semiconductors in the presence of spin-orbit
interaction.”®?! In 2-D quantum wells,?® this effect is ex-
pected to be stronger than that in the bulk® because of the
localization of electronic wave functions in the conductive
channel. It should be noted that the problem remains com-
plicated even for the simplest models of 2-D electron motion
because, in general, spin-orbit interaction should be de-
scribed by a three-dimensional model.

Using the delta-doping technique, Coulomb attractive and
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repulsive impurities can be precisely placed in heterostruc-
tures. Using this fact one can model theoretically the scatter-
ing from the impurities located inside? or outside?? the con-
ductive channel. Most of the theoretical simulations of 2-D
electron elastic-scattering processes from the impurities were
conducted in detail in the first Born approximaticm.z’4 How-
ever, it is well known that when perturbation theory is used,
the dependence on spin in the elastic cross section appears
only in the approximation that follows the first Born
approximationx’% For this reason, one should use other
approaches in calculations of the spin-dependent scattering
cross section. In particular, this is the partial-wave
approach,”>% which was also used in some simulations of
the spin-independent elastic-scattering cross section when
the first Born approximation is not app]icable?g_30

In this paper we calculate the spin-dependent elastic-
scattering cross section for electrons scattered by impurities
in 2-D heterostructures of III-V semiconductors. We use the
effective one-electronic-band Hamiltonian®  with Ben-
Daniel-Duke boundary conditions for electronic envelope
functions to calculate the spin-dependent cross section for
electrons scattered from repulsive and attractive isolated im-
purities with spin-orbit coupling.m’26 The impurities are lo-
cated inside the quantum well. For narrow gap semiconduc-
tor quantum wells (systems with large spin-orbit coupling
parameters) we found a large spin-related asymmetry in the
cross section.

The paper is organized as follows: Section II begins with
an introduction to the effective one-electronic-band 2-D
Hamiltonian with impurities located inside semiconductor
quantumn wells. Section III gives details of the variable phase
approach to spin-dependent elastic scattering in 2-D systems.
The calculation results are presented in Sec. IV and conclu-
sions are given in Sec. V.

I1. BASIC EQUATIONS

We consider electrons in semiconductor heterostructures
with charged impurities and use the approximate one-
electronic-band effective Hamiltonian for the electron enve-
lope wave functions

H=Hy+ V(). (1)

©2003 The American Physical Society
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In Eq. (1) Hy is the Hamiltonian of the system without

impuritjes,“f34
B 2
7‘7{

H0:7

mET) V., +V(r),

where V. stands for the spatial gradient; m(E,r) is the en-
ergy and position-dependent electron effective mass,

1 2P
m(E,;r) 352

2
E+E (r)—V(r)

1
Y EFE, A —vin

|

where V(r) is the confinement potential of the well; E is the
electron energy; E (r) and A(r) stand for the position-
dependent band gap and the spin-orbit splitting in the va-
lence band; P is the momentum matrix element; and ¥, (1)
is the scattering potential of the impurity.

The impurity scattering potential consists of two parts,

Vi) = V(1) + Vi, (1),

where V;.(r) is the Coulomb potential of the charged impu-
rity and Vi, (r) describes the spin-orbit interaction of elec-
trons with the impurity

Viso(B)=—if(E,r) TV, (r)-[6X V], @
Where32,34
P? 1
M0 T Er BT
1
3)

CE+E (0 +AM-V(n )

The spin-orbit interaction in the form of Eq. (2) is the
generalization of the well-known Rashba spin-orbit
interaction,® which comes from system inversion
asyn’nnr:tt'y?z’34 In semiconductor structures with the average
uniform electric field F one can censider

L
F —;V VP(I‘),
where e is the electron charge and Vp(r) is the average
space-charge electric potential. When the electron with the
wave vector KLF is moving in the field, one can readily
obtain from Eq. (2) the well-known Rashba interaction
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the conduction-band edge between the quantum well (mate-
rial 1) and the barrier region (material 2) the potential can
be presented as

0 L< <L 1

Ty SIS (rel),

V()= . )
Vo |z|>5; (re2).

We assume that an isolated impurity is located at z=d and
the unscreened Coulomb potential of the impurity is given as

Ze®

N e

&)

where &; is the relative permittivity of the system and Z is
the charge of the impurity. For most ITI-V quantum wells we
can neglect the image potential and use for simplicity e,
=(e,+e&9)/2 (g, and &, are the dielectric constants of ma-
terials 1 and 2, correspondingly).

Following Refs. 1, 2, and 31 we present the solution of

the confinement problem with the Hamiltonian H, as

¥, (p.2) =& (p)@a(2),

where n labels the eigenenergies in the normal direction
(E,), and s=*1 is the quantum number related to the spin
polarization along the z direction.

As is shown in Ref. 32, due to the reflection symmetry of
the well in the z direction (there are no built-in electric fields)
the Rahsba spin splitting in the electron spectrum does not
occur and one can use the conventional Ben-Daniel-Duke
boundary conditions®* for the wave function @, (2),

1 d
©a(2), mED) E%(Z)

continuous at

==

©

Considering for simplification only the first subband as
being populated we describe only intrasubband elastic-
scattering processes. First we obtain the ground state (the
first subband with n=1). The wave function of this ground
state has the well-known form

Acoskz, |z]= 3

V,,(r)=an-[ X k], ¢ (2)= I3 @
where a=—eyF and n is the unit vector parallel to the Bexp(—pz), |Z|>E;
field.”
Here we consider III-V semiconductor symmetrical quan- where
tum wells of thickness L. In the structure we denote by z the
direction perpendicular to the well interfaces, and p=(x,y) Kk=~N2m (E)E /%,
is the position vector parallel to the interfaces (z=0 is the
center of the well). For systems with sharp discontinuity in u=\2my(EY(Vy—E /T,
195337-2
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and £=FE +E, consists of the energies of the p and z direc-
tions of motion, correspondingly. From the Ben-Daniel-Duke
boundary conditions (6) we obtain the spinless transcenden-
tal equation

m(E)u(E, Ey)

tan| ©(E, B )LI2]= my(E)k(E,E)
o

(C)
Equation (8) gives us the eigenenergy in the z direction in an
implicit form.

The wave function (7) (after proper normalization), we
substitute into the three-dimensional Schrodinger equation
with the Hamiltonian (1) and integrate out the z coordinate
by taking the average,

Foo
i~ [ azer@eo).

After the averaging and introducing the screening of the im-
purity at low temperatures by means of Refs. 1 and 23 the
quasi-2-D Schrodinger equation in the polar coordinates

p=(p,#) is given by

Laf 2y 1 & _ N B

;a—p(Pg)*jaTssz(p)ﬂsW(P)ﬁﬂLk F(p)=0,
©)

where

172 7£ };;L(E) " dq i —q¢le—d|

V(p)fa;‘ 0 o S@Jo(qp)ﬁdeI%(Z)lze i

is the statically screened Coulomb potential in the quantum
well plane,

27 m(E) [~=qdg
atpmi(0) Jo e(q)

Wip)=— Ji(gp)

x| a (E) f dz| @y (2)|%e 7974
z<|u2|

+ay(E) J dz|<p1<z)|2e*4‘rﬂ
12|L/2|

is the screened spin-orbit interaction, aj = esﬁzl ezml(O) is
the effective Bohr radius in the well,

_2m(E)E,

2
k PP

»

1 1

- 2
m(E)  mlE) Z{|U2|dz|<p1(z)|

i dz 2%
miy(E) = 12| lex(a)

J,(x) is the Bessel function,

PHYSICAL REVIEW B 67, 195337 (2003)

(g)=1+2
e(g)=1+—
1 q
is the 2-D electronic dielectric function,

ezml(EF)

%" 2ah’e,

.

is the 2-D Thomas-Fermi screening constant in the degener-
ated electronic system, and Ej is the Fermi energy of the
system.>> The Fermi wave vector k(F;) must be defined by
means of the solution of the following equation:

d
[ 1+ Eln[ml(E)]

1
B S By

1. TWO-DIMENSIONAL ELASTIC SCATTERING
AND SHERMAN FUNCTION

Due to the radial symmetry of the potentials ¥ _(p) and

W(p) in Eq. (9) the method of partial waves is convenient
for our consideration. One can separate variables in the ex-
pression for the wave function as the following:?*-%

=+

W”):lz‘m Ri(p)e'®y,

where [ is the orbital momentum number and x* is a spin
function upon which the Pauli matrix vector operates,

|

The Schrodinger equation for the radial wave function be-
comes of the following form:

73

At a large distance from the scattering center the asymtotic
value of the radial function is given by

1

2

1d e _ )
- ?*V(p)*le(p)Jrk

pdp

d

P% Ri(p)=0.

Ri(py—Ailcos 87, (kp) —sindN,(kp)]; p—oo,
where &} is the spin-dependent scattering phase shift*-%7
and N, is the Neumann function.

In the variable phase approachﬁ‘36 the phase function
8](p) at the point p determines the phase shift produced by
the part of the potential contained within the cycle of a radius
p. The scattering phase shift for the total potential is equal to
the asymptotic value

;= lim &}(p).

p—

The phase function §;(p) satisfies the following differential
equatiorn: ek

195337-3
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dsilp) w _
FPE 5 PLV(p)+sIW(p)]lcos &i(p)d (kp)
—sing}(p)N,(kp)]* (10)
with the boundary condition
&(0)=0. (11)

The complex 2-D scattering amplitude can be expressed
20,24,25
as™

F(O=[f(0)+eg(0]X (12)

where f°(6) and g( @) describe scattering without and with
electron-spin reorientation, and they are determined by the
expressions

F8)= 2 ficos(19), (13)

o

g(@zgl gsin(l6), (14)

where
exp(2iéy)—1; [=0;

{1
=N {exp(izﬁl*)Jrexp(iza;)—z;
. 1 . + R
gmiNz— [exp(i28, ) —exp(i28; )],

where @ is the scattering angle between initial (k;) and final
(ky) wave vectors.

The Mott scattering% cross section for electrons spin po-
larized parallel to the z axis can be expressed in terms of the
incident electron-beam spin polarization P; along the z direc-
tion as the following:

=1,

o()=I1(0)[1+5(6)P], (15)

where I(#) is the differential cross section for unpolarized
incident electrons,

1) =f(O)*+|g (o)), (16)

and

JH(6)g(8)+f(6)g*(6)
lFCo*+lg(o)]*

is the Sherman function for 2-D electrons. The Sherman
function is an important characteristic of the spin-dependent
scattering (see Refs. 37 and 38, and references therein). It
presents the left-right asymmetry in the scattering cross sec-
tion for initially polarized electron beams and the average
polarization of unpolarized electrons after the scattering.
This characteristic is important in the evaluations of the
anomalous Hall effect in different materials and structures.

S(6)= 17

PHYSICAL REVIEW B 67, 195337 (2003)

For degenerated electronic systems, for instance, the Hall
angle is proportional to the Sherman function at the Fermi
energy shell 263741

IV. CALCULATION RESULTS

To present the realistic estimation of the effect of the spin-
orbit coupling on the electron elastic cross section we choose
two types of symmetrical quantum well structures: type
I is  AlguglngsoAs/Ing s3Gag47As/Algaglng spAs  (where
E,=0813eV, E,=1508eV, A;=036leV, A,
=0332eV, m(0)=0.041mgy, m,(0)=0.075m,, e,=14,
2,=12.5, Vu=0.504 eV, " myis the free-electron mass) and
type II is CdTe/InSb/CdTe [where £, =024 eV, E,
=159eV, A;=081¢eV, Ay=08eV, m(0)=0.015m,,
m4(0)=0.08mg, £,=10.8, £5,=10.2, V;=0.55 eV (Refs.
42 and 43)]. While type I presents quantum well structures
with well-developed growth technology, type II demonstrates

(a)

(.86

0.83

084 PN :
Tt 0.83 i /“" \\ ]
e 08 / \\ H

’ k\‘ ,‘"’
s
18¢ 360

(c) 0 {depree)

FIG. 1. The scattering cross section for the screened impurities
in the type-I structure (L=20 nm): (a} repulsive (Z=+1) impu-
rity; (b) attractive (Z=—1) impurity; (c) the ratio between the
complete numerical result ( opygae) and the first Born approximation
(O pom) for the repulsive impurity when kaz =1.8 (E,=0.01 eV).
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20 360 ’ y
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FIG. 2. The Sherman function for the type-l structure (L
=20 nm): (a) repulsive impurity; (b) attractive impurity.

the largest spin-coupling effects. In all calculations we assure
the validity of the one-subband scattering model,when the
intersubband gap is larger than the energy of the p-direction
motion: E,<E,—E;. This allows us to consider scattering
of electrons with the following wave vectors: for type-I
structures with =530 nm, kikf,,-: 25((12‘)71 (the electron
concentration n,=3.5X 101! em™2); for type-II structures
with £=30 nm, k<k¥=6.6(a$)! (n,=3x10" cm™2).
Notice that a is taken to be different according to the defi-
nitions for the different types of the systems.

The phase shifts were obtained by the numerical solution
of Eq. (10) with the initial condition of Eq. (11) and then
used in Egs. (12)-(17) to calculate the elastic-scattering
cross section. From our calculation experience the conver-
gence criteria on the cross section (the maximum net error is
less than 10™%) can be reached by taking the necessary num-
ber |7] =70 of the partial waves included Egs. (13) and (14).
Figure 1 shows energy and angle dependencies of the elastic-
scattering cross section for 2-D electrons scattered from at-
tractive (Z=+ 1) and repulsive (Z=— 1) impurities located
in the center of the type-I structure. The cross sections dem-
onstrate the well-known logarithmic divergence at zero en-
ergy (E,—0) for both types of impurities (repulsive and
attractive).”® In Fig. 1(c) we compare our results with the
cross  section obtained  within the first Bom
approxhnati01127'28 when

T, 1, I=0;
sz—\lﬁfoh(kﬂ)V(pmde 2 =1 (18)
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0.3
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02"
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FIG. 3. The Sherman function for the type-I structures with
different well widths (E,=0.02 eV): (a) repulsive impurity; (b)
attractive impurity. Insets: the dependencies of the Sherman func-
tion amplitude on the well width.

T (=, _ 1, I=0;
~ i\ = X
gi~iln 2kJ0 T (kp)Wip)pdp 2 =1 (19)
It is known™™ that the first Born approximation is valid for
2-D elastic scattering when

kaf>1.

It is worth noting, that the numerically calculated cross sec-
tion for the 2-D screened Coulomb potential is different from
that obtained in the first Born approximation near the edge of
the approximation validity (ka§=1.8). In addition, it can be
seen from Egs. (18) and (19) that in the first Born approxi-
mation all spin-polarization effects in the elastic cross sec-
tion vanish: 32+

SO~ (0)g(0)+f(0)g*(0)=0.

Thus, the Sherman function should be calculated only by
going beyond the first Born approximation and taking into
consideration the higher partial waves (|7|>0). The com-
plete numerical solution allows us to do that.

Figure 2 shows the Sherman functions for the type-I
structure, when the repulsive [Fig. 1(a)] and attractive [Fig.
1(b)] impurities are located in the center of the well with the
width L =20 nm. We first note that, in the energy range con-
sidered, the effect is slightly larger for the repulsive scatter-
ing center. Since S(8) is closely commected to the cross sec-
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FIG. 4. The dependencies of the effective averaged potentials on
the well width for the type-I structures: (a) spinless part V{p), (b}
spin-orbit coupling part W(p).

tion curves, the high values of the Sherman function occur
where the cross-section is small and vice versa. The change
of the impurity sign leads to inversion in the three-
dimensional plots. This is a direct and clear consequence of
sign altering in the potentials V(p) and W(p) [see Eq. (10)].
It can be seen that with suitable electron energies and the
large scattering angles one can reach polarizations of more
than 0.1%.

In our simulation we found a decrease in the polarization
effect when well width increases. The dependence of the
Sherman function on the well width L for the type-I structure
is presented in Figs. 3(a) and 3(b) (the impurity is located in
the center of the well: 4=0). This decrease is obviously
connected to the form of the averaged effective potentials
V(p) and W(p). The various potentials for different well
widths are shown in Fig. 4. The curves represent the absolute
value of the potentials [for the repulsive center V(p) is posi-
tive and W(p) is negative; for the attractive center V(p) is
negative and W(p) is positive] and demonstrate the influence
of the 2-D confinement and screening on the elastic scatter-
ing processes in quantum wells.>3% The figure shows that
the spin-orbit coupling potential becomes stronger near the
impurity site when the well width decreases. Electrons that
are scattered at large angles (where the polarization effects
are expected to be higher) pass through the relatively strong
fields at fairly small distances from the impurity site. This
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(a) B (dogree}
1.5 -
L= Snma
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FIG. 5. The Sherman function for the type-II structures with
different well widths (E,=0.04 ¢V): (a) repulsive impurity; (b)
attractive impurity. Insets: the dependencies of the Sherman func-
tion amplitude on the impurity location in the well.

causes the stronger polarization effects for the relatively nar-
row wells (as is shown in the insets of the Fig. 3). This result
suggests the possibility of controlling Sherman function by
means of the well size.

The spin-orbit interaction is known to be larger in small
gap semiconductors. Based on this fact, we show in Fig. 5, as
an example, the calculation results for the type-II structures.
The asymmetry effect in the scattering cross section for those
structures can reach about 1% for electrons with moderate
energy, when the impurity is located in the center of the well.
The insets show the dependencies of the amplitude of the
Sherman function on the position of the impurity in the
wells. Obviously, the magnitude of the Sherman function de-
creases when d increases. But the effect remains valuable
even for the impurities located at the edge of the well (d
=L12).

In addition, we notice that the spin-dependent asymmetry
for the elastic-scattering cross section for the impurities lo-
cated in the wells (2-D systems) is significantly larger than
calculated for 3-D spin-dependent elastic scattering from im-
purities in the bulk. To demonstrate the difference we present
in Table I our results for the type-II structure and results
obtained in Ref. 26 and 39, when all parameters of the sys-
tems are chosen the same (the systems differ only in the
dimensionality). In the table, & is the phase shift for /=0
and &P™ is the correction to the phase shift of the partial
wave with /=1 when the spin-orbit coupling is included.

195337-6
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TABLE 1
(L=3 nm).

The ratio »=6Y™ 8, for InSb structures

Impurity type v for 3-D system ? v for 2-D system

28x1072
2.7%1077?

3.7x107°
2.3x107°

Z=-1
Z=+1

*Reference 26.

This result suggests that the spin-orbit coupling with the
charged impurities in 2-D systems can provide sufficiently
larger spin-dependent effects than those in the bulk.

V. CONCLUSIONS

We have presented a theoretical study of the elastic spin-
dependent scattering of 2-D electrons from the screened
Coulomb centers located in quantum wells. The one-
electronic-band effective Hamiltonian and spin-orbit cou-
pling potential of the impurities allow us to calculate the
left-right asymmetry in the electron elastic-scattering cross
section. We have found a large spin-dependent asymmetry in
the cross section for electrons scattered from impurities in
AllnAs/InGaAsAs/AllnAs and CdTe/InSb/CdTe symmetrical
quantum wells.

PHYSICAL REVIEW B 67, 195337 (2003)

For the CdTe/InSb/CdTe quantum well we found that the
spin-orbit coupling in the two-dimensional systems leads to
larger spin-dependent asymmetry in the scattering cross sec-
tion than that in the bulk. The calculated amplitude of the
Sherman function for this structure is more than 0.01. This
could be detected in the measurements of the Hall effect at
low temperatures?3%404% and this is potentially useful in in-
tegrated electron-spin polarization devices based on semi-
conductor heterostructures. It also can be used as a tool to
determine spin-coupling parameters in III-V narrow gap
semiconductor heterostructures.

Finally, we would like to point out that the described ef-
fect is a clear analog of the well-known effect of spin-
dependent scattering in magnetic materials (see Ref. 37), but
it can also be realized in nonmagnetic semiconductor struc-
tures. Our model can be used as the starting point for more
detailed calculations. Experimental investigations need to be
conducted to verify our theory predictions.
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We present a theoretical study of the spin-dependent scattering of electrons from screened attractive
and repulsive impurities in III-V semiconductor quantum wells. The effective one-band Hamiltonian
and the Rashba spin—orbit interaction are used. We demonstrated that the asymmetry of the
spin-dependent skew-scattering and side-jump effect can lead to a quite large spin-dependent
(anomalous) Hall effect at zero magnetic field in all-semiconductor quantum well structures. Our

theory predicts a measurable spin-dependent Hall angle that reaches about 2.5X 1073 rad for a
CdTe/InSb/CdTe quantum well with impurities doped in the center of the well. © 2004 American

Institute of Physics. [DOL 10.1063/1.1641147]

I. INTRODUCTION

The extra degree of freedom provided by the electron
spin may open up further enhancements for semiconductor
devices. The spin-transistor proposed by Datta and Das!is an
example of a spin-controlled device based on semiconductor
two-dimensional (2-D) channels. For this reason, theoretical
studies of spin-dependent electron processes in 2-D semicon-
ductor structures have attracted a lot of interest since a par-
ticular branch of semiconductor electronics (so-called spin-
tronics) has become a focus of study.>™

Recently, detection of the electron polarization in para-
magnetic metals™® and semiconductors’ through the spin-
dependent Hall effect (SDHE) has been proposed. This is
quite similar to the exploitation of the anomalous Hall effect
(AHE), which can be observed in magnetic metals or semi-
conductors without external magnetic field (see, for instance
Ref. 8, and references therein). The key point of the expla-
nation of those effects is the presence of the spin—orbit in-
teraction (SOI). Considerable work on the AHE has been
done in the last 50 years since the pioneering work of Kar-
plus and Luttinger.” It is generally recognized that two
mechanisms contribute to the AHE. Those are the side-jump
effect (ST) proposed by Karplus and Luttinger® and Berger, '’
and the skew-scattering (SS) proposed by Smit.!! It is com-
monly believed that the first mechanism can be more signifi-
cant in metal alloys or semiconductors with relatively large
resistivity, while the second one prevails in systems with low
resistivity.

In the absence of magnetic impurities and at low tem-
peratures, the main source of the spin-dependent scattering
processes is the SO coupling to local defects. The effect of
the SOI on the electron transport and relaxation in 2-D semi-
conductor systems has been studied for a long time.'2"15 We
recently investigated the spin-dependent scattering processes
in the bulk of nonmagnetic semiconductors in the presence
of the SOL In semiconductor quantum wells (QWs) the
effect of the SOI on the processes of scattering becomes even
more stronger that in the bulk. This is a result of the local-

DBlectronic mail: vam@cc.nctu.edu. tw
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ization of electrons’ wave functions in the conduction
channel 718

In this article, we present a model of the spin-dependent
electron scattering from impurities located in the center QWs
of nonmagunetic III-V semiconductors. We calculate contribu-
tions from the SS and SI mechanisms to the SDHE. Our
calculation is based on the effective-one-band
Hamiltenian'*® and Rashba-type model of the SOL!%2!-22
For QWs of narrow-gap semiconductors (systems with large
SO coupling parameters) and with impurities located in the
center of the wells, we obtained relatively large spin-
dependent Hall angles (SOHAS).

The article is organized as follows. Section II describes
the method we use to calculate the spin-dependent (Mott)
cross section for 2-D electrons scattered from impurities in
semiconductor QWs. Section IIT presents the method of cal-
culation of the off-diagonal element of the conductivity ten-
sor in QWs with account of the Mott scattering. The calcu-
lation results are presented in Sec. IV and conclusions are
given in Sec. V.

Il. BASIC EQUATIONS AND DESCRIPTION OF THE
SPIN-DEPENDENT SCATTERING

‘We consider III-V semiconductor QWs with charged im-
purities and use the approximate one-electron-band effective
Hamiltonian in the following form:'*%®

I:I:I%O"_‘A/im(r)v (l)

where Hy is the Hamiltonian of the system without impuri-
ties:

a #2

H():* Evr[m Vr+ V(l‘)A

\A/]-m(r) is the impurity potential, V, stands for the spatial
gradient, m(E,r) is the energy, and position-dependent elec-
tron effective mass is

© 2004 American Institute of Physics

33



J. Appl. Phys., Yol. 95, No. 4, 15 February 2004

1 2p? 2
m(E,r) 352 | E+E(r)—V(r)

1
+ E+E (r)+Ar)—-V() |

where E is the electron energy, V(r) is the confinement po-
tential of the well, E (r) and A(r) stand for the position-
dependent band gap and the SO splitting in the valence band,
respectively, and P is the momentum matrix element.

The impurity potential consists of two parts,

Vin(1) = V(1) + Vo (1),

where V_(r) is the Coulomb potential of the charged impu-
rity and V(1) describes the SO coupling with the impurity

V(1) =ial E,;))VV(r)-[ XV ],
where!2 182122

2

1
“ED T | ErEm v P

1
CLEVEr) fAMR) - VO]

o)

We describe symmetrical QWs of thickness L and denote by
z the direction perpendicular to the well interfaces. For sys-
tems with sharp discontimuity in the conduction band edge
between the QW (material 1) and the barrier region (material
2), the confinement potential can be presented as

0,

Vir)= Vo

—LP=<z<Li;(rel)

|z|>Li2;(re2) @)

We assume that an isolated impurity is located in the center
of the wells (z=0), and the unscreened Coulomb potential
of the impurity is given as

Ze®

Vi = -,
47T€s[P2+12]1/2

)
where p=(x,y) is the position vector parallel to the inter-
faces, €,= (€, + €,)/2 is the average permittivity of the sys-
tem, Z is the charge of the impurity, and e is the electron
charge. For most III-V semiconductor QWs, we can neglect
the image potential, and we assume that for simplicity.

The Rashba term in I:IO does not occur due to the reflec-
tion symmetry of the quantum well.2'?2 Considering only the
electrons’ elastic scattering within the first subband of the
well, we present the solution of the confinement problem

with the Hamiltonian Hy as'>?

Vipz)=¢'(p)ei(z), (5)

where ¢(z) is the normalized electron wave function in z
direction, and s=*1 is the quantum number related to the
spin states. The eigen-energy E,, in z direction can be ob-
tained easily from the well-known Ben—Daniel-Duke
boundary conditions.

By taking the average

20,21
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+oo

Vip)= f_m dz T (2) V() @1(2)s

and following the approach described in Refs. 19, 23 and 24,
we obtain statistically screened and averaged quasi-2-D scat-
tering potential in the following form:

Ty = 2e [ 2 1ian)
P atm,(0) Jo €(q) 0MIp
too
XJ dz| @ (2)|%e 71,
~ R2Ze? Jw gdg
Vo (p)=i——— 7
2 a¥m,(0) Jo €(q) i(ap)

a,(E) f dz) @, (2)| % ~2H
z=s|L/2]

+6¥2(E)f dz| @1 (2)[2e ! x> °
22|10 pog’

where a=e /% e?m (0} is the effective Bohr radius in the
well, J,(x) is the Bessel function,

qs
eg)=1+2
(g p

is the 2-D dielectric function,

1 my(E))

at m(0)

d
qr Ltz lolm, (£) ][5,
is the 2-D Thomas—Fermi screening constant, Eg is the
Fermi energy of the system,” and

E=E +Ey,.

Due to the radial symmetry of the potentials \7€(p) and
Vo(p), we can present the wave function ¢°(p) as the fol-
lowing:

i=+0

wip)= X Ri(p)e'ox.

where [ is the orbital momentum number and y* is the spin
function upon which the Pauli matrix vector operates.

The quasi-2-D Schrodinger equation for the radial wave
function is given by

#2 [1afl a\ 2 ] - N .
() | o dp\Pdp *?ﬂLk —V(p)+1V(p) [ Ri(p)

=0, ©)
where

k:%x/zﬁi(E)Ep

is the wave vector of the 2-D electrons, and
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1
e d 2,
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At a large distance from the scattering center, the
asymptotic of the radial function is given by

Ri(p)—Ajlcos 8 y(kp)—sin N, (kp)];  p—0,

where &] is the scattering phase shift®?6 and N, is the Neu-
mann function. To solve the scattering problem we use the
variable phase approach,”®% which assumes that the phase
function &j(p) at the point p determines the phase shift pro-
duced by the part of the potential contained within the cycle
of a radius p. The scattering phase shift for the total potential
is equal to the asymptotic value
8= lim &j{p).
g0

The phase function &;(p) satisfies the following differential
equation:

d&ip)  2mim(E) . =
af!p :77;;[%(,0)*1%([1)]

X [cos &3(p)J (kp) —sin &(p)N(kp) %, (7)
with the boundary condition

51(0)=0. (C)

The complex 2-D scattering amplitude we present a8

F(E,§)=[f(£.0) + og(E. O)]1x, ©

where f°(#) and g(#) describe scattering without and with
electron spin reorientation, respectively, and they are deter-
mined by the following:2®

f(E,a):zo ficos(16), (10)
g(E,ﬂ):g,l gsin(16), {11)
where

[ 1 [exp(2i8)—1, I=0
= Nom exp(i28 ) +exp(i26,)—2, I=1

1 -
8171\ [exp(i287) —exp(i25] )],

@ is the scattering angle between initial (k;) and final (k)
wave vectors. When electrons are spin polarized parallel to
the z axis, the Mott scattering cross section” can be ex-
pressed in terms of the incident electron spin-polarization P
as the following:

o(E,0)=I(E,0)+ G(E,0)P, (12)

where 7(#) is the differential cross section for the unpolar-
ized incident electrons (the symmetric scattering part)

Huang, Voskoboynikov, and Lee

I(E, 8)=|f(E,0)|"+|s(E.0)],
and
G(E,0)=f*(E.0)g(E.0)+ f(E 0)g*(E, 0), (13)

is the spin-flip part of the scattering cross section (the asym-
metric scattering part).

Ill. SPIN-DEPENDENT HALL EFFECT IN 2-D
CHANNELS

In the Pauli approach to the explanation of the origin of
the AHE,® the total electron velocity is presented as
1

iy

Vit (k) +wy, (14)

where £,(k) is the dispersion relation of 2-D electrons in the
well, and wy, is the anomalous velocity, which can be written

in the following form:%21-2
[sXk]
Vi Tim (15)
m

where 7y, is the electron momentum relaxation time resulted
from impurity scattering, and s is the unit vector parallel to
the spin polarization.

The total electron current can be obtained by averaging
the total velocity over the electron distribution function
f(K). In the linear approximation with respect to the exter-
nal electric field 1'7,30732 this leads to

= el S =P I o

5

S

where o, is the diagonal element of the conductivity tensor
and o is the spin-dependent Hall conductivity (off-diagonal
element of the conductivity tensor). If the concentration of
scatterers is low, one can assume these impurities scatter the
electrons independently. In this approximation, the Boltz-
mann transport equation for the electron distribution function
f(K) is given by

- %FVJS(k): 2 Wolk Kj+ W, (k)
ks

X[f{K)—fo(K)], 17)

3

e KKK Npdl E, (K —E,(K)], (18)

- 8k’ - -
W, (K,k)= —kPG(k,k)Nimﬁ[Ep(k) - Ep(k)],

AmZ(E)
(19)
kK =IE K).0], GkK=G[E,K),60], (20
PZLE sn,, n=ni i tn_j, 21)
fls==+1

where Wo(k,E) and W:(k,i-() are the scattering transition
probabilities per unit time due to symmetric and asymmetric
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scattering, respectively, Ny, is the impurity concentration, P
is the polarization of the 2-D electronic gas, n; is the con-
centration of the s-polarized electrons in the 2-D channel,
and A is the system area. In the linear approximation, the
electron distribution function can be written in the form

F5(K)= fo(E)+ Po(E)(KF) + P (E) (k-[sXF]).  (22)

Substituting f (k) into the Boltzmann equation, we obtain
the coefficients Po(E) and P (F), and then the components
of the conductivity tensor.

Finally, the off-diagonal element of the conductivity ten-
sor obtained from Eq. (16) consists of two parts,

ol=ogt oy (23)

where ogq is the contribution from the skew-scattering
(which comes from the spin-dependent part of the elastic
scattering) and og; is the side-jump contribution (which
comes with the anomalous velocity). For the case of the de-
generated electronic system (low-temperature limit), those
two contributions can be presented as the following:

he’Ny, 7

i) s(ﬁ—) G(ky), (24)

o2
= 2, kD’ (25)
In Eqgs. (24) and (25),

. 27

G::f G(EL, 0] 1—cos(0) |sin(0)de, (26)
0

1 25N |

Y ki, @7

- 27

IJ:J I(ES  6)[ 1—cos{ )]d6, 8)
0

m,=m(Ep), a,=a(Ep), and the Fermi energy E} for the
s-group of the polarized electrons is the solution of the fol-
lowing equation:
52

Eszz—rﬁs(k;)erElz, (29)
with the electron Fermi wave vector defined as the follow-
ing:

ki=[2mn(1+sP)]"2 (30)

The tangent of the spin-dependent Hall angle (SDHA) is the
sum of two tangents, and can be presented as

tan( Gyy) = tan( 65 + tan( 65), (31)
where
tan( 657) = %, tan( 65) = ?, (32)
and
o= ﬁ 75l pe (33)
¢ Qg I P=0-

Huang, Voskoboynikov, and Lee 1921

16
1.4
12 .

= 1
0.3
0.6

a
o4 L]

0'20 2 4 3 8 10

n (101 ey}

FIG. 1. The ratio 5=|65/ 65| (65 and 65 are contributions into the total
SDHA from the side-jump and skew-scattering parts, correspondingly) as
the function on the electron concentration for two types of impurities located
in the center of the IGA QW [r=~N},, L=20nm; g is a repulsive impurity
(Z=—1), b is an attractive impurity (Z=+1)].

IV. CALCULATION RESULTS

To demonstrate the actual value of the SDHE in semi-
conductor QWs, we first present results of our simulations
for Alg4glng spAs/Ing 53Gag 47A8/Alg 4glng spAs (IGA) sym-
metrical QWs, which possessed the well-developed growth
technology. The parameters taken in this calculation are the
following: FE, =0.813eV, E,,=1.508eV, A;=036leV,
Ay,=0332eV, m(0)=0.041mgy, m,y(0)=0.075my, €
=14, &,=12.5, and V,=0.504 eV (mn is the free electron
mass). Secondly, we present our calculation results for CdTe/
InSb/CdTe (IS) QWs [where E,=024eV, E,p=1.59¢V,
A;=08leV, A,=08eV, m(0)=0.015mgy, my(0)
=0.08mg, €,=16.8, €,=10.2, and V=0.55eV>***]; these
demonstrate about the largest spin-coupling effects. In all
calculations, we assure the validity of the one-subband scat-
tering model, when the intersubband gap is larger than the
energy of the p-direction motion: E,<E, —F,,. This al-
lows us to consider scattering of electrons with the following
wave vectors: for the IGA structures with L=30nm—k
Sk%: 2A5(a;‘f)_1 (the electron concentration n=3.5
X 10" em™?%); for the IS structures with L=<30nm—k< kg
=6.6(a¥)" ! (n=3x10" cm™2). Notice, that a¥ is taken
different by definition for the different types of the systems.
‘We also assume in all our calculations the polarization of the
2-D electron gas to be 50%.

Two contributions to the total SDHA (0%3 and 0%] ) come
with different signs and different dependencies on the QW
width, the electron and impurity concentrations. 0IS_IJ does not
depend on the charge and concentration of the impurities,
and obviously increases when the electron concentration in-
creases. At the same time, HIS_IS depends on the charge of
scatterers (see Ref. 18) and on their concentration (it de-
creases when Ny, increases). This generates a complicated
interplay between Bls{S and HIS_IJ contributions to the total
SDHA 6. In Fig. 1, we present the ratio 7= 0%]/ QIS{S| as a
function on the electron concentration for two types of scat-
terers located in the center of the IGA well with L=20nm.

The concentration of scatterers and concentration of the elec-
trons are taken to be equal: #=N;,. It follows from the
figure that for the repulsive potential (Z=—1) the skew-
scattering mechanism is always predominant. For the case of
the attractive impurities (Z= +1), each of them can be pre-
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FIG. 2. (a) The absolute value of the SDHA in the IGA QW and (b) the ratio
% as the function of the electron coneentration (Ny=10"em > I
=20nm; a: Z=—1,b: Z=+1+1).

dominant for certain concentrations; for the concentrations
near n=~N;,=3X10%cm™ 2, those two mechanisms can
cancel each other.

The actual magnitude of the total SDHA as the function
of the electronic concentration for the IGA well is presented
in Fig. 2(a). In this figure we fixed the impurity concentra-
tion to be Ny, = 101 cm™2. Despite the different behavior of
the angle for systems with attractive and repulsive impuri-
ties, both demonstrate quite measurable magnitudes. Figure
2(b) clearly shows that the skew-scattering mechanism domi-
nates for systems both with attractive and repulsive impuri-
ties up to the very high concentrations of the 2-D electrons.

In addition, one can manipulate the effect in 2-D systems
with a variation of the well width. The impact of the well
width on the skew-scattering mechanism is discussed in de-
tail in Ref. 18. The main result is the following: the effect
always decreases when the well width increases. The depen-
dencies of the total (SDHA) on the well width for the IGA
wells are demonstrated in Fig. 3. The figure shows that the
side-jump contribution can make the effect stable for the
well width variations in the case of the attractive impurities.

The SOI is known to be larger in narrow-gap semicon-
ductors. For this reason, we show in Fig. 4, as an example,
the calculation results for the IS wells. We consider here only
the QWs with repulsive impurities, in which we can expect
(as it follows from the IGA wells) the most interesting result.
In this case the total SDHA reaches about 2.5X 10~ 3rad for
the relatively narrow wells, and it increases when the elec-
tron concentration increases.

These results show how one can manipulate the forma-
tion of the effect mechanisms and magnitude as well by
means of changes in the system parameters (2, Ny, ,L). This
possibility makes properties of the SDHE in 2-D semicorn-

Downieadasd 19 Fab 2004
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FIG. 3. (a) The absolute value of the SDHA in the IGA QW and (b) the ratio
7 as the function of the well width (1 =Nu= 1em™3 a:z2=-1,852
=+1).

ductor systems essentially different from those in the bulk. In
three-dimensional systems, we only can manipulate Ny,. In
addition, we notice that the SDHA in the QWs is signifi-
cantly larger (in few orders) than it was for the bulk (see
Refs. 30, 31, and 36). In addition, the effect is easily tunable
in QWs.

V. CONCLUSIONS

We described theoretically the SDHE in semiconductor
QWs when the 2-D electrons are scattered and form the
screenied Coulomb centers located in the center of the wells.
The one-electronic-band effective Hamiltonian and SO cou-
pling potential of the impurities allow us to solve the 2-D
spin-dependent Boltzmann equation and to calculate the
SDHA at zero magnetic field. We have found large SDHAs
for AllnAs/InGaAsAs/AllnAs and CdTe/InSb/CdTe sym-
metrical QWs. For instance, in the CdTe/InSb/CdTe narrow
QWs the SDHE can reach 2.5X 1073 rad. This could be de-
tected in the measurements of the Hall effect at low tempera-
tures, and this is potentially useful in integrated electron

3
28 "
g26
o4 /F
-
22
2,
5 10 15 20 25 30
L (nm)

FIG. 4. The absolute value of the SDHA in the IS QW with repulsive
impurities as the function of the well width (N,,= 10" cm
X10cm ™3 b n=10" cmfs).

3 a n=5
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spin-polarization devices based on semiconductor hetero-
structures. It also can be used as a tool of determination of
spin-coupling parameters in ITI-V narrow-gap semiconductor
heterostructures. We suggest that experimental investigations
should be conducted to verify our theory predictions.
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3.4 Main results and discussion

In semiconductors the most important interaction, which causes spin-dependent processe
is the spin-orbit interaction. The Rashba spin-orbit coupling is an essential element of the
proposed by Datta and Das the spin field effect transistor. A new branch of semiconductor
electronics so called spintronics became under an extensive development recently. For thi
reason, the spin dependent Kkinetics of electrons in traditional I1lI-V semiconductor
heterostructures becomes a topic of a great interest from theoretical and practical points of view
Our study deals with a model of the spin-dependent electron scattering from nano-scale
semiconductor quantum dots (antidots). Recent advances in semiconductor nano-technolog
allow us to consider small spherical dots (antidots) of 11I-V semiconductors as “artificial defects”
with controllable parameters. We calculated the polarization (the Sherman function) after a
single scattering and than investigate how the polarization changes after the second scatterin
The one electron band effective Hamiltonian and the spin dependent boundary conditions fo
spherical quantum dots (antidots) allowed us to calculate a spin asymmetry in the electror
scattering cross-section. We found a polarization produced by single and double scattering o
unpolirazed electron beams because by the spin-orbit interaction. We would like to stress that
the polarization is caused by non-magnetic GaAs/InAs semiconductor structures without externa
magnetic fields. We should mention that in the Anomalous Hall effect the Hall angle is
proportional to the Sherman function at the Fermi energy shell. Our calculation results for three-
dimensional random arrays of small semiconductor quantum dots (antidotes) suggest a small bt
measurable magnitude of the angle for antidotes. The anomalous Hall effect produced b
guantum antidots is expected to be reduced by the electron impurity scattering, but should stil
have a significant magnitude. This effect is potentially useful in integrated electron spin-
polarization devices based on all-semiconductor heterostructures.

In two-dimensional quantum wells, the spin-dependence of the scattering processes i
expected to be stronger than in the bulk because of the localization of electrons' wave-function
in the conduction channel and well known peculiarities in the two-dimensional electron elastic
scattering cross section. It should be noted, that the problem remains complicated even for
simplest two-dimensional electron motion because in general the spin-orbit interaction should be
described by a three-dimensional model.

Using the delta-doping technique, the Coulomb attractive and repulsive impurities can be
precisely placed in heterostructures. It allows us to model theoretically the effect the spin-
dependent scattering from the impurities located inside or outside the conductive channel. Mos
of the theoretical simulations of two-dimensional electron elastic scattering processes from the
impurities were conducted in details in the first Born approximation. However, it is well known,
when the perturbation theory is used, the dependence on spin in the elastic cross section appe
only in the approximation that follows the first Born approximation. For this reason, we used in
our calculations of the spin-dependent scattering cross-section the partial wave approach, whic
was also used in some simulations of the spin-independent elastic scattering cross-section whe
the first Born approximation is not applicable. In this study we calculated the spin-dependent
elastic scattering cross-section for electrons scattered by impurities in two-dimensional
heterostructures of I1I-V semiconductors. We used the effective one band Hamiltonian with the
Ben-Daniel-Duke boundary conditions for electronic envelop-functions to calculate the spin-
dependent elastic cross-section for electrons scattered from screened repulsive and attracth
isolated impurities with the spin-orbit coupling. The impurities are located inside the quantum
well. The one electron band effective Hamiltonian and Rashba model of the spin-orbit
interaction allow us to calculate the left-right asymmetry in the electron scattering cross-section.
We have found a large spin-dependent asymmetry in the elastic cross-section for electron
scattered from impurities in AllnAs/InGaAsAs/AlinAs and CdTe/InSb/CdTe symmetrical
guantum wells.

The Sherman function amplitude for the CdTe/InSb/CdTe quantum well is predicted to be
about 0.05. This could be detected with the anomalous Hall angle at zero magnetic field in the
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Hall effect measurements. This effect is potentially useful in integrated electron spin-polarization
devices based on semiconductor heterostructures. It also can be used as a tool of determinati
of spin coupling parameters in Il1-V narrow gap semiconductor heterostructures.

We calculated contributions from the skew-scattering (SS) and side-jump (SJ) mechanisms t«
the spin-dependent Hall effect (SDHE). Our calculation is based on the effective one banc
Hamiltonian and Rashba type model of the spin-orbit interaction. We have found large spin-
dependent Hall angles (SDHA) for AlinAs/InGaAsAs/AlinAs and CdTe/InSb/CdTe symmetrical
guantum wells. For instance, in the CdTe/InSb/CdTe narrow quantum wells SDHA can reach
2.5x10° rad. This could be detected in the measurements of the Hall effect at low temperature:
and this is potentially useful in integrated electron spin-polarization devices based on
semiconductor heterostructures. It also can be used as a tool of determination of spin couplin
parameters in IlI-V narrow gap semiconductor heterostructures. We suggest that experimente
investigations should be conducted to verify our theory predictions.

40
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We present a theoretical study of the effect of the spin—orbit interaction on the electron
magnetization and magnetic susceptibility of small semiconductor quantum dots. Those
characteristics demonstrate quite interesting behavior at low temperature. The abrupt changes of the
magnetization and susceptibility at low magnetic fields are attributed to the alternative crossing
between the spin—split electron levels in the energy spectrum, essentially due to the spin—orbit
interaction (an analog of the general Paschen—Back effect). Detailed calculation using parameters of
InAs semiconductor quantum dot demonstrates an enhancement of paramagnetism of the dots.
There is an additional possibility to control the effect by external electric fields or the dot design.
© 2003 American Institute of Physics. [DOL: 10.1063/1.1614426]

1. INTRODUCTION

With recent advanced technologies it has become pos-
sible to study in detail the electron energy levels of different
kinds of quantum dots and operate with a precise number of
electrons or with stabilized chemical potential in the dots.'?
Orbital and spin magnetization of those systems has been
under an extensive study during the recent decade. 32 The
point of interest is that the magnetization provides with in-
formation about multiparticle dynamics of the dots in an ex-
ternal magnetic field. In addition, recent development of
spintronics requires an extensive study of magnetic proper-
ties of nanosystems.'*~*¢ The spin states in the quantum dots
are promising candidates for realizations of qubit in the
quantum computing.'” Therefore, the study of the magnetic
properties of quantum dots despite of the fascinating physics
can provide us with additional tools to control the electronic
magnetism in nanoscale structures.

The electron spin controls design of the energy shells
and magnetic properties of semiconductor quantum
dots. 1182 Among other spin dependent interactions, the
spin—orbit interaction (the interaction between orbital angu-
lar and spin momenta®+??) plays an observable role in the
energy spectrum formation for III-V semiconductor nano-
structures. When the potential through which the carriers
move is inversion asymmetric one, the spin—orbit interaction
removes the spin degeneracy of the energy levels even with-
out external magnetic fields. It sufficiently alters the elec-
tronic properties of semiconductor nano-structures. 2%

The purpose of this article is to study possible conse-
quences of the spin—orbit interaction in magnetic properties

UAuthor to whom correspondence should be addressed; electronic mail:
vam@ cc.nctu.edu.tw
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of quantum dots at weak magnetic fields. We calculate the
magnetization and susceptibility of a cylindrical quantum dot
with the parabolic confinement potential for electrons when
the spin—orbit interaction is included into consideration. The
effective single-particle lateral parabolic potential describes
quite well the observed properties of quantum dots (artificial
atoms) with a small number of electrons.?*>* Application of
a magnetic field along the dot axes generates a complicated
structure of the electron energy levels and the theoretical
analysis of the parabolic quantum dots in magnetic fields
achieves a rich physics. The energy level behavior and ther-
modynamical properties of parabolic quantum dots in mag-
netic fields were discussed extensively.*5!12 Recently the
well pronounced spin splitting was found for the parabolic
confinement potential model of semiconductor quantum dots
with parameters of InSb and InAs.”® The spin splitting at
zero magnetic field leads to a crossing of the energy levels in
weak external magnetic fields (similarly to the general
Paschen—Back effect) and can provide unusual magnetic
properties of the quantum dots.

In order to examine evidences of the impact of the spin—
orbit interaction on the magnetization and susceptibility of
quantum dots we focus on the Rashba term?>% in the spin—
orbit interaction potential. A generalization with including of
the Dresselhaus interaction® can be done straightforward in
future studies.

Il. MODEL OF THE QUANTUM DOT

In the presence of a uniform magnetic field B applied
along the axis of the dot (z direction) the single-particle
Hamiltonian in the lateral cylindrical coordinates {p, &} is
written as”

8

© 2003 American Institute of Physics
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#? g 4 1 & iﬁ iB E
e s
2m(E) | pap” 9p prog?] 2 =HC )c"aﬁ
+ ym(E) 0l (E,B)p?+V (p)+ Ve (p, )
+ 30, pp8(E)B, e
where
V(p)=sm(E)wyp?, )

is the effective parabolic lateral confinement potential, % wq
is the characteristic confinement energy, the electron effec-
tive mass is given by>>!
11 EE+A) 2 4 1
m(Ey  m{0) BE,+2A) |[E+E, E+E,+A

G)

[E denotes the electron energy in the conduction band, »(Q)
is the conduction-band-edge effective mass, £, and A are the
main band gap and the spin-orbit band splitting, respec-
tively]
o eB
o (E,B)= mE)
is the electronic cyclotron frequency, where o, is the Pauli z
matrix

my A

hm 3(E,+E)+24

glE)=2 “@

is the effective Lande factor of the semiconductor,’” 1y
=ef/2m is the Bohr magneton, e is the electron charge, and
Mg is the free electron mass.

The Rashba spin—orbit interaction term in Eq. (1) is
given by

dv.(p) 4
T (k¢+ EBP)7 (5)

where ky=—i(1/p)d/d¢, and « is the spin—orbit coupling
parameter within the Rashba approachA25

The eigenenergies of the Hamiltonian can be obtained by
means of a self-consistent solution of the following
equation:

Vilp.d)=oa

frwlE,,;  B)
Ey1a=#QG(E, o B) 20|+ 1)+ ———=——
Mp 5
5|2 () BHam(E, J0h |, (©)
where
2 2
w.(E,B) m(E)o,
QY (EB)=wpt ——— +sa——— w (E,B),

n, I, and s=*1 refer to the main quantum number, orbital
quantum number, and the electron spin polarization along the
z axis correspondingly. The electron energy levels Eq. (6)
with different spins and the same angular momentum |{|
>0 due to the spin—orbit interaction are split at B=0 and
cross with increasing of the magnetic field [see inset in Fig.
1(b)].%® Note that the levels with parallel spin and angular

Voskoboynikov et ai.
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FIG. 1. Magnetization of InAs parabolic quantum dot with and without
spin—orbit interaction: (a) for one and two electrons; (b) for three and four
electrons (inset shows the dot energy levels for |I|=1 with the spin—orbit
interaction included, arrows refer to the spin polarizations); (¢} for five and
six electrons. Index ‘“'so” marks calculations with spin-orbit interaction,
sy =ehl2m(0).

momentum (antiparallel spin and angular momentum) re-
main twofold degenerated. This is the well known Kramers
degeneracy.

The first crossing point for the lowest spin-split levels
(J]=1) is determined by

® AE
Do g b @

where @ is the magnetic flux in the dot area, AE is the
energy spin splitting at B=0, and @ is the magnetic flux
quantum. The second crossing point occurs at®®

®  2AE .
D, (2AE+tghawg) ®)
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FIG. 2. Temperature dependence of InAs four electron quantum dot mag-
netization (a) without and (b) with spin—orbit interaction.

Being interested in the impact of the spin—orbit interaction
on the magnetic properties of the dots we confine ourself on
relatively weak magnetic fields as it is followed from Egs.
(7) and (8).

In our calculation we fix only the thermal average of the
total electron number to a given value N. In the case of the
fixed number of electrons one should use the canonical en-
semble description.® 3% The thermal average of the total
magnetization M and magnetic susceptibility y of the system
connected to a reservoir and with a fixed chemical potentia135
are given by

M=3 (f Bi’};’”)ﬂa,z,a— ), ©)
and
oM
X= g (10)

where f(E) is the Fermi distribution function, and £ is the
chemical potential of the system determined by the following
equation:

N=23 f(Eyio=)- (11

Ill. CALCULATION RESULTS

The ultimate consequence of the spin—orbit interaction
in the dot magnetization (the magnetic momentum of the

5893
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w, /6y (10°2)

FIG. 3. Temperature dependence of InAs five electron quantum dot magne-
tization (a) without and (b) with spin-orbit interaction.

dot) we describe first at zero temperature for quantum dots
with few electrons. For small InAs quantum dots we choose
m(0)=0.04m, (the tuned parameter from Ref. 36), E,
=042eV, A=038 eV, a=1.1 am’,  and
#we=0.019 V. %337 The calculated magnetization of dots
with 1-2, 3—4, and 5-6 electrons (when we consecutively
fill up the energy levels of the dot to the shell with n=0,
|7|=1) is shown in Fig. 1. For comparison, the magnetiza-
tion for the same number of electrons but without the spin—
orbit interaction is also presented in the figure. The magne-
tization calculated without the spin—orbit interaction
demonstrates a clear shell filling behavior: for N=2, 6
[closed shells, see Figs. 1(a) and 1(c)] the magnetic momenta
are canceled out at B=0; for N=1, 3, 4, 5 [partially occu-
pied shells, see Figs. 1(a}, 1(b), 1(c)] the magnetization takes
a positive value at B=0. Our calculation results suggest that
the spin—orbit interaction keeps the cancellation for the
closed 6shf:lls and slightly changes the magnetization for N
=1, 3.

The most interesting result we obtain for dots with four
and five electrons. The spin—orbit splitting partially lifts up
the degeneracy of (0,21, 1) levels and changes the electron
structure making FEg+y+; > Egrp+ % This assures the
magnetization to be zero at B=0 for dots with four electrons
in contrast to the case without the spin—orbit interaction.
When we increase magnetic field strength and reach condi-
tion (7) (at B~0.14T) the crossing between levels Eq;
and Eq_ ) occurs [see inset in Fig. 1(b)]. For the quantum
dot with four electrons the level crossing provides a sharp
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FIG. 4. Temperature dependence of the susceptibility of InAs parabolic quantum dot: (a) N=4; (b) N*=4; (c) N=5; (d) N*=5; and (¢) N®=S5, at the

region of the second peak.

jump in the magnetization. For the quantum dot with five
electrons the jump reflects a crossing between Ey; _; and
Egy levels for a higher magnetic fleld [condition (8)]: B
~14T.

At a low but finite temperature kzT<€fiewy (kg is the
Boltzmann constant) the magnetization for dots with N=1,
2, 3, 6 follows the well known rule: totally occupied shells
keep provide diamagnetic properties of the systems and par-
tially filled shells demonstrate paramagnetic peaks. The
peaks decrease exponentially [~exp(—kgTHiwg)] and the
magnetization approaches the Landau diamagnetism limit
when kzT~fw,.

The magnetization for the dot with four electrons at dif-
ferent temperatures is presented in Fig. 2. In this case M
—0 for B—0 and T#0. When the magnetic field increases
the magnetization demonstrates the paramagnetic peak. The
spin—orbit interaction shifts the position of the peak. For the
dot with five electrons we obtain an additional paramagnetic
peak at a higher magnetic field due to the crossing of the
Egy -y and Eq ; levels [it is shown in Fig. 3(b)].

The above described peculiarities in the magnetization
of dots due to the spin—orbit interaction generate well under-
standable features of the magnetic susceptibility. In Fig. 4 we
show y as a function of B for dots with four and five elec-
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trons at different temperatures. At nonzero temperatures
without the spin-orbit interaction we obtain the paramagnetic
peak near B=0 [see Figs. 4(a), 4(c)]. The spin—orbit inter-
action shifts the peak to the field defined by Eq. (7) for dots
with four electrons [see Fig. 4(b)]. In the case of the dot with
five electrons we observe at low temperature two peaks: near
B=0 (the ordinary one) and at the field defined by Eq. (8)
(generated by the spin—orbit interaction) [see Figs. 4(d),
4(e)]. Clearly, the differential susceptibility demonstrates un-
usual behavior, which is generated by the jumps of the mag-
netization and certainly occur only when the spin—orbit in-
teraction is included.

One can control the spin coupling parameters in planar
semiconductor systems by means of external or built-in elec-
tric fields.”?> By variations of the fields one can change
magnitudes of the parameters. From the above it appears that
the peaks of the magnetic susceptibility which are generated
by the spin-—orbit interaction should have the following in-
teresting properties. It is possible to perform a switching be-
tween the configuration presented in Fig. 4(a) and the con-
figuration of Fig. 4(b) for dots with four electrons by means
of the external electric field or the design of quantum dots.
The switching is also possible between the configurations of
Fig. 4(c) and the configurations of Fig. 4(d) for dots with five
electrons.

IV. CONCLUSIONS

Before we conclude, we would like to mention that in
this article the Coulomb interaction between electrons is ne-
glected for simplicity. The crossing in the energy levels can
be generated also by including the electron—electron interac-
tion into consideration. But in this case the crossing occurs
between levels with different / and in stronger magnetic
fields.* > To fully understand the described effects a
many electron problem should be solved.2*® However, the
recent investigation®® suggests that the effect of the electron—
electron interaction in systems with strong confinement can
enhance the spin—orbit interaction. On the other hand the
jumps in the magnetization and following peaks in the sus-
ceptibility are clear consequences of the reordering and
crossings in the dot energy system provided by the spin—
orbit interaction. It is known from the physics of the atomic
spectra, that the spin—orbit interaction always provides
crossing (or anticrossing) configurations in dependencies of
the energy levels on magnetic fields (the general Paschen—
Back effect).”” Therefore, the described effect has the clear
physical meaning but the actual magnitude of it should be
verified both experimentally and by means of more sophisti-
cated calculations. We have to mention, that it is worth doing
because (in contrast to natural atomic systems) quantum dots
have an advantage that one can control magnetic properties
of the dots by applying external electric fields and changing
of the chemical potential.

In summary, we have studied interesting consequences
of the spin—orbit interaction in small InAs parabolic quan-
tum dots. The magnetization and magnetic susceptibility of
dots with few electrons were calculated. The spin—orbit in-
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teraction was involved to control magnetic response of the
dots at low temperature. An analog of the general Paschen—
Back effect was found for dots with partially filled electronic
shells. This property of III-V semiconductor material quan-
tum dots could be useful for the future spintronics research.
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4.2 Main results and discussion
We calculated the magnetization and susceptibility of a cylindrical quantum dot with the

parabolic confinement potential for electrons when the spin-orbit interaction is included into
consideration. Application of a magnetic field along the dot axes generates a complicatec
structure of the electron energy levels and the theoretical analysis of the parabolic quantum dot
in magnetic fields achieves a rich physics. Recently the well pronounced spin-splitting was
found by us for the parabolic confinement potential model of semiconductor quantum dots with
parameters of InSb and InAs. The spin-splitting at zero magnetic field leads to a crossing of the
energy levels in weak external magnetic fields (similarly to the general Paschen-Back effect) anc
can provide unusual magnetic properties of the quantum dots.

The magnetization for the same number of electrons with and without the spin-orbit
interaction is also presented. The magnetization calculated without the spin-orbit interaction
demonstrates a clear shell filling behavior: for N=2,6 (closed shells) the magnetic momentum are
canceled out at B=0; for N=1,3,4,5 (partially occupied shells) the magnetization takes a positive
value at B=0. Our calculation results suggest that the spin-orbit interaction keeps the cancellatio
for the closed shells and slightly changes the magnetization for N=1,3. The most interesting
result we obtain for dots with four and five electrons. The spin-orbit splitting partially lifts up the
degeneracy of levels and changes the electron structure. This assures the magnetization to
zero at B=0 for dots with four electrons in contrast to the case without the spin-orbit interaction.
The crossing between levels for the quantum dot with four electrons produces a sharp jump i
the magnetization and shifts the magnetic susceptibility peak. For the quantum dot with five
electrons the jump reflects the crossing between another levels for a higher magnetic field an
generates an additional (in comparison to the case with absent of the spin-orbit interaction) pea
for the magnetic susceptibility. One can control the spin coupling parameters in planar
semiconductor systems by means of external or build-in electric fields. By variations of the fields
one can change magnitudes of the parameters. From the above it appears that the peaks of
magnetic susceptibility which are generated by the spin-orbit interaction should have the
following interesting properties. It is possible to perform a switching between the configuration
with and without spin-orbit interaction by means of the external electric field or the design of
guantum dots.

The spin-orbit (SO) interaction in narrow-gap semiconductor quantum dots has been the
object of extensive investigations recently. It links the spin and the charge dynamics and open
up the possibility of spin control by means of electric fields in non-magnetic structures. It was
found that SO coupling can sufficiently change magnetic properties, far-infrared absorption, anc
spin relaxation rate in quantum dots. In this work we extended our previous calculations anc
employ the Local Spin Density Approximation to investigate ground state magnetic properties
and addition energy spectra for few electron InSb parabolic quantum dots with strong SO
coupling. We consider SO interaction in semiconductor cylindrical quantum dots with a quasi-
two-dimensional parabolic confinement for electrons. The addition energy is defined like the
following: EagdN) = EgoN + 1) — B N), Where Rq is total ground state energy of electronic
system and N is the number of electrons in the dot. Magnetic field is applied along the dot axe:
generates a complicated structure of the electron energy levels. The addition energy spectru
shows for a small InSb parabolic quantum dot (effective radius ~ 15 nm) with and without
including of SO interaction. The SO interaction in combination with weak magnetic fields can
break the conventional sequence of “magic numbers” (Nk&...) for the lowest stable
electronic levels. The lover panel in the figure demonstrates the phenomenon — for the quantur
dot with 3 electrons the addition energy is larger than that for 4 electrons. This property can be
controlled by an external electric field.

We also investigated theoretically impact of SO interaction on magnetic properties of multi-
electronic nano-rings. On the base of the approach described above we simulated the effect
the SO interaction on the electron magnetization and magnetic susceptibility of small rings.
Those characteristics demonstrate quite interesting behavior at low temperature. The abruy
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changes of the magnetization and susceptibility at low magnetic fields are attributed to the
crossing between the spin-split electron levels in the energy spectrum. Detailed calculation usin
parameters of InSb semiconductor quantum ring demonstrates an altering in magnetic propertie
of the ring: from diamagnetic to paramagnetic. We proposed an additional possibility to control
the effect magnitude by external electric fields or design of the rings.
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5. Nano-structured meta-materials built from non-magnetic InAgGaAs nano-rings
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1) is the transition
v element. For each pair of levels 7, & we have a tran-
requency ey and correspomding damping . We
have used explicitly that the expression Yeo) has o be
function of w has been

e is the electronic charge and (rf

where

even in &, For its specific shape

as a1

odeling, done such that it

mmh d.\ﬂ'erent from the traditional w-independent y in
region of resonance, where vy, and resolves the sin-
gularity problems in the near static regime, where w=:0.
Since it 1s in general not possible to obtain -y in a theoreti-
cally hard way, a sm]ple algebraic format has bzen chesen to
model it. Eguation (1) can be considered to be the “Swiss
army knife” of discrete optics. In a twofold sense it is going
o be used i this paper. First we will use it to derive an
expre ssion for the polatizability of a nanoring in the eneve-
lope function approximation. Next we will use it to describe
the bulk response of the same semiconductor material, the
object is made from. Such relation is necessary to get an
independent va he mattix element controllin
noebject polarizab
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and ving, the following descripti

ue for
lity.

or the two different systems, bu]k and dot
n for the g i
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el bulk,

P,

cael ) = Flr)e(r}, nanocobject,

where the bulk tight binding function ¢(r) uses the conven-
tional unit cell to define the periedic part of the Bloch states.
Tor InAs the conventional cell consists of four elementary
Lmii CDU;,, aach "on"a:ring one In and one As atom. This cell
ic aud ifts size is given by the lattice constant «.. The

bulx wave function has to be normalized over the Volume of
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The fist task is to determine the polarizability of a quan-
tum dot or nanoring of volune V in the envelope function

approzimation. In this approximation the wave functions
Wroile) of the nanoobijsct have to be written as

A

Ax) =

PZ3S

wy.’{(.r\; fr’;y (l") s

where Fu(r} is the &% envelope function of the nancohject
belonging to the #® Bloch state ¢, (¢} of InAs {or any other
TI-V compound from which the object is made). For u the
value ¢ will be used to describe the conduction and k to
describe the valence band states, as before. The envelope
ion F(r} is dimensionless. In what follows the envelope
function matrix element (Fy|Fdv will be

defined as

~

Jdr}’ ) F A =38,
v

The equality follows from combinati
Eq. (

n of both equations 1u
Now the general expression for the polarizab

an arbitrary volume element (1) needs io be applied to a
nmoob]eu in the envelope function approximation and we

need an expression for the optic atriz element (k
The Bloch states for the electron and hole states will be

different and orthogonal, Then we have

I

N
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spm mtox o~ copies V; of the conventior it cell, Ins d*
these cells envelope fun 'u‘j is leppr\sed to be cou-
ant, Tsing lm expression for the m3
write the polarizability (1) as

{4) we can

T, \
J&-m'u‘r-

Since the optical matix elements pend only wpon
the Bloch states ¢, they do wot depend m ‘h; indices k, I of
the envelope states determined by the geometry of the na-
roobjects. Hence,
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To each bulk state ¢, belong N envelope states. In the ¢
culations to be done further ﬁib paper only a very small
number of these envelope states (typically six, three for the
heavy hole and three for the eleciron states) being cnu",gv;
cally closest to the energy gap, wall be used. This implies that
the summation over ¢ jnvolves only the electronic spin .
Such procedure 18 a good approximation for the imaginary
pact of the polarizability for energi the band gap. For
encrgies below this gap th ;18 predominantly
real and involves a summation over the of ali pairs of
states. Th ult of this summation, however, is almost con-
stant as a function of frequet fore be replaced
by a coustant value ayge In tion we obtajn

ztpi 2y

The sumenation over bulk states is over the indices 7, s, For
the nanosized objects investigated here, only transitions from
heavy hole to electronic Bloch states will be take
count. The reas that the
heavy and light hole states to be energetically di
1t the absence of a magoetic field B.
izability expression {6 embodies an miviguing
hybid of classical and guantum-mechamcal thinking, The
key ingredients of Hg. (0) are the static termi agg and any
dyn gle pair contribution in the summation over &1
The agg dominates the repsonse for frequencies w being lar
helow the energy gap EG and 15 explicitly shape and
dependent. For any pair & being at resonance (fiw== £y} the
polarizability is dominated by this single pair when the na-
nochject and damping v,
sumption mi this paper). Then the polarizability depends only
iff at all, on shape and volume {there is a volume and
“l’uubbh the but that effect has no
1 L\, as such). Any

dot-ring geomeL y causes the

ferent, even

re small enough (the basic as-

weakly,

v and lm[ is in ;tuls_ml not much di furmt from 1.
the

and vohune ins

{ the strength o

L0, 8) for k=i -2 optical wansitions (k-—{) .

a fully qua mechanical
similar behavior kne

effect and finds its mirtor
swit from conductance qua

The apparent and remarkable contrast in behavior of
i

najor components of the polarizability can be expleited to
mpare directly in one and the same system
tinueus and quantized electiromagnetic response.

To determine theorefically the required polarizabi
i‘:;r: Lmon of the electron and hole energies and
to the energy gap (the edge of op-
naneobjects in the presence of a
magmehc :lt‘,l(i B (_sec Fig. 3). It was found recently that

<

experimenta t simulations of the behavior of the
basic clunwts can only be obtained with three-dimensional

odels 1 ﬂw, e‘)( perimentally determined shape, ]
and composition f the semiconductor 1‘.1[‘0\)5]L(,LS Sl

the caleudation uwd here, we assume that the electronic
structure of these nanoobjects is governed by the hard-wall
confinement potential due to the c“uvo"mmu*w in e"ec
ameters over the edges of these ©

This model 18 comimenly used io caleulat
states in quant tructures™ and allows us to solve
the 3D Schrtd dinger equation with a minor number of addi-
tional approximations. This ularly usefud in this
study where we coucenirate ou the collective optical proper-
ties of systems of dots and rings.

Prior to writing the detatled d ption of the snexgefic
structure of dots and rings we introduce the additional geo-
mefric index i

ass 1

m heteros

s pa

and where index o will be as defined before. If index ¥ has
value (7) it vefers to the inner region of the dots and rings and
with value (¢) to the surrounding emmbedding matrix. T

effective envelope function Hamiitonian is given in the form

1 2B r)
!

+Vir)+ ,u—
AELT

ér =P,

o= — BV 4 eAlr), &3
where p, stands for the electronic canonical momentum op-

erator, ¥, is the spatial gradient, and Aly) is the vector po-
tential (B=V X A). ] (E,r) and g.(F,r) are

For electrons md
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the energy- and position-dependent effective mass and Landé

factor, respectively,
1

mAEx) 3%

H2\

VE 4 E (e -V ir)

1 \

TE+ Efr} =V (e)+ Alr},
and
. = \
E (E B Hig A‘K” }
S mLE L | BE+ E0e) - V] + 24000 |/
where V,(r} is the comfinement petential, E{r) and A(r)

stand for pos G energy band gap and spin-orbit
spliting in the valence band, £ is the momentum malrix
ent {Kane parameter), and o is the vector of the Pauli
5. The free r;i]c‘,c“t‘o[] mass is s, For the heavy holes
re assumied to be not energy depen-
jal V, s

ion-depende:

elem
P 1“
dent. The hard-wall ¢ .Jimc,._ :
both electrons and holes by

nd gl F,

We N mside" ¢ ically symmelric nano-objects {dots and
ings), the shape of which is generated by rotating the con-
tours uf F 126 When the magr
field i 5 we can treat the problem in
cylindri ] The origin of the system is
ng in the center of the object.
Because of the cylindrical symmetry of the system the full
wave function can be represented as

Vi) = F, g, (),

Nl ad (10}

where {1} is the envelope function and @,{r} is the peri-
odic pait of the Bloch state at T for the semiconductor it
belongs to. L. are the orbital quantum
munbers for the envelope fimction, of which only

be used here for each bulk Bloch state. For the calculati

of this paper we need especially detailed expressions for -‘he
heavy hole band states b T as required by the Xaoe
model.*” The guantum I belongs to the orhital angu-
lar momentum, the qua aumbers j, #i; determine the
rotal angilar momentum. The hole states arve

gz

3 +ipl,

R 73, 245"
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332 (2003)

@i an =

where the heavy b Z and the light hole

states hrave [m . T]“e elect on smie in the conduction
band are at " e product functions

1

¢"0,1/2¢ i = |C’L (12}

The guantum number e, determines the projection of the

spin along the z axis with v 3. The ¢
geometry determines a 21D Scl

coordinates

2, (E3\

g (F)B +

= Euzfik(p, 2, {13)

The Ben Daniel-Duke bound
with the hard-wail potential®®

for the problem

Filozlp {14}

1| oFlep)]
HE dp IR

Lz: 2lp3],

where 7mg(p) represeuts the gemerating contour for the dots

or rings in the {p,z} p]aat‘,. n the expression above we have

omitted the explicit reference to electron and hole states for

reasons of clarity.

B, Puiarizai_ailiiy: Gpﬂjca! matrix element

nanoohjects in the envelope fu
buik meter 15 the optical matrix element rg,. This me

i
element conuects the bulk valence and conduction band
states at I' as will be worked out here. Despite the advanced
state of the field of optoelectronics™ 3! there is still vncer-
tainty about the correct value of this opti ix element.
For this paper we will use the valve g by BHseev®! since
it 1s based upon experimental observations. As wall be clear
owing we will have to assign to ry, the value of

ch
.60 .

The opt“?ca': response of a ITI-V semiconductor in the Kane
cscription is governed by transitions between the full states
Ii}‘ and dnot between the basic states |p,,} and jsy. Ali
transitions atarting from the hole states |3 he top of the
(bulk) valence band and ending n L e Eb/T state yield three
matrix elements

(.4.,

Ha..
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Thes

Dp’ al response

enfary malrix elements govern the actual
-V semiconductors and have o be used
1 twofold sense. At fiest we need them to describe the bu
ical response at the interband transitions onset, where 1
iight and heavy hole band states are degenerate. For the bulk
response at the interband trausitions onsel, Hq. {(6) can be
used, if we set F,,k 1, with &=I=1 and let & scan bo
Lhe heavy anf: lié

e.recmdv

T
L.
5

3 fum

For transitions to the {sy| state the xy L,ompons,nh change

O Prod ducts over

sign. Therefore the tc,mI sum of direct ve
both spin orlentations beccmes

>ow &4

s pg

+¥-§ +2-2

1 of respouse which the bulk
should vield. The guantity rp, is the
slement, as {should be) used

This is indeed the isotiw
of a II-V semiconductor
bulk real space optical matrix
eisewhere in the literature.
For the optical response of qua

d

dots Orings

we situation is different. The geometry lifts the degeneracy
heavy and light hole states. means, as mentioned

ight hole states the absorption takes place at
5 thau for the heavy hole states. For frequen-
cies being almost at the gag means that
only the first matrix element fen coniributes
and Fg. (16) now bacomes

Incorporat:
yields

)

These findings have to be used i Bq. (6) and we have
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HE P Fue ).

(20}
The damping term 7y, in expression (2} for yula) will be
chosen to be independent from the indices I in the near
energy gap region. It will be referved to further as y and jts
value will be chosen such that the exper
Hnewid Ail be replicated.

imentaily observed

=

€. Polarvizabitity: Fleciromagretissn

> polarizability expressions we have derived until bere
are derived straight by vsing Ref. 23 and are purely theoret-
ical. As mentiosed in that paper ail issues related to electro-
magnetic seL jnteraction have been discarded. To be of use
e k these 1ssuesr need to be addressed
Honship between continuum

& whrid approach of this
The discussion should start with

=

paper. the response of a
single guantum dot or nanor i

izability o, exactly as prescribed by Hg. (5}, the in-

luced dipole 5 .length 4 follows from

d= &,

B, =E,+1-4,

ve B, is the average electric field over the volume of

dot or ninig. It is by definition different from the external field

by an amount controlied by the electromagnetic self-
interac tensor £, as described above. For bodies of revo-

nsor is given

hation with the 7 axis as axis of revelution this te

in general by

1N,
()= e, (22)
; 2

the static part g and its &° dependent
sady by Lorentz. In

here p=X, ¥V, 2.
dynamic addition have been obtained 4l
the electromagnefic literat they are -mﬁor]v known as
the (s Torentz field and radiative ds ermi. Since
ounly out, womg waves will be cousidered to bc al]oww, a
change iu sign of w will cause also & to change sign. As a
result the self interaction tensor ums inte its complex con-
jugate then.

The self interaction tensor is controlied for bodies of
revolotion by their volume ¥ and depol i 1Y,
For ellipsoids with short axis « in the z direction and long
axis e in the remaining x, v directions, depolarization factor
me are given by

is
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FIG. 4. Depolarizaton factors N, 48 a mpcl,u 1
ratio {=¢ /‘1 fOi s
=0.081. C

ctor | /3 is only o
1g to a sphere. \‘C
negative then, we

eld mmde A dielec-
than the external field
L wath the electromage-
ellipsoid, the
1 tensor is diagonal,
< ion of the e:s'cm'mavnetic se lf—imemcno‘) for
the case of a ring-shaped body is a considerable numerical
exercise. In the past aitempis have been made to derive it for
the case of a torus,’? but a simple approximate analy
expression can also be obtained by removing a central cyl-
inder with radius 4 from the ellipsoid treated before. Intro-
ducing the angle fy=sin"l(d/a), we obtain for this case

al

-
o
Q
@
i
—
Lt
[

tion, ap
the polarization density inside f
constant. Though this is definitely a reg
do not expect much deviation from the correct resalt for very
oblate ellipsoids. The )epe. ors for both types of
ellipsoid are shown in Fig. 4 factor
hardly depends ou the presence of the center hole.
For the case that we want to measure the polarizability of
a single dot or ring, we have to proceed differently. For the
experimental situation we have to use

The depolariza
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d=afy,

pc-]a J7a“']1tv a embodies also the
1 Comb 11\1[15 properly the two
tion ‘2 ) and (25) leads to

(26)

This is a very important relationship, showing that there
should be a serious discrepancy between measured and quan-
bum mechanically caleulated polatizabilities.

In expression (20) for a; we need separately au expres-
sion for agy, the quantum~wmechanical staiic polacizability
tensor of the dot or ting. For the special case that we repre-
sent the u-,L by an strongly oblate homogeneous d
ic constant €, this static pol
y be obtamed. It suffices {o

LGS

v
P
em ey, (27}
ay  daay
where we introduce the two notmalization factors ay and fy

Next we use Hg. (26} to determine the measurable polariz-
ability ag

e ]
The same expression has been obtained along a different line
of derivation by Avelin.® For arbitrary sha pes < of the dots and
rings ofﬂy a full numerical calculation can be done. The re-
sult of such calentation will be ag . In Eq. (20) we need
A5 ow znd ROt &g, The expression for aigg,, i simple and
given already in (271 The numerical determination of
Gl 18 TRCESSATY to ohtain the right value for s for arbi-
travily shaped bodies from the relation

— ]
£ o, g
f5,0w determines the expression for the applied

field in case of arbitrarily shaped bodies.
If we surround this individual dot or
lattice of identical dots and rir
L"}e only differenc
eld Ey by the lo
pldnc by

ring by a (square}

gs, with @; as lattice spacing,
¢ is that we have to replace the external

al field E,,

¢, given for the single lattice

< A,

E,=E, +t-4d, (3C)
where £ is the intraplanar transfer tensor for the plane. This
er tensor f can be determined numerically to any pre-
1g the Bwald one-fold integral transform. 'S Viieger,
has derived, after much effort, a more concise

.16
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i ik i
= ==
{ 5
5ey
iy
where tane of the dots or

rings. The s*tong aspect of the Viieger expressjon is that it
gives the Intraplanar transfer tensor as a dynamical correc-
tion to its static counterpart. This guarantees smooth lnkage
to the static result, being for a sguare laftice essentiaily ouly

nuarbers given above. The induction for a dot or ring
ide a lattice now becomes
o
d = & [Ee+ (F + Ddl,
T
#],
i 17
LSy (32}

where, as in the Vieger
term has disappeared.

dertvation, the radiation damping

B, Electromagnetic response

The electromagnetic respons
has to be detery
induced m the plane is of

o
2
=3
a
3
~
&
2

dots/tings,

ined 1t strength @

A=t - &0 +6]

The reflected electric fields at a remote site R are now given

FalR) =1,

caan
(34}

where f is the remote interplanar transter tensor. Physically
ouly 'h())'\j eleciric flelds muke sense which go in a directien

away from the sources. This means that when the sign of @ is
changed also the corresponding wave number or wave vector

T

has fo change sign. Therefore it is easily seen that in the
above expression when o is replaced by —~w, both & aud &,
have to change sign. Therefore all wansfer tensors , £, and
fr will always tum into their complex conjugate when
changes sign, We have showq ;1"mad v in detail that the same
behavior applies also o 0. This mathematical property
guarantecs that the dipole strength induced in the plane and
the electric field emitted by the plane of dots and riugs w1
be real according to

PHYSICAL REVIEW B 71, 245332 (2005)

ZJ

E(r.0) = Relf{w)d(wie . (35}

This elementary result and Fgs. (33} and (34) allow the en-
tire electromagnetic dqutmp to be done uai a single
complex exponential. Also the following Ield[.l(‘[h'hp 15 use-
ful, if wot indispensable:

14" .
\AP) = “J‘ dt Al B
O

el Boe '}

~Reid, 5] (36

)
REA2

for any two harmonic fields A{s), B{) and further wT'=2m7.
For electromagnetic derivations, different from the quantum-
mechanical dedivations ireated in Ref. 23, the complex nota-
i ; auxiliary in character and allows for the comumon
smoath Lsage
In a facther
that only the
cieuts suffice i
4 square pld‘h, of dnts a‘]d rings:
fx
= Ay cos & —,fk’

ra.mhtf ward manner it is easy to show now
1g reﬂeq,lon and trar ion coeffi-
magnetic respouse of

e ag
Fiwos & S st

rup = A - PP

A - fioos 8 A cos 6~ fisintd

where & is the a Gle of incidence. Further use has been o
of the notation ¢ f

ion coefficient to distin-

the transmi
| of the followi

it from the sel

au
bre

- (f;.m,- g ),

fe=2miak (3%

with v as defined before. These reflection coefficients are not
y measurable as they are. Measurable are only the re-
mittances 7, defined as

R

o
ag = Vag” qw>

where ¢ stands for the ellipsomet
energy bal
absorbance A, 1 the lattice plane accon

directions s, p. H !
es deternine the
o

ance point of view these quan

T
T tea T G
a; ki cos

where £y is the amplitude of the externally incoming plane
wave, Measurable, but less directly, are alsc the eliipsometric
angles ¥, A, which follow from the commonly used defini-
tion:
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f dots and rings.

¢ inpuit parametess fi ttices ©

the svmbols, see text.

TABLEL B
For the meaning of

Cuantum dot Nanoring

ag 80.0 nm 0.0 nm
a 1845 am 1845 nm
¢ 149 am 149 nm
I3 0.00 nm 4.75 nm
Kl & il 0.9434 0.5
WEy 1 F O 0.9285 0.9
[Fs 2l 7o v 09120 0.9
Yeh 0.60 am Q.50
£ 12.2 122
EdT=0"K) 042 eV 042 eV

py= = an ¥ &
’ }‘\SS

In the next section these ""'pe‘:mental‘y accessible qb&l" ities
e of dots :

will be calculated numerically for the plan

I NUMERICAL RESULTS
1

and n,]aht,d ellipsomeft

sing the

above expressions for reflection coefficients
> angles W, A, we have determined
tl e opur:al response of a square lattice made from nanorings
and, for comparisen, from quantum dots, Al relevant input
matendl has been coliected in Table L
The optical response for individual dots and rings is com-
pletely o iled by the p ability o, givenby E .q (20).
The static part of it, &g, is given by Bq. (27) and is com-
pletely determiined by the vohume V. Volume V is given for
the ellipsoid by Ea. (‘") and for the center hele eilipsoid by
(24). The geomeirical data determining these el]jps‘-oids
yare o, ¢, and d and have the values given in Table
pect ratto ¢ for both ellipsoids and center hole ellip-
becomes

>Otd 5 uhs.

and the corresponding depolarization factors /
the ellipsoids (dots)

o NV, are for

and for the ce

—24

m° and
[

7. To

alue of

The volume of the ellipsoid (dot) is ¥
for the ceater hole ellipsoid (ring} 91
calculate the static polarizability agg we need the v.
the dielectric constant ¢ for (InAs}, the material n
thwe dot or ring and givew in Table 1. That number belongs to
high-frequency () data at room temperature, since we con-
sider that to be the best choice.
single solated dot or 1
the following tensor components g

we find
ots:

using Hq. {
and a,,

o - R S
dae = 3711 X 10 qg,
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56 X 10y,

and correspondingly for rings

g =3.348
dg = 2188 % 1034,

3434 X 107,

where & ~*2 T m? The anisctropy of the static
polarizability «g is entirely due to the electromagnetic self-
interaction of the dot or ring. Quantum mechanics plays no
rele in it

This will change for frequencies near the energy
the dot or ting. Then there 13 a strong guantum-me:
coniribution to the anisotropy. To determine nmnericaily the
dynamic guantum-mechanical part of the polarizability ay
requires know].edge of the om,."l‘m matrix elements ’}"

[shate
. There is
ra The transition {re-
neies wy, ave shown in Fig. 3, but the damping y can only
be nsed as a free paxameter. We have used two values 2 meV
and S meV for it. If we take fw=0.86 eV as a typical energy
for the 1 and transitions of the dots or rings, this core-
sponds (o 2 wavelength A=1459 nm, well veyond the lagtice
spacing a;. This ensures that the Vieger expressions can be
used as they are and that we do not have to bother about
possible higher order reflectio
ometric angles "W and A are shown for this con-
ration fn Figs. 5 and 6. They are shown in each figure for
\,oLx at the left .m‘ for rings at he qght ll‘e JPpL[ panels

mass Haﬂ.l orjan (1)1 WJLh the w3en Jamel Fuk\
ing values are in Table I

on {14}, The res)

the bmk op

O

or dots there are no
ving gm‘f‘" ﬁ\ id strength B, opposite o the behav-
ior of the rings So tbe P ddld d‘vp'ds Jih, monot omens

rings, Ti 3
Aharonov nore re-narl\ed (i@pe[vdence 'wi'
> field s

use m;m dfv-

th UJ‘A‘Q

L 6. 111 dngn,:,b th, pmk
er than the
in general respond
remarkable, since
gs than for dots. Yet

timnes larg

o
o

sironge tru both makb
the Vohrne fraction fy is s g
thu undust;u ding of this behavior is quite down to earth: the
25 cause two pairs to conlribute in resonance simulita-
e usly and this effectively doubles the response. Al
drop by about the same factor as the damping v is 1
for all cases. This is due and in agreement with the gene
behavior of the frequency dependent functions fylw), a
given by Bg. {1). All values for ¥ and A have variations of
the order of maguitude of degrees and are therefore easily

ler for i

values
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¥ (deg)

(a)
EORGINY
¥ (deg) l;‘) ¥ (deg) for ;=60 and #y=5 mecV. Lelt

panels (a),(c): dots, right pancls
(b)) rings.

iy and quantum mechanically.
The results are shown in Fig. 8. The overall picture js that the
it also, as we hope  absorbance it the ring system is stronger than for the dot
oming pub oL system. This is the consequence of the enlargement at resc-
- parameters W, A are relative quantities  pance of the imaginary part of the polarizability due to the
and do not ¢ 1 knowledge about the ab ws of  crossing of eners els in the ring svstenr
opixcal respon: cuefﬁcientsfr[he.z'e[bre also reflectance and 1;;,Ssn[1sm & ;:;f ii;ctor ;7h‘4 j{;‘? 1:( ,‘taem
absorbance have been determined for a case where both the of b:he absorb- e is the sm_‘on gly i c;:eased dic
rog and the dot ialtice have a maximum in the lmaginary -
part of their polarizability (resonance). For both systems we
chose a magnetic field strength of 8=7 T and a damping of
fiy=5S meV. The selecied resonance freguencies were fiw
7 eV for the dot and fiew 54 eV for the ring lattice

oned that the variations
wn the embedding i
to show in & for
The ellipsomet

il reduce drastically,

deed the en-
ble aspect

o

wolsm for

Sl

increasing angles of incidence. For the hypothetical case that
the dots or tings would have had an isotropic polarizability,
cions s and p wo ehave similar o
8 . Although the amsotropic behav-

both polatzation di
the s compouenls in

o

£.

! Iy A Toge P the alat o L kack hoth tc
The reflectance for those seffings is shown in Fig. 7. Typi- 1-.‘>r IS po:amzaﬂ S (f J;e e,‘eAnenb S bgb]["ooln [\3
- ] 3 ssm (throush the electromasnel fiensor

; the values are in the 10~ range, so prety weak. The  Slectomagnetism (duough the electromagnetic seli-tensor}

and to quantum mechanics (through the expectation value of
the position vector), the dichroism: is governed in the first
place by guantum mechanics. For light components in the z
direction the dots and rings will be transparent, for the re-

weaker reflectance than the dot

st outspoken aspect is the occurrence for p
mumn at about 687, Por bulk et ot 4 ’ : '
74° for comparis maining x, y direction they will be absorbing. So it looks as

e of 74° for comparison. X ) B g

so caleulated the absor- if research concerning the shape and volune independence
rect commection to the of the optical response for isolated levels a

By means of Hg. (40} we have :
batice. This quantity has the most
detailed treatment of the microscopic behavior given in this should focus upon absorbance and the dichr 1 found here.

Tesenance,

243332-10
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A (deg)

A {deg) ﬂ\-

quaniuri
N :
by A for

for a menolayer of
dots wnd manorings
- #=060" and A y=2 meV, {c),(d) A
A {deg) A (deg) for #=60 and fiy=3 meV. Loft
panels (a),(c) dots, sight panels

(b)) rings.
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IV, SUMBMARY AND CONCLUSIONS

In this paper we have performed a comparative study of !
oy o
ms {such as reflectance and absor- tesponse i ;
given by the polasi

ate guantum dots
he polarizabilit

the optical response funct
bance and the eflipsometric angles W, A} for quantum dots
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FIG. 8. Absorbance A for a monolayer of InAs quantum dots
ings, B=7 T. Dotst hew=0.867 ¢V, rings: fw=0.854 ¢V

=

ver of InAs quantumn dots

FIG. 7. Reflectance R for a monola
and panorings. A=7 T. Diots: Aa=0.867 ¢V

Both: fiy=35 meV.

and nar
Both: 4 y=5 meV.
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by both guantum-mechanical and electromagnetic interac-
tions. Tor nano-objec ] oua‘spo]'en consequence of thes
two aspects of the polarizability is that far below the enerpy
gap the strength of the polatzability is volume and shape
dependent, \&hmeax or separately observable resonant tran-
sitions at the absorption edge the strength is volume and
shape indepeudent. For the optical response of the
{attices made up from these nano-objects ouly the electro-
magnetic interaction needs to be taken into account. The re-
o] ote le&[)ollub, as represented by refiection and transmission

> ied bv remole pro ators as
these
Aor the quanh&.hve analy
ices mad\ hom na

e of

S

ity

coeficients build a key in-
of the magneto-optical
osized obj

. The calcu-
oit
Ltc aepsmle'lce from maoreh\, fekls -haL df»v '[\eﬂpi"e a
fower volume fraction rings have '\Ll‘"'lé,&[ variation in any of
the ellipsometic angles than the dots. The crossing of the
trausition energies ¢ for ¢ 'mgs and known
as the optical Aharon

3

oV fcct, resulis ina pronounced

PHYSICAL REVIEW B 71, 245332 (200%5)
vartation of the eilipsometric angles for varying magnetic
field. The reflectances for both types of latiice ave weak, as
can be expected from such thin layerlike systems. Remark-
able is the strongly increasing dichroisms for increasing
angles of incidence, Since the origin of this dic
the dynamic part of the anisotropy of the polar
o-objects, this dic m can be of use o inw
size- and shape-dependent behavior of the pola ri'labim :

woism 18 in

y

T

t‘ne, etical findings obtained here, vield also the es
starting point for fature work to incorporate the infiue
the embed sapped quantum-dot or nat

This
‘ud‘ltun df»
optical response is in
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Abstract

The purpose of this paper is to show that semiconductor nano-structures built from non-magnetic InAs/GaAs nano-rings can exhibit

simultaneously negative effective permittivity and permeability over a certain optical frequency range. The structures are resonant and have
this property near the edge of absorption of the nano-rings. This can be particularly interesting in the investigation of the challenging problem

of development of left-handed composite materials in the optical range.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Left-handed material; Semiconducter nano-rings: Optics

Left handed composite materials (LHCMs) exhibit
simultaneously negative permittivity (¢} and permeability
(1) over a certain frequency () range [1-3]. It is
acknowledged that LHCMSs can have a variety of exciting
applications. A particularly important and challenging
problem in this field is the realization of LHCMs in the
optical frequency range. A negative refractive index was
confirmed in the GHz and THz range [3,4] many years after
its theoretical prediction [1], but most of magnetic materials
at frequencies in the GHz range and above have a magnetic
response which is tailing off. That is the reason why it was
proposed to realize LHCMs relying upon the idea that
inherently nonmagnetic materials can exhibit a magnetic
Tesponse.

In this work we show theoretically that there is an
opportunity to obtain negative permittivity and magnetic
permeability simultaneously in the optical range by using
nano-structured composite semiconductor materials.
Recent advances in the manufacturing of semiconductor
nano-rings make it possible to construct arrays of III-V
semiconductor nano-scale rings [5]. Just like self-
assembled quantum  dots, nano-rings posses atom-like
optical properties, but at the same time nano-rings are
non-simply connected quantum systems, exhibiting

* Corresponding author. Tel.. +886 3 5612121x54174; +886 3
5724361,
E-mail address: vam@faculty netu.edu.tw (O. Voskoboynikov).

0026-2692/% - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi: 10.1016/.mejo.2005.02.070

unusual magnetic [6-8] and magneto-optical properties
[5,9,10]. One of the problems arising in LHCMs for the
optical range is that the size of the structural elements
has to be of nanometer scale. Another problem is that the
use of conductive elements is inappropriate because of
the high losses [11]. Semiconductor nano-rings are ideal
building blocks and could meet the requirements
mentioned. It i1s necessary to emphasize that structural
elements possessing magnetic response, have sizes much
smaller than the operating wavelength and the composite
materials made from them can be characterized by
effective permittivity e(w) and magnetic permeability
(wy only [1,2,11].

In this study we show that for three-dimensional photonic
structures based on an artificial lattice of InAs/GaAS nano-
rings [5] the effective permittivity can be negative in the
optical range. At the same time the frequency domain with
£(w)<<0 can be tuned by changing the individual capacity
of the rings.

To demonstrate theoretically a nano-structured compo-
site material with negative permittivity and permeability in
the optical range, we first consider a basic cell of a material
made from semiconductor nano-rings (see insert in Fig. 1).
Two-dimensional square arrays of these cells (with
characteristic lattice constant @) then are stacked as a
layered meta-structure (with distance between layers [)
(Fig. 1). This establishes magnetic activity along the
direction of stacking (z-axis in Fig. 1). In this work we
consider only TE-polarized light, with the magnetic field
parallel to this z-axis.
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Fig. 1. Schematic diagram of a composite material built from nano-rings. In
insert: in-plane cross-section of a single ring with the perimeter determining
the effective resistance.

To evaluate the dielectric and magnetic properties of this
structure, we first calculate the polarizability tensor & of
a single ring. For frequencies close to the energy gap of the
nano-ring, the size of the ring is smaller as compared to the
wavelength. One can use then the dipole approximation and
the Kramers—Heisenberg expression for &(w) [12}:

: AT
b = & + 2 5 (%) [M} "

h i —w— il

I' is the damping factor chosen to be independent from
frequency near the resonance region. The possible transition
energies fwg = th — Ef are determined by the discrete
energies EF, EF for the electron and hole states respectively.
The dynamic part of the polarizability is determined by the
optical matrix elements {i|r|f}, the expectation value of the
position vector r=(x,y,z) taken over the volume of the
nano-ring. The sum over states in (1) is limited to transitions
with the lowest Ay, being near the absorption edge of the
system.Using the approach proposed in [6,10] and taken
into account the cylindrical symmetry of the ring, we obtain
for the optical transition elements [10]

(Slx|x)
V2

where I, = V;lfpdpdz@e(p, 2Py (p, 2) is the electron-hole
overlap integral for the envelope wave functions, V,, is the
volume of the conventional bulk unit cell, and p = (x,y). The
matrix elements {5|x|X) can be presented in the conventional
notation of the Kane parameter P
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s

el =0 il = Gyl = \

P
R
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Previously we have calculated the energy levels and wave
functions for electrons and holes confined in InAs/GaAs
nano-rings of different sizes and shapes {6] and the static
polarizability of these rings. Based on this calculation, we
can reconstruct the polarizability tensor and using the
Clausius-Mossotti relation we obtain an effective

permittivity for TE-polarized light in the structure
1+ 2 Nog(w)

w) = &* ,
1— ;TONan((u)

@

where & = (1 — x)eg,4, + x is the effective static permittiv-
ity of the system, x is the relative volume occupied by the
rings in this structure, eg, 5, is the optical dielectric constant
of GaAs, N is the density of the rings in the structure, and ¢y
is the permittivity of free space.

‘We use this effective permittivity of the system to obtain
in turn its magnetic permeability. To describe the effective
magnetic response of the structure, we follow the approach
of [11] and assume that for electromagnetic fields with
frequency near the absorption edge of nano-rings, a circular
current flow is induced inside the rings. Following [11], we
define the effective permeability of this structure in the
optical range near the adsorption edge

F

wewy=1-— ) (3)

R [iReffm - CLJ
where F = T(rq e is the geometrical filling-factor of the
basic cell, roy is the outer radius of the ring, Ry is the
resistance of the ring measured over the perimeter of a circle
with radius r (see insert in Fig. 1), C is the effective
capacitance of the ring, and gy is the permeability of free
space. The resistance of the ring we can calculate by the
following assumptions

1 2mr
Ryt = =
T eff

)

where 0. is the effective conductance of the system (note:
in[11] o refers to the resistivity, not to conductance) and S is
the area of the ring cross-section. The conductance is
connected to the effective permittivity (2) as follows [13]

(@) = £(0) + i 2L (5)
£ot)

Combining (3)—(5) one can find the effective magnetic
permeability of the structure in generic form. Detailed
calculations give

Fo?
w? — i +iy?’

e =1-— ©®

where wy is the effective resonance frequency, which is a

solution of the following equation

5 2 { [£, () — 2(0)] 408 } >
TS edw) — OF + [P | 2nrCot ) 0

(]

Table 1
Dependence of the effective resonance frequency wg on the capacitance of
the structure with S,

Cegr (1077 F) 30 3 0.3 0.03
wo (10 Hz) 186 1.87 192 3.13
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Fig. 2. Effective permittivity and permeability of the system from Fig. 1
with §,={33, 5, 10, 4.5, 1 nm} and €.z =03 X 1077 F (a) Real parts of
£(w) and w(w); (b) normalized imaginary paits of e(w) and u(e).

and

2} (o)
5 Tewo) = <OF + [eiwo)l

Y= (6]
is the effective damping factor (¢ is the speed of light in
free space), £ {w) and &(w) are correspondingly the real and
imaginary parts of the effective permittivity.

We will now calculate the dispersion of e(w) and p(w) for
the structures built from the InAs/GaAs nano-rings. The
nano-ring shape is generated by an ellipsoidal contour [6]:
the cross-section of the ring shows an ellipse with semi-
major axis ry and semi-minor axis zy (semi-height of the
ring). We use the values of a(w)as calculated previously by
us for the nano-rings. Then almost all parameters in (2) and
(3) for a structure built from the rings can be easily
computed for a certain set of parameters S={a, [, r, r, Zo}-
Only the capacitance of the rings remains unknown and
should be taken from experiments. But, from literature [9] it
is known that the capacitance of semiconductor nano-
objects (quantum dots and nano-rings) is in the range from
107*-10" " F. In Table | we present results of our
calculations of «wp for a few possible values of the
capacitance using Eq. (7) and S,={33, 5, 10, 4.5, 1 nm}.

Obviously the resonance frequency for the effective
permeability turns out to be in the range of interest. The
capacitance of the ring plays the role of a tuning parameter
for the frequency.

The resulting dispersion for the effective permittivity
&(w) and permeability p (w) 1s presented in Fig. 2. A
negative permeability is possible for the system in the same
region where the effective permittivity is negative. The
region is rather narrow but quite visible. There i3 a
possibility to tune the size of the region and position by
varying the 1ing capacitance like it is shown in Table 1.

‘We stress that the negative permeability can be obtained
only under rigid requirements. One needs to keep the
deviations from the dimensions of Fig. 2 lower than about
10%. Larger deviations can crush the frequency region
where the permeability is negative. But a strong dispersion
(without obtaining negative values) remains for effective
permittivity and permeability within a wide range of
possible sets S.

In conclusion, we have demonstrated that dense nano-
composite materials built from small nano-rings can exhibit
simultaneously negative permittivity and permeability in
the optical range. The range is wide enough to be scanned
conveniently with lasers having typical spectral width of
Ar=10"* Hz The range can be tuned by changing the ring’s
capacity. These results could be particularly useful for
design of a new class of LHCMs in the optical range.

This work was funded by the National Science Council
of Taiwan under Contracts No. NSC 93-2112-M-009-008
and NSC 93-2215-E-009-006.
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5.3 Main results and discussion

We studied theoretically the magneto-optical response functions (like polarizability and
absorbance) for semiconductor quantum dots and nano-rings, when they are arranged in a squz
lattice. The calculations clearly show that rings are more effective to exploit the response fromr
magnetic fields than dots. Despite a lower volume fraction ring structures have stronger variatior
of absorbance when the magnetic field changes than the dots. We have shown that layers
InAs/GaAs self-assembled nano-rings exhibit the optical AB effect particularly in reflectance
mode. While AB effects are discussed in the literature for the cases of infrared absorption an
photoluminescent emission, we can expect this behavior to be observable in ellipsometric
measurements with good resolution. The calculated results suggest large polarization anisotroy
for absorbance at large angles of incidence. This can be measured and should display the ne
optical AB effects for low temperature and moderate magnetic field regimes. Actual magnitude
of the effect should be verified both by experiment and by more sophisticated calculations.

Left handed composite materials (LHCMs) exhibit simultaneously negative permittivity and
permeability over a certain frequency range. It is acknowledged that LHCMs can have a variet)
of exciting applications. A particularly important and challenging problem in this field is the
realization of LHCMs in the optical frequency range. A negative refractive index was confirmed
in the GHz and THz range many years after its theoretical prediction, but most of magnetic
materials at frequencies in the GHz range and above have a magnetic response which is tailir
off.

In this our work we show theoretically that there is an opportunity to obtain negative
permittivity and magnetic permeability simultaneously in the optical range by using nano-
structured composite semiconductor materials. One of the problems arising in LHCMs for the
optical range is that the size of the structural elements has to be of nanometer scale. Anothe
problem is that the use of conductive elements is inappropriate because of the high losse:
Semiconductor nano-rings are ideal building blocks and could meet the requirements mentionec
It is necessary to emphasize that structural elements possessing magnetic response, have si
much smaller than the operating wavelength and the composite materials made from them can |
characterized by effective permittivity and magnetic permeability only.

In this study we have shown that for three-dimensional photonic structures based on ar
artificial lattice of InAs/GaAS nano-rings the effective permittivity can be negative in the optical
range. At the same time the frequency domain with the negative permittivity and magnetic
permeability can be tuned by changing the individual capacity of the rings. These results coulc
be particularly useful for design of a new class of left handed composite materials in the optica!
range.
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6. Self-evaluation

In the project which results reported we investigated deploying of the spin-orbit
interaction in conventional non-magnetic I11-V semiconductor nano-structures to build elements
of spintronic devices. The semiconductor approach has the advantage of being compatible wit
conventional semiconductor technology. It has been demonstrated theoretically that the
structures can be efficiently used to polarize, inject, transport, manipulate, store, and detec
electron spins. Our results suggest to exploit spin-orbit interaction in semiconductor nano-
structures for spintronics needs.

#1. It has been proposed that in tunnel barrier structures the spin-orbit interaction can lead to th
spin-filtering. In resonant tunnel heterostructures (due to the strict resonant tunnel conditions) the
spin-filtering can gain a higher level without an additional magnetic field and can be controlled
by external electric fields even in symmetrical structures. This idea attracted much interest ir
publications of other authors and it is an important enhancement of or previous pioneering works
in a new branch of spin-dependent investigation in all semiconductor structures — spin-filtering
without magnetic elements. Those results are published in the leading international journals
appreciated by the scientific society and citied.

#2. We introduced a model of the spin dependent electron scattering from an array of nano-scal
all semiconductor quantum dots (antidots) - “artificial defects”. We found theoretically for the
first time that the differential cross-section for InAs/GaAs antidots demonstrates a relatively
large left-right asymmetry in scattering cross-section. We described theoretically the Anomalous
Hall effect appeared in three-dimensional random arrays of small semiconductor quantum dot
and due to spin-dependent scattering from impurities in two-dimensional channels as well. In
semiconductor quantum wells the effect of the spin-orbit interaction on the processes of
electron’s scattering appears to more stronger that in the bulk. This is a result of the localizatior
of electrons’ wave-functions in the conduction channel. The one-electronic-band effective
Hamiltonian and spin-orbit coupling potential of the impurities allowed us to formulate and solve
for the first time the 2-D spin-dependent Boltzmann equation and to calculate the spin-depender
Hall angle at zero magnetic field. We have found large spin-dependent Hall angles for
AlinAs/InGaAsAs/AlinAs and CdTe/InSb/CdTe symmetrical quantum wells. This could be
detected in the measurements of the Hall effect at low temperatures and this is potentially useft
in integrated electron spin-polarization devices based on all-semiconductor heterostructures. |
also can be used as a tool of determination of spin coupling parameters in IlI-V narrow gap
semiconductor heterostructures. We suggest that experimental investigations should b
conducted to verify our theory predictions. Several publications in leading international journals
were performed based on the results. The publications are appreciated by the scientific socie
and citied.

#3. We found that a significant spin-splitting in the electron energy spectrum in semiconductor
guantum dots and nano-rings at zero magnetic field and the state crossing with external magnet
The crossing of electron energy levels with different spins leads to unusual magnetic propertie:
of quantum dots and an additional degree of freedom for the electron spin state (qubit)
manipulation in quantum dots. We calculated the magnetization and susceptibility of a
cylindrical quantum dot with the parabolic confinement potential for electrons when the spin-
orbit interaction is included into consideration. Application of a magnetic field along the dot axes
generates a complicated structure of the electron energy levels and the theoretical analysis of tt
parabolic quantum dots in magnetic fields achieves a rich physics. The well pronounced spin:
splitting was found by us for the parabolic confinement potential model of semiconductor
guantum dots with parameters of InSb and InAs. The spin-splitting at zero magnetic field leads
to a crossing of the energy levels in weak external magnetic fields (similarly to the general
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Paschen-Back effect) and can provide unusual magnetic properties of the quantum dots. Resu
of those works are also appreciated and citied.

#4. In view of possible nano-scale semiconductor spintronic device and quantum computing
implementations, we investigated in detail the quantized energy structures and magnetic
properties of a new semiconductor nano-object - quantum nano-ring. We have shown that layer
of InAs/GaAs self-assembled nano-rings exhibit a new types of the optical Aharonow-Bohm
effect particularly in reflectance mode. While AB effects are discussed in the literature for the
cases of infrared absorption and photoluminescent emission, we predicted this behavior to b
observable in ellipsometric measurements with good resolution. The calculated results sugge:
large polarization anisotropy for absorbance at large angles of incidence. This can be measure
and should display the new optical AB effects for low temperature and moderate magnetic field
regimes. We have shown for the first time that for three-dimensional photonic structures base
on an artificial lattice of INAs/GaAS nano-rings the effective permittivity can be negative in the
optical range. At the same time the frequency domain with the negative permittivity and
permeability can be tuned by changing the individual capacity of the rings. These results coulc
be particularly useful for design of a new class of left handed composite materials in the optica!
range.
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