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Effects of geometrical shape dispersion on inhomogeneous broadening of excitonic peaks
of semiconductor nano-objects
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We present an efficient method for simulation of the inhomogeneous broadening of photoluminescence peaks
of dispersive ensembles of semiconductor nano-objects. Using our mapping method for geometrical and material
parameters of the objects, we managed to connect the position, asymmetry, and width of the photoluminescence
emission peaks of ensembles of the objects to the actual dispersion of the geometrical shapes of the objects. The
mapping method allows us to very efficiently reproduce and explain experimental data on the photoluminescence
of dispersive ensembles of triple concentric GaAs/AlGaAs nano-rings, i.e., nano-objects with a very sophisticated
three-dimensional geometry.
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I. INTRODUCTION

Advances in modern semiconductor technologies make
it possible to produce and investigate in detail semicon-
ductor nano-objects (quantum dots, quantum dot molecules,
nano-rings, etc.) within a wide range of geometrical shapes
and material parameters. The nano-objects demonstrate very
promising properties for practical use in modern optics, but
the inherent dispersion of their geometrical parameters (shape
and size) leads to the almost uncontrollable inhomogeneous
broadening1–4 in optical spectra. Simulations of the inhomo-
geneous broadening for ensembles of semiconductor quantum
dots with simple spherical or cubic shapes are known in the
literature (see, e.g., Refs. 2 and 3, and references therein). The
broadening was explained as a result of the dot-size (volume)
primitive dispersion. In addition, the excitonic effects and
homogeneous broadening (which originated from the temper-
ature fluctuations) have been ignored. Those approximations
allow one to simulate the broadening using simple analytical
expressions or nonextensive numerical simulations.

The optical characteristics of dispersive ensembles of semi-
conductor nano-objects of complex geometries and material
compositions should be simulated using the multidimensional
(multiparametric) distribution function, which cumulatively
reproduces variations of the object parameters. Using the
mapping method (recently derived by us),5,6 we are able to
very efficiently compute energy states and wave functions
of electrons and holes confined in the nano-objects within
a wide range of sizes, shapes, and compositions. Thus, we
can simulate ensembles with multiparametric distributions.
To demonstrate our method, in this paper we theoretically
study the optical characteristics of triple concentric nano-rings,
which possess much more sophisticated shape than quantum
dots.

Semiconductor single nano-rings (see, e.g., Refs. 7 and 8,
and references therein) attracted much attention at first because
they are (unlike quantum dots) nonsimply connected nano-
objects and the Aharonov-Bohm (AB) effect9 in them offers
an exclusive opportunity to monitor phases of the electronic
wave functions. Some experimental evidence of the optical AB
effect has been discovered in the photoluminescence spectra
of InAs/GaAs nano-rings. Magneto-optical characteristics

of single nano-rings were theoretically and experimentally
investigated in detail (see Refs. 7–17, and references therein).

Very recently, using the droplet epitaxy technique, mul-
tiple concentric GaAs/Al xGa1−xAs nano-rings were fabri-
cated with high material uniformity and excellent rotational
symmetry.18–20 The photoluminescence spectra of ensem-
bles of triple concentric nano-rings were measured at low
temperature (T = 14 K).20 A wide asymmetrical emission
peak near 1.56 eV was demonstrated with the full width
at half maximum of 30 meV. The authors20 provided some
preliminary simulation results on the peak position and shape,
but they did not explain why the peak is so wide and asym-
metrical. We should stress that the wide asymmetrical peak
certainly demonstrates the importance of the inhomogeneous
broadening1–4 in ensembles of the rings. Clearly, to predict
and control the optical properties of dispersive ensembles of
the rings, we have to possess complete understanding of the
rings’ geometrical and material dispersions.

In this paper, we perform a detailed simulation of the
photoluminescence spectra of ensembles of the triple con-
centric nano-rings (see Fig. 1) and address the issue of
the asymmetrical inhomogeneous broadening of the emis-
sion peaks. To reproduce actual geometrical and material
parameters of the rings, we use our mapping method. Then
we calculate energies of the excitonic optical transitions.
We obtain the actual optical emission spectra in good
agreement with the experiment by averaging the excitonic
optical characteristics of the rings within their dispersive
ensembles.

II. THEORY

To analyze dispersive ensembles of nano-objects of com-
plex geometrical shapes, we should define a multidimensional
(multiparametric) distribution function P ({xi}) that describes
dispersions of all appropriate parameters {xi} (such as size,
anisotropy in geometry, composition, etc.). This function gives
the number of the nano-objects in the ensemble dN with the
values of {xi} inside the domain {xi,xi + dxi} as

dN =
∏

i

P ({xi})dxi. (1)
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FIG. 1. (Color online) Three-dimensional geometrical shape of a
triple concentric nano-ring.

In our consideration we assume that, in typical nano-object
ensembles, the parameters follow the noncorrelated normal
distribution, which is presented by

P ({xi}) = PG(x1) · PG(x2) · · · , (2)

where the standard normal distribution for each parameter x

is written as

PG(x) = AG

(
x − x0

�x

)
, (3)

and A is the normalization coefficient, x0 is a mean value, �x is
the standard deviation of the parameter x, and G(y) is the Gaus-
sian function. Now we can write the meaningful average for
any physical quantity Q({xi}) characterizing the ensemble as

Q̄ =
∫

xi

P ({xi})Q({xi})
∏

i

dxi . (4)

Applying our approach in this study, we are able to describe
the general broadening (combining the homogeneous and
inhomogeneous broadenings) of excitonic peaks of ensembles
of nano-objects. We start from the simulation of an individual
nano-object, but at the same time we should be able to vary
the object parameters. To satisfy this crucial requirement, we
use our mapping method, which allows us to map realistic
geometrical shapes, strains, and material compositions of
semiconductor nano-objects (known from experiments) to
smooth three-dimensional effective potentials for electrons
and holes confined in the objects. We can consider semicon-
ductor nano-objects within wide ranges of changes of radii,
height, anisotropy in geometry, and composition. Then we
are able to simulate the average intensity of excitonic optical
transition by using the multidimensional distribution function
P ({xi}). To demonstrate the method, as an example, we
consider a dispersive ensemble of triple concentric nano-rings
with optical properties that are formed by a complex variation
of the rings’ shapes (Fig. 1). For these nano-objects, we
choose the rings’ local heights and radii to be our dispersive
parameters xi (Fig. 2).

In order to make this paper more self-contained, we briefly
repeat some of the aspects of the mapping procedure presented
in Ref. 5 (i.e., applying the mapping method specifically to
the triple concentric nano-rings). We reproduce the actual
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FIG. 2. (Color online) Two-dimensional geometry of triple
concentric nano-rings with variation of the inner height h1(ρ =√

x2 + y2).

geometry of a triple concentric nano-ring by mapping the local
heights of the ring according to experimental data reported
in Ref. 20. The atomic force microscopy20 shows that the
triple concentric nano-rings are formed with good rotational
symmetry (see Fig. 1) around the system growth direction
(z axis). We accordingly assume that the triple concentric
nano-rings are formed on a flat substrate parallel to the xy

plane and we can model the ring shape by a function h(x,y),
which reproduces the local ring’s height (along z direction) at
the actual position on the xy plane (see Fig. 2). The function
h(x,y) can be presented by the following expression:

h(x,y) =
3∑

k=1

hk(x,y),

(5)

hk(x,y) =

⎧⎪⎨
⎪⎩

hmk
γ 2

ok

R2
k

R2
k−(

√
x2+y2−Rk )2

(
√

x2+y2−Rk )2+γ 2
ok

,
√

x2 + y2� Rk,

hmk
γ 2

ik

(
√

x2+y2−Rk )2+γ 2
ik

,
√

x2 + y2> Rk,

where Rk (k = 1, 2, and 3, respectively) is the radial position
of the inner, middle, and outer rims, hmk is the height of the
kth rim, and γok and γik determine the inside and outside
slopes of the kth rim. We present the three-dimensional
smooth-confinement potential for electrons (holes) by the
composition- and geometry-dependent profiles of the local
conduction-band (e) and valence-band (h) edges,5,6,21–23

Ve(h)(r) = �Ec(v)(r) = �E0
c(v)

{
1 − 1

4

[
1 + tanh

(
z

a

)]

×
[

1 − tanh

(
z − h(x,y)

a

)]}
, (6)

where r = (x,y,z) is the three-dimensional radius vector,
�Ec(v)(r) is the local value of the conduction-band (valence-
band) offset, �E0

c(v) = Eout
c(v) − Ein

c(v) is the overall band offset
between the inner and outer semiconductor materials in their
heterostructures,5,6 and superscript “in” and “out” denote the
actual material parameters inside and outside the rings. The
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slope and range of the potential change at the boundaries of
the ring are controlled by a parameter a. For instance, in the
case of the hard-wall confinement (a → 0), Eq. (6) provides
Ve(h)(r) = 0 (if r is inside the ring) and Ve(h)(r) = �E0

c(v) (if r
is outside the ring).

Now we use Ve(r) to define the mapping function,

M(r) = 1 − Ve(r)

�E0
c

. (7)

This function accumulates experimental information about
geometrical shapes and compositions of the rings and it allows
us to present the position-dependent effective mass of electrons
(holes), band gap, and dielectric constant of the system as the
following:5,6,22,23

me(h)(r) = min
e(h)M(r) + mout

e(h)[1 − M(r)], (8)

Eg(r) = Ein
g M(r) + Eout

g [1 − M(r)], (9)

ε(r) = εinM(r) + εout[1 − M(r)]. (10)

The electron (hole) wave functions �e(h)(r) satisfy the
following effective Schrödinger equation:

Ĥe(h)(r)�en(hm)(r) = Een(hm)�en(hm)(r), (11)

where Ĥe(h)(r) is the one-band effective Hamiltonian for the
electrons (holes),21

Ĥe(h)(r) = 1

2
p̂

1

me(h)(r)
p̂ + Ve(h)(r), (12)

and p̂ = −ih̄∇ is the momentum operator and n(m) are the
electron (hole) quantum numbers.

For an exciton localized in the ring, using solutions of
Eq. (11), we can estimate the excitonic binding energy in the
ground state as24

Ec = −e

∫
dr�∗

e0(r)Vh0(r)�e0(r), (13)

where Vh0(r) is a potential which satisfies the Poisson
equation25

ε0∇r[ε(r)∇rVh0(r)] = −ρh(r), (14)

and ρh(r) is the charge density of the hole in the ground state,
ρh0(r) = e�∗

h0(r)�h0(r).
The ground-state excitonic-transition energy now reads

Eex = Ee0 + Eh0 + Ein
g + Ec, (15)

where Ee(h)0 is the electron (hole) ground-state energy.
The intensity of the excitonic optical transitions, like a func-

tion of the transition energy E averaged within the ensemble
of the rings, can be presented by the following expression:

Ī (E) =
∫

xi

P ({xi})I (E,{xi})
∏

i

dxi, (16)

where for an individual ring with the certain set of parameters
{xi}, the excitonic peak is conventionally modeled by the
normalized Lorentz distribution function

I (E,{xi}) = 1

π

�

[E − Eex({xi})]2 + �2
, (17)

and � represents the homogeneous (temperature) broadening.

III. SIMULATION RESULTS AND DISCUSSION

Next we implement the procedure described above to model
the averaged intensity of the optical transitions for ensembles
of the triple concentric GaAs/AlxGa1−xAs nano-rings. By
adjusting the model of Eq. (5), we fit the experimental data20

and choose a basic geometrical shape of the rings (known
from the experiment) as follows: R1 = 40, R2 = 70, and R3 =
105 nm; h1 = 7, h2 = 4, and h3 = 3 nm; γo1 = 30, γo2 = 10,
and γo3 = 10 nm; γi1 = 12, γi2 = 22, and γi3 = 5 nm; and
hm3 = 1.95 nm. The slope of the potential change at the
boundaries of the ring is chosen as a = 0.5 nm. As an example,
in Fig. 2 we show the radial profiles of the rings when only
the inner height h1 is varying. For GaAs/Al0.3Ga0.7As rings,
we use realistic semiconductor material parameters known
from the literature19,26–28 and adjusted according to the
composition and geometry.20

According to Ref. 20 and our calculation experience for the
triple nano-rings, the ground-state wave functions of electrons
and holes are localized in the inner ring. In addition, the
excitonic-energy deviations are much more sensitive to the
local height profile variations than to the radial deviations.
For instance, the excitonic energy varies within the range of
�Eex ∼ 0.9 meV when the inner radius is changing within the
range �R1 ∼ 5 nm. At the same time, �Eex ∼ 3.5 meV for
�h1 ∼ 0.5 nm. This suggests that the dispersion of the exci-
tonic energy in the ring ensemble is in general determined by
the variation of the inner height profile (the shape of the inner
peak in Fig. 2). Therefore, in this paper we consider in detail
only the variation of the local inner peak profile. We stress
that, even if only the inner height h1 varies, the parameters
hm1 and hm2 have to be adjusted also to keep the overall radial
height profile under control. For instance, for h1 = 7 nm, we
should take hm1 = 6.75 nm and hm2 = 2.95 nm.

The excitonic-transition energies for different values of
h1 are obtained numerically from solutions of the three-
dimensional eigenvalue problem [Eq. (11)],25 Poisson equa-
tion [(Eq. (14)], and Eq. (15) using the COMSOL Multiphysics
package.29 We fit the results of those simulations (Fig. 3) to the

h1 (nm)
5 6 7 8 9 10

E
 (

eV
)

1.55

1.56

1.57

1.58
Calculation data
Fitting function

FIG. 3. (Color online) Excitonic-transition energies of triple
GaAs/AlGaAs concentric nano-rings as a function of the inner height.
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FIG. 4. (Color online) Normalized intensity of the excitonic
optical transitions as a function of the transition energy and �:
(a) an individual ring with the inner height h1 = 7.9 nm and (b) ring
ensemble with h0

1 = 7.9 nm, �h1 = 1.2 nm. Emax is the position of
the intensity maximum.

excitonic energy as a function of the inner height (h1) using
the following guess:

Eex(h1) = b

(h1)c
. (18)

According to our experience, the best fit can be achieved when
b = 1.66 and c = 0.03 (in appropriate SI units). Substituting
Eex(h1) from Eq. (18) to Eq. (16), we are able now to simulate
the inhomogeneous broadening of the excitonic emission peak
for the dispersive ensembles of triple concentric nano-rings.

First, in Fig. 4(a) we present the normalized intensity
of the excitonic optical transitions of an individual triple
concentric nano-ring with the inner height h1 = 7.9 nm. The
intensity demonstrates a very sharp symmetrical peak when
� is small (low temperature). The peak reaches the maximum
at E0

ex ≈ 1.5602 eV, which is in good agreement with the

experimental data from Ref. 20. Clearly, for the individual
ring, the width of the excitonic peak is governed by the
homogeneous broadening only. The peak becomes wider and
disappears very rapidly (but it still remains symmetrical) when
� (temperature) increases. In contrast, the experimental data
from Ref. 20 reveal the wide asymmetrical peak even at low
temperatures (T = 14 K). Wide asymmetrical peaks can be
explained only by the inhomogeneous broadening,1,4 which is
attributed to the geometry dispersion in the ring ensembles.
To demonstrate this, we consider now the intensity of the
excitonic optical transitions for the ensemble of the rings
with the inner height variations. In Fig. 4(b) we present
the normalized averaged intensity of the excitonic optical
transitions for the ensemble of the rings with the mean
value of the inner height h0

1 = 7.9 nm and standard deviation
�h1 = 1.2 nm. Clearly, the inhomogeneous broadening is
predominant at low temperatures and, thus, makes the peak
wide and asymmetrical. We also can conclude that, at relatively
high temperatures, both the homogeneous and inhomogeneous
broadenings equivalently contribute.

In Fig. 5(a) we show the normalized intensity of the
excitonic optical transitions when the standard deviation
�h1 (h0

1 = 7.9 nm) is varying and � = 1.2 meV (which
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FIG. 5. (Color online) Normalized averaged intensity of the
optical transitions of the ring ensemble as a function of the transition
energy (� = 1.2 meV): (a) for different standard deviations of inner
height and (b) for different inner heights (�h1 = 1 nm).

125301-4



EFFECTS OF GEOMETRICAL SHAPE DISPERSION ON . . . PHYSICAL REVIEW B 83, 125301 (2011)

h1 (nm)
5 6 7 8 9 10 11

F
W

H
M

 (
eV

)

0.005

0.010

0.015

0.020

0.025

0.030

0.035
Δh1 = 0.5 nm

Δh1 = 1 nm

Δh1 = 1.5 nm

FIG. 6. (Color online) Full width at half maximum (FWHM) of
the averaged intensity of the optical transitions of the ring ensemble
as a function of the inner height for different standard deviations.

corresponds to T = 14 K). Clearly, the asymmetry of the
peak is growing with the standard deviation increasing. From
Fig. 5(b) we also can conclude that when the mean value of
the inner height (h0

1) increases (�h1 is fixed to be 1 nm), the
inhomogeneous broadening increases as well. In general, the
increase of the relative standard deviation (�h1/h0

1) enhances
the inhomogeneous broadening of the excitonic peak. At the
same time, the full width of the peak saturates for the relatively
large inner heights (see Fig. 6).

Finally, to compare our results with experimental data from
Ref. 20, in Fig. 7 we show the energy dependence of the
normalized averaged intensity of the optical transitions of
the ring ensemble with the mean value of the inner height
h0

1 = 7.9 nm and standard deviation �h1 = 1.6 nm at the low
temperature (T = 14 K). Clearly, the peak that is located near
the central transition energy of 1.5602 eV is wide, asymmetri-
cal, and in very good agreement with the experiment. Within
the low-temperature range, the homogeneous broadening plays
a minor role and the inhomogeneous broadening dominates in
the peak’s full width.

IV. CONCLUSION

In conclusion, using our approach, we proposed a method to
model the averaged intensity of the excitonic optical transitions
for dispersive ensembles of semiconductor nano-objects of
arbitrary geometrical shapes and material compositions. We
demonstrated the method efficiency for the objects with a very
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FIG. 7. (Color online) Normalized averaged intensity of the
optical transitions of the ring ensemble as a function of the energy
(� = 1.2 meV). Emin and Emax are the positions of the intensities’
minimum and maximum.

sophisticated shape: triple concentric nano-rings. Our simula-
tion results have explained the appearance and properties of the
wide asymmetrical excitonic peaks in the photoluminescence
spectra of the ring ensembles known from the experiment.
The broadening is preferably caused by dispersion of the radial
height profile (geometrical shape) of the rings in the ensembles
(more specifically, the inner height). The calculated position of
the excitonic peak in the optical spectrum is in good agreement
with the experimental observations as well. The importance
of homogeneous and inhomogeneous broadening at different
temperature was analyzed.

We stress that, using our approach, we are able to clarify
the important question of which geometrical and material
parameter dispersions are crucial for the inhomogeneous
broadening of optical spectra of ensembles of semiconductor
nano-objects. The approach can be potentially useful for the
realistic modeling of the inhomogeneous broadening of the
excitonic peaks for dispersive ensembles of semiconductor
nano-objects with arbitrary shape.
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