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軸向滑動梁結構之幾何非線性動態分析 
Geometrically nonlinear dynamic analysis of sliding beam 

 

計畫編號：NSC 93-2211-E-009-026 
執行期限：2004 年 08月 1日至 2005 年 07月 31日 
主持人：蕭國模  國立交通大學機械工程學系 

計畫參與人員：劉宗帆、蔡明旭 
中文摘要： 
本研究的主要目的為提出一簡單有效的共旋轉有限元素法及一數值程序，探討滑動

梁的幾何非線性動態反應。為了正確的描述及預測滑動梁的動態反應，本研究考慮了在

稜柱形導槽內外之梁的運動。在本研究中將梁元素分為二種，第一種是普通梁元素，在

稜柱形導槽外時，該元素的運動不受限制，在稜柱形導槽內時，該元素只能在軸方向運

動。第二種梁元素為本研究提出的一個特別元素，稱為轉接梁元素，該元素有一部分在

稜柱形導槽內，另一部分在稜柱形導槽外。轉接梁元素未變形的長度為一固定長度，但

其在稜柱形導槽內的部分變形前的長度則為時間的函數。本研究在梁元素當前的變形位

置上建立元素座標，並在元素座標上以正確的變形機制推導普通梁元素及轉接梁元素的

節點內力及剛度矩陣。本研究採用基於 Newmark直接積分法及 Newton-Raphson法的增
量迭代法求解非線性動態平衡方程式。本研究以數值例題探討滑動梁結構受不同負荷及

端點軸向運動的幾何非線性動態行為並與文獻的結果比較，以說明本研究中提出的方法

的準確性及有效性。 
 

關鍵詞: 滑動梁, 幾何非線性, 共旋轉法, 有限元素法 
 

Abstract.   
A simple and effective consistent co-rotational total Lagrangian finite element 

formulation and a numerical procedure are proposed to investigate the geometric nonlinear 
dynamic response of sliding beam.  To exactly predict the dynamic response of the sliding 
beam, the total length of the sliding beam is considered.  The motion of the beam element is 
not restrained when it is outside the prismatic joint.  The lateral motion of the beam is fully 
restrained when it is inside the prismatic joint.  The beam element is regarded as 
conventional beam element when it is inside or outside the prismatic joint.  The beam 
element is regarded as transition beam element when it is partially inside the prismatic joint.  
A transition beam element is developed here. The total undeformed length of the transition 
element is constant.  However, the undeformed length inside the prismatic joint is time 
dependent.  The kinematics, deformations, and equations of motion of the transition beam 
element are defined in terms of two element coordinate systems constructed at the current 
configuration of the deformed beam element.  The principle of virtual work, d’Alembert 
principle and the consistent second order linearization of the fully geometrically nonlinear 
beam theory are used to derive the deformation nodal force and inertia nodal force of the 
beam element.  In element nodal forces, the coupling between bending and stretching 
deformations of the beam element is considered.  An incremental-iterative method based on 
the Newmark direct integration method and the Newton-Raphson method is employed for the 
solution of nonlinear dynamic equilibrium equations.  Numerical examples are presented to 
demonstrate the accuracy and efficiency of the proposed method. 

Keywords: Sliding Beam, Geometrical Nonlinearity, Co-rotational Formulation, Finite 
Element Method
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1 INTRODUCTION 

In recent years, the dynamic behavior of flexible sliding beam with prismatic joint, e.g. 
robotic manipulators, spacecraft antenna and deployable space structures, has been the subject 
of considerable research [1-5].  Currently, the most popular approach for the analysis of 
beam structures is to develop finite element models.  However, not many finite element 
formulations for sliding beams have been reported in the literature.  Moreover, the 
geometrically nonlinear finite element formulations for sliding beam reported [4, 5] are very 
complicated. 

The objective of the paper is to propose a simple and effective consistent co-rotational total 
Lagrangian finite element formulation and a numerical procedure for the geometrically 
nonlinear dynamic analysis of sliding beam. When the beam element is inside or outside the 
prismatic joint, the beam element proposed in [6] is adapted and used and is called 
conventional beam element here.  A transition beam element is developed here when the 
beam element is partially inside the prismatic joint.  The total undeformed length of the 
beam element is constant. However, the undeformed length inside the prismatic joint for the 
transition beam element is time dependent.  The kinematics, deformations, and equations of 
motion of the transition beam element are defined in terms of two element coordinate systems 
constructed at the current configuration of the deformed beam element.  The principle of 
virtual work, d’Alembert principle and the consistent second order linearization of the fully 
geometrically nonlinear beam theory are used to derive the deformation nodal force and 
inertia nodal force of the beam element. An incremental-iterative method based on the 
Newmark direct integration method and the Newton-Raphson method is employed for the 
solution of nonlinear dynamic equilibrium equations.  Numerical examples are presented to 
demonstrate the accuracy and efficiency of the proposed method. 

2 FINITE ELEMENT FORMULATION 

2.1 Description of problem 

Consider a uniform Euler beam with prismatic joint, which slides through the prismatic 
joint fixed in space at a prescribed end displacement )(tU A  as shown in Fig. 1. The beam 
element is regarded as a conventional beam element when it is inside or outside the prismatic 
joint, and regarded as a transition beam element when it is partially inside the prismatic joint.  
The beam element proposed in [6] is adapted and used as the conventional beam element here.  
A transition beam element is developed here.  The transition element is divided into two 
segments.  The segments inside and outside the prismatic joint are called the first segment 
and the second segment of the transition element, respectively.  The displacement and slope 
are continuous at the intersection of the two segments.  The total undeformed length of the 
beam element is constant.  However, the undeformed length of the first segment and the 
second segment of the transition element are time dependent. 

2.2 Basic assumptions 

The following assumptions are made in derivation of the beam element behavior. 
1. The beam is uniform and slender, and the Euler-Bernoulli hypothesis is valid. 
2. The unit extension of the centroid axis of the beam element is uniform. 
3. The deformation displacements and rotations of the beam element are small. 
4. The strains of the beam element are small. 
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Figure 1: Sliding beam. 

2.3 Coordinate systems 

In this paper, a co-rotational total Lagrangian formulation is adopted.  In order to describe 
the system, we define two sets of coordinate systems: 

A fixed global set of coordinates, iX  (i = 1, 2) (see Fig. 1); the nodal coordinates, nodal 
displacements and rotations, velocities, accelerations, and the equations of motion of the 
system are defined in this coordinates. 

Element coordinates; ix , ix  (i = 1, 2) (see Figs. 2, 3), a set of element coordinates is 
associated with each conventional element and each segment of the transition element, which 
is constructed at the current configuration of the beam element.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Element coordinates and kinematics    Figure 3: Element coordinates for the  
for the conventional beam element             transition beam element 
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2.4 Conventional beam element 

The beam element proposed in [6] is adapted and employed here.  In the following only a 
brief description is given. 

The geometry of the beam element is described in the current element coordinate system. 
Let Q (Fig. 2) be an arbitrary point in the beam element, and P be the point corresponding to 
Q on the centroid axis.  The position vector of point Q in the undeformed and deformed 
configurations may be expressed as 

210 eer yx +=   (1)

and 

1]sin),([ er φytxx p −= 2]cos),([ eφytxv ++   (2)

o

v
s
x

x
v

s
v

ε
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+
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=
∂
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=
∂
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=
1

sin  (3)

1−
∂
∂

=
x
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oε  (4)

where ),( txx p , ),( txv  are the 1x , 2x  coordinates of point P referred to the current 
element coordinates, respectively, in the deformed configuration, ),( txφφ =  is the angle 
measured from 1x  axis to centroid axis of the beam element, and ie  (i = 1, 2) denote the 
unit vectors associated with the ix  axis.  oε  is the unit extension of the centroid axis and s 
is the arc length of the deformed centroid axis measured from node 1 to point P.  In this 
paper, the symbol )( ′  denotes xx ∂∂= )()( , .  

The relationship between ),( txx p , ),( txv  in Eq. (2) may be given as 

dxvutxx
x

xop ∫ −++=
0

212
,

2
1 ])1[(),( ε  (5)

where u1 is the displacement of node 1 in the x1 direction.  Note that due to the definition 
of the element coordinate system, the value of u1 is equal to zero.  However, the variations 
and time derivatives of u1 are not zero.  Making use of Eq. (5), one obtains 

),0(),(12 txtLxuuL pp −=−+=l  dxv
L

xo∫ −+=
0

212
,

2 ])1[( ε  (6)

in which l  is the current chord length of the centroid axis of the beam element, and L is the 
length of the undeformed beam axis, and u2  is the displacement of node 2 in the x1 

direction. 
Making use of the assumption of uniform unit extension and retaining all terms up to the 

second order in Eq. (6), one may obtain 

∫+
−

=
L

xdxv
LL

L
0

2
,0 2

1lε  (7)

Here, the lateral deflections of the centroid axis, ),( txv is assumed to be the Hermitian 
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polynomials of x, and may be expressed by 

b
t
b

t vvvvNNNNtxv uN=′′= },,,{},,,{),( 22114321  (8)
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2
4 ξξ ++−=

LN ,  
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x21+−=ξ  (9)

where v j  (j = 1, 2) are nodal values of v at nodes j, respectively, ′v j  (j = 1, 2) are nodal 
values of v x,  at nodes j, respectively.  Note that, due to the definition of the element 
coordinates, the values of v j  (j = 1, 2) are zero.  However, their variations and time 

derivatives are not zero.  In this paper, { } denotes column matrix. 
If x and y in Eq. (1) are regarded as the Lagrange coordinates, the Green strain 11ε and the 

corresponding engineering strain 11e  is given by [7] 

)1(
2
1

,,11 −= x
t
xrrε  (10)

21
1111 )21( ε+=e  (11)

Substituting Eqs. (2-4) and (10) into Eq. (11) and retaining all terms up to the second order 
yield 

xxyve ,0011 )1( εε −+=  (12)

The element nodal force vector is obtained from the d’Alembert principle and the virtual 
work principle in the current element coordinates.  The virtual work principle requires that 

==+= intb
t

ba
t
aext WW δδδδ φ fufu ∫ +

V
tt dVe )( 1111 rr &&ρδσδ  (13)

},{ 21 uua δδδ =u , },,,{ 2211 δφδδφδδ φ vvb =u  (14)

 f f fa a
d

a
i f f= + = { , }11 12 , },,,{ 222121 mfmfi

b
d
bb =+= fff  (15)

where jf  (j = a, b) denotes the internal nodal force vector corresponding to auδ , φδ bu , 

f j
d and f j

i (j = a, b) are the deformation nodal force vectors and the inertia nodal force 

vectors, respectively, V is the volume of the undeformed beam element, 11eδ  is the variation 
of 11e  in Eq. (12) with respect to the nodal parameters, 1111 Ee=σ  is the normal stress, 
where E is Young’s modulus, ρ  is the density, rδ  is the variation of r given in Eq. (2) 

with respect to the nodal parameters, and 22 / tr ∂∂=r&& .  In this paper, the symbol )(
•

 
denotes time derivative t∂∂ /)( .  iφ (i = 1, 2) are the nodal value of φ  defined in Eq. (3) at 

nodes i. 
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Substituting Eqs. (2), (7)and (8) into Eq. (13), and using consistent linearization, f j
d and 

f j
i (j = a, b) may be given by 

a
d
a AEL Gf 0ε=  (16)

dxvEIdxvEA xxbxb
d
b ,,0 ∫∫ ′′+′= NNf ε  (17)
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=aN  (20)

where A is the cross-section area and ∫= A
dAyI 2  .  The range of integration for the 

integral ∫ dx)( in Eqs. (17)-(19) is from 0 to L. 

The element stiffness matrix and inertia matrix may be obtained by differentiating the 
element nodal force vectors jf  (j = a, b) in Eqs. (15) with respect to the nodal parameters 

and their time derivatives. The element stiffness matrices and consistent mass matrices of the 
beam element may be given by  
Stiffness matrices: 

t
aaa AEL GGk = , ∫∫ ′′+′′′′=+= dxAEdxEI t

bb
t

bbgb NNNNkkk 00 ε  (21)

Mass matrices: 

dxA t
aaa NNm ∫= ρ , dxAdxA t

bb
t
bbb NNNNm ′′+= ∫∫ ρρ  (22)

where the range of integration for the integral ∫ dx)( in Eqs. (21)-(22) is from 0 to L. 

Note that the element coordinate system is only a local coordinate system not a moving 
coordinate system here.  Thus the element matrices referred to the global coordinate system 
may be obtained from Eqs. (21-22) by using the standard coordinate transformation. 

2.5 Transition beam element 

The beam element is regarded as a transition beam element when it is partially inside the 
prismatic joint.  A transition beam element is developed here.  In the following the 
derivation of the transition beam element is given. 

The geometry of the first and the second segments of the transition beam element is 
described in the current element coordinate systems ix  and xi (i = 1, 2), respectively as 

shown in Fig. 3.  Let C be the end point of the prismatic joint, and node 3 be the intersection 
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of the first and the second segments of the transition beam element. However, the 
displacement and slope at node 3 are continuous.  Thus, the tangent of node 3 is in the 1x  
direction and node 3 can move in the  1x  direction only.  Because the displacement and 

virtual displacement of node 3 can be determined from the positions and virtual displacements 
of nodes 1 and 2, and the assumption of the uniform unit extension of the beam element, node 
3 is not an independent node.  The transition beam element developed here has two 
independent nodes – nodes 1 and 2, and four degree of freedoms - 1u , 2u , 2v , and 2φ  as 
shown in Fig. 3.  Let 1L  and 2L  denote the length of the first and second segments in the 
undeformed state.  Note that  1L  and 2L are functions of time.  However, their sum is a 

constant and may be expressed by 

LLL =+ 21  (23)

where L is the total length of the undeformed beam element. 
When the positions and of nodes 1 and 2, and the value of 2φ are determined, 1l  and 2l , 

the current chord length of the first and second segment, and 3φ , the deformation rotation of 

node 3, can be calculated. 
Making use of the assumption of uniform unit extension and Eq. (7), one may obtain 

11
2

2

1

1
0 −+=−= vLL

εε ll
 (24)
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From Eqs. (23) and (24), one may obtain 
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The position vector of an arbitrary point in the undeformed and deformed configurations of 
the first segment may be expressed as 

210 eer yx += ,   10 Lx ≤≤  (28)

and 

2101 ])1([ eer yxu +++= ε  (29)

where ie  ( i = 1, 2 ) are unit vectors associated with the ix  axis， 1u  is the displacement of 
node 1 in the 1x  direction. 0ε  is given in Eq. (27).  Note that due to the definition of the 
element coordinate system, the value of 1u  is equal to zero.  However, the variations and 
time derivatives of 1u  are not zero. 
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Let 3u  denote the displacement of node 3 in the 1x  direction.  From Eqs. (28) and (29), 

one may obtain 

1013 Luu ε+=  (30)

From Eqs. (27) and (30), the variation of 3u  may be expressed by 

)( 12
1

13 uu
L
Luu δδδδ −+=  (31)

The position vector of an arbitrary point in the undeformed and deformed configurations of 
the second segment may be expressed as 

210 eer yx += ,   20 Lx ≤≤  (32)

and 

1]sin),([ er φytxx p −= 2]cos),([ eφytxv ++  (33)

dxvutxx
x
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0

212
,

2
3 ])1[(),( ε  (34)

where 3u  is the displacement of node 3 in the x1  direction. ),( txv , φ  is the angle 
measured from 1x  axis to centroid axis of the beam element, and ie  (i = 1, 2) denote the 
unit vectors associated with the ix  axis.  Note that due to the definition of the element 
coordinate system, the value of 3u  and 3v  is equal to zero, where 3v  is the displacement 
of node 3 in the 2x  direction.  However, their variations and time derivatives are not zero.  

From the continuity of the displacement and slope at node 3 and Fig. 3, one may obtain 

333 cosφδδ uu = ,  333 sinφδδ uv =  (35)

Here, the lateral deflections of the centroid axis, ),( txv is assumed to be the Hermitian 

polynomials of x, and may be expressed by 

b
t
b

t vvvvNNNNtxv uN=′′= },,,{},,,{),( 22334321  (36)
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where v j  (j = 2, 3) are nodal values of v at nodes j, respectively, ′v j  (j = 2, 3) are nodal 
values of v x,  at nodes j, respectively.  Note that the variations and time derivatives of the 

shape functions should be considered for the second segment. 
From Eqs. (3), (4) (29), (33), (10) and (11) and retaining all terms up to the second order, 

one may obtain 
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011 ε=e ,   10 Lx ≤≤  (38)

and 

xxyve ,0011 )1( εε −+= ,   20 Lx ≤≤  (39)

The derivation of the element nodal force for the transition element is similar to that for the 
conventional beam element and given as follows: 

The virtual work principle requires that 

==+= intb
t

ba
t
aext WW δδδδ φ fufu ∫ +

V
tt dVe )( 1111 rr &&ρδσδ  (40)

},{ 21 uua δδδ =u , },{ 22 δφδδ φ vb =u  (41)

},{ 1211 ffi
a

d
aa =+= fff , },{ 222 mfi

b
d
bb =+= fff  (42)

where jf  (j = a, b) denotes the internal nodal force vector corresponding to auδ , φδ bu ,   

f j
d and f j

i (j = a, b) are the deformation nodal force vectors and the inertia nodal force 

vectors, respectively, V is the volume of the undeformed beam element. 11eδ  is the variation 
of 11e  in Eqs. (38) and (39) with respect to the nodal parameters for segment 1 and segment 

2, respectively. 
Substituting Eqs. (29)-(31), (33), (35)-(36), (38) and (39) into Eq. (40), and using 

consistent linearization, f j
d and f j

i (j = a, b) may be given by 

a
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},{ 432 NNb =N  (47)

where aG  and aN  are defined in Eqs. (20), respectively, 3N  and 4N  are defined in Eq. 

(37). 
The element stiffness matrix and inertia matrix may be obtained by differentiating the 

element nodal force vector jf  (j = a, b) in Eqs. (42) with respect to the nodal parameters and 
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their time derivatives. The element stiffness matrices and consistent mass matrices of the 
transition beam element may be given by 
Stiffness matrices: 

t
aaa AEL GGk = , ∫∫ ′′+′′′′=+= 22

0 2200 220
L t

bb
L t

bbgb dxAEdxEI NNNNkkk ε  (48)

Mass matrices: 

∫=
L t

aaa dxA
0

NNm ρ , ∫∫ ′′+= 22

0 220 22
L t

bb
L t

bbb dxAdxA NNNNm ρρ  (49)

2.6 Element damping force vector 

Here the proportional damping is considered.  The element damping force vector may be 
expressed by [8] 

jj
v
j ucf &=  (50)

jjj kmc βα +=  (51)

where  j = a, b, jc  is the so called damping matrix, ju&  is the element nodal velocity, 

jm  and jk  are the corresponding mass and stiffness matrix, respectively for the 

conventional and the transition beam element.  Note that only 0k  is considered for bk  
given in Eqs. (21) and (48).  α  and β  are the so called damping coefficients. 

2.7 Equations of Motion 

The nonlinear equations of motion may be expressed by 

0PFFFΨ =−++= VDI  (52)

where Ψ  is the unbalanced force among the inertia nodal force F I , deformation nodal 

force FD , damping nodal force VF , and the external nodal force P.  
In this paper, an weighted Euclidean norm of the unbalanced force is employed for the 

equilibrium iterations, and is given by 

tole
N

≤
Ψ

 (53)

where N is number of the equations of the system; etol  is a prescribed value of error 

tolerance. 

3 NUMERICAL EXAMPLES 

An incremental iterative method based on the Newmark direct integration method [6, 9] 
and the Newton-Raphson method is employed here.  The procedure proposed in [9] to 
determine the nodal deformation rotation for individual elements is employed here. 
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Let L  and 0L  denote the total length of the sliding beam and the initial length of the 

sliding beam outside the prismatic joint, respectively.  The prescribed end displacement 
)(tU A  of the sliding beam considered here has two different types and may be expressed as 

2
00 2

1)( tatvtU A +=  (54)

and  

⎪⎩

⎪
⎨
⎧

>

≤−
=

00

0
0

0

0

0

),(

),2sin
2

(
)(

tttU

tt
t

ttt
t
c

tU
A

A

π
π  (55)

where 0v , 0a , 0c , and 0t  are constants. 

To obtain the damping coefficients in Eq. (51), the modal damping functions used in [3, 5] 
are used here and given by 

1
2

0
1

)]([4
4874.0

ω
ξ

tUL A+
=   , 

2
2

0
2

)]([4
124.3

ω
ξ

tUL A+
=  (56)

where 0L  is the initial length of the sliding beam outside the prismatic joint, iω  is the ith 
natural frequencies of a cantilever beam of length )(0 tUL A+ . 

The geometry and material properties of the sliding beam used here are [3, 5]: cross 
section area 25103434.4 mA −×= , area moment of inertia 41110059.1 mI −×= , Young's 
modulus 29 /1096.68 mNE ×=  ,  and the density 3/3858.3144 mkg=ρ .  Four cases are 

considered: (a) mL 762.0= , mL 521.00 = , smv /03.00 −= , 2
0 /054.0 sma −=  (b) 

mL 05.1= , mL 35.00 = , mc 7.00 = , st 2.10 =  

For all cases, the sliding beam is initially at rest, and the magnitude of the initial lateral tip 
deflection is 0.024 m, which is induced by the application of a lateral force at the free end of 
the beam.  Note that the lateral force is removed when t > 0.  The beam initially inside and 
outside the prismatic joint is discretized by 14 and 10 equal element, respectively.  The time 
step sizes are chosen to be 0.001 sec.  The time history of the tip displacements are shown in 
Figs. 4-5.  The agreement between the present results, the experimental results reported by 
[3] (not shown) and the results of linear analysis [3, 5] (not shown) is very good.  The 
nonlinear solution reported by [5] exhibits period elongation relative to the linear solution and 
shows higher amplitudes.  Thus, the nonlinear solution reported by [5] might be incorrect. 
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Figure 4: Tip deflection for case (a) 
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Figure 5: Tip deflection for case (b) 

 

4 CONCLUSIONS 

A simple and effective consistent co-rotational total Lagrangian finite element formulation 
and a numerical procedure are proposed to investigate the geometric nonlinear dynamic 
response of sliding beam. 

To exactly predict the dynamic response of the sliding beam, the total length of the sliding 
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beam is considered. The beam element is regarded as a conventional beam element when it is 
inside or outside the prismatic joint, and regarded as a transition beam element when it is 
partially inside the prismatic joint.  The beam element proposed in [6] is adapted and used as 
the conventional beam element here.  A transition beam element is developed here.  The 
total undeformed length of the beam element is constant. However, the undeformed length of 
the first segment and the second segment of the transition element are time dependent.  The 
kinematics, deformations, and equations of motion of the transition beam element are defined 
in terms of two element coordinate systems constructed at the current configuration of the 
deformed beam element.  The principle of virtual work, d’Alembert principle and the 
consistent second order linearization of the fully geometrically nonlinear beam theory are 
used to derive the deformation nodal force and inertia nodal force of the beam element.  

An incremental-iterative method based on the Newmark direct integration method and the 
Newton-Raphson method is employed for the solution of nonlinear dynamic equilibrium 
equations.  From the numerical examples studied, the accuracy and efficiency of the 
proposed method is well demonstrated.. 
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