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Geometrically nonlinear dynamic analysis of sliding beam
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Abstract.

A simple and effective consistent co-rotational total Lagrangian finite element
formulation and a numerical procedure are proposed to investigate the geometric nonlinear
dynamic response of sliding beam. To exactly predict the dynamic response of the sliding
beam, the total length of the sliding beam is considered. The motion of the beam element is
not restrained when it is outside the prismatic joint. The lateral motion of the beam is fully
restrained when it is inside the prismatic joint. The beam element is regarded as
conventional beam element when it is inside or outside the prismatic joint. The beam
element is regarded as transition beam element when it is partially inside the prismatic joint.
A transition beam element is developed here. The total undeformed length of the transition
element is constant. However, the undeformed length inside the prismatic joint is time
dependent. The kinematics, deformations, and equations of motion of the transition beam
element are defined in terms of two element coordinate systems constructed at the current
configuration of the deformed beam element. The principle of virtual work, d’Alembert
principle and the consistent second order linearization of the fully geometrically nonlinear
beam theory are used to derive the deformation nodal force and inertia nodal force of the
beam element. In element nodal forces, the coupling between bending and stretching
deformations of the beam element is considered. An incremental-iterative method based on
the Newmark direct integration method and the Newton-Raphson method is employed for the
solution of nonlinear dynamic equilibrium equations. Numerical examples are presented to
demonstrate the accuracy and efficiency of the proposed method.

Keywords: Sliding Beam, Geometrical Nonlinearity, Co-rotational Formulation, Finite
Element Method



1 INTRODUCTION

In recent years, the dynamic behavior of flexible sliding beam with prismatic joint, e.g.
robotic manipulators, spacecraft antenna and deployable space structures, has been the subject
of considerable research [1-5]. Currently, the most popular approach for the analysis of
beam structures is to develop finite element models. However, not many finite element
formulations for sliding beams have been reported in the literature. Moreover, the
geometrically nonlinear finite element formulations for sliding beam reported [4, 5] are very
complicated.

The objective of the paper is to propose a simple and effective consistent co-rotational total
Lagrangian finite element formulation and a numerical procedure for the geometrically
nonlinear dynamic analysis of sliding beam. When the beam element is inside or outside the
prismatic joint, the beam element proposed in [6] is adapted and used and is called
conventional beam element here. A transition beam element is developed here when the
beam element is partially inside the prismatic joint. The total undeformed length of the
beam element is constant. However, the undeformed length inside the prismatic joint for the
transition beam element is time dependent. The kinematics, deformations, and equations of
motion of the transition beam element are defined in terms of two element coordinate systems
constructed at the current configuration of the deformed beam element. The principle of
virtual work, d’Alembert principle and the consistent second order linearization of the fully
geometrically nonlinear beam theory are used to derive the deformation nodal force and
inertia nodal force of the beam element. An incremental-iterative method based on the
Newmark direct integration method and the Newton-Raphson method is employed for the
solution of nonlinear dynamic equilibrium equations. Numerical examples are presented to
demonstrate the accuracy and efficiency of the proposed method.

2 FINITE ELEMENT FORMULATION

2.1 Description of problem

Consider a uniform Euler beam with prismatic joint, which slides through the prismatic
joint fixed in space at a prescribed end displacement U 4 (t) as shown in Fig. 1. The beam

element is regarded as a conventional beam element when it is inside or outside the prismatic
joint, and regarded as a transition beam element when it is partially inside the prismatic joint.
The beam element proposed in [6] is adapted and used as the conventional beam element here.
A transition beam element is developed here. The transition element is divided into two
segments. The segments inside and outside the prismatic joint are called the first segment
and the second segment of the transition element, respectively. The displacement and slope
are continuous at the intersection of the two segments. The total undeformed length of the
beam element is constant. However, the undeformed length of the first segment and the
second segment of the transition element are time dependent.

2.2 Basic assumptions

The following assumptions are made in derivation of the beam element behavior.
1. The beam is uniform and slender, and the Euler-Bernoulli hypothesis is valid.
2. The unit extension of the centroid axis of the beam element is uniform.

3. The deformation displacements and rotations of the beam element are small.
4. The strains of the beam element are small.
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Figure 1: Sliding beam.

2.3 Coordinate systems

In this paper, a co-rotational total Lagrangian formulation is adopted. In order to describe
the system, we define two sets of coordinate systems:

A fixed global set of coordinates, X; (i =1, 2) (see Fig. 1); the nodal coordinates, nodal
displacements and rotations, velocities, accelerations, and the equations of motion of the
system are defined in this coordinates.

Element coordinates; xj, X; (i = 1, 2) (see Figs. 2, 3), a set of element coordinates is

associated with each conventional element and each segment of the transition element, which
is constructed at the current configuration of the beam element.

Figure 2: Element coordinates and kinematics Figure 3: Element coordinates for the
for the conventional beam element transition beam element



2.4 Conventional beam element

The beam element proposed in [6] is adapted and employed here. In the following only a
brief description is given.

The geometry of the beam element is described in the current element coordinate system.
Let Q (Fig. 2) be an arbitrary point in the beam element, and P be the point corresponding to
Q on the centroid axis. The position vector of point Q in the undeformed and deformed
configurations may be expressed as

Ig = Xeq +Yyeo (1)
and

r =[xy (X,t) - ysingle; +[v(x,t) + ycosd]e, (2)
sin¢—@—@6—x— v 3
0s 0x0s 1l+egg )

0s
=1 4
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where X, (x,t), v(x,t) are the X;, X, coordinates of point P referred to the current
element coordinates, respectively, in the deformed configuration, ¢ =¢(x,t) is the angle
measured from x; axis to centroid axis of the beam element, and e; (i = 1, 2) denote the
unit vectors associated with the x; axis. &, is the unit extension of the centroid axis and s

is the arc length of the deformed centroid axis measured from node 1 to point P. In this
paper, the symbol ()" denotes () y =0( )/OX.

The relationship between xj(x,t), v(x,t) inEqg. (2) may be given as
_ X 2 24912
Xp (6t =ty + [ [(L+0)” ~v&T+“dx (5)

where uj is the displacement of node 1 in the x; direction. Note that due to the definition
of the element coordinate system, the value of u; is equal to zero. However, the variations
and time derivatives of u; are not zero. Making use of Eq. (5), one obtains

£= L up —uy = xp (L)~ %5 (0,0) :jOL[(1+go)2 ~v2 1Y 2x (6)

in which ¢ is the current chord length of the centroid axis of the beam element, and L is the
length of the undeformed beam axis, and u, is the displacement of node 2 in the x;
direction.

Making use of the assumption of uniform unit extension and retaining all terms up to the
second order in Eq. (6), one may obtain

f—L 1 ¢L o
&g =——+—|_v5dx 7
0 L oL do , X (7)

Here, the lateral deflections of the centroid axis, v(x,t)is assumed to be the Hermitian



polynomials of x, and may be expressed by

V(x,t) ={N, N3, N3, Ng}{v1, v, vp, V53 = Npup (8)

N1=%(1—§)2(2+§), Nz=§(1—§2)(1—§)

Ng=5@+%@-8). Ny=o (1469048, §=-1+2° ()

where v (j =1, 2) are nodal values of v at nodes j, respectively, vj ( =1, 2) are nodal
values of v, at nodes j, respectively. Note that, due to the definition of the element
coordinates, the values of vj ( = 1, 2) are zero. However, their variations and time

derivatives are not zero. In this paper, { } denotes column matrix.
If xand y in Eq. (1) are regarded as the Lagrange coordinates, the Green strain &1 and the

corresponding engineering strain ey, is given by [7]
1
a1 = E(r,txr,x -1) (10)

erg = (L+2617)Y? (11)

Substituting Egs. (2-4) and (10) into Eq. (11) and retaining all terms up to the second order
yield
ey =&g +(1-€0) YV xx (12)

The element nodal force vector is obtained from the d’Alembert principle and the virtual
work principle in the current element coordinates. The virtual work principle requires that

MWy = Subfy +Sul fyy = Wi, = J,, (Gelio1y + por'F)av (13)
Suy ={dUy, &y}, Suf ={6vy, 60,8y, 50} (14)
fo =8 +£) ={f11, f1o}, T =f|§| +fli) ={fo1.my, foo,my} (15)

where fj (j = a, b) denotes the internal nodal force vector corresponding to Su,, 5uﬁ,

fjQI and f} (j = a, b) are the deformation nodal force vectors and the inertia nodal force

vectors, respectively, V is the volume of the undeformed beam element, ey, is the variation
of e in Eqg. (12) with respect to the nodal parameters, oj1 =Eeq; is the normal stress,
where E is Young’s modulus, p is the density, or is the variation of r given in Eq. (2)

with respect to the nodal parameters, and i =a%r/at?. In this paper, the symbol (')
denotes time derivative o()/ot. ¢ (i =1, 2) are the nodal value of ¢ defined in Eq. (3) at

nodes i.



Substituting Egs. (2), (7)and (8) into Eq. (13), and using consistent linearization, fJgl and
f} (j = a, b) may be given by

£l = AEL£,G, (16)

f5 = EAgq [ NbV xdx-+ E1 [ NBV, ydx (17)

£} = pA[N NS diiig + pA[ Na(% J v 23 (18)
fy = pA[ Npvdx+ ol [NV dx— 201G, [NRV X (19)
Ga={ELD . Na=f 2225 0)

where A is the cross-section area and | = jAyZdA . The range of integration for the
integral j()dx in Egs. (17)-(19) isfrom O to L.

The element stiffness matrix and inertia matrix may be obtained by differentiating the
element nodal force vectors f; (j = a, b) in Egs. (15) with respect to the nodal parameters

and their time derivatives. The element stiffness matrices and consistent mass matrices of the
beam element may be given by
Stiffness matrices:

ko = AELG,G}, kp =kg+kg =El [NENpldx+ AEzo [ NpNj dx (21)
Mass matrices:
_ t _ t r art
m, = pA[ NaNGdx, mp = pA[ NpNpdx+ pA[ NpN{ dx (22)

where the range of integration for the integral J'( )dx in Egs. (21)-(22) is from O to L.

Note that the element coordinate system is only a local coordinate system not a moving
coordinate system here. Thus the element matrices referred to the global coordinate system
may be obtained from Eqgs. (21-22) by using the standard coordinate transformation.

2.5 Transition beam element

The beam element is regarded as a transition beam element when it is partially inside the
prismatic joint. A transition beam element is developed here. In the following the
derivation of the transition beam element is given.

The geometry of the first and the second segments of the transition beam element is
described in the current element coordinate systems X; and x;(i = 1, 2), respectively as

shown in Fig. 3. Let C be the end point of the prismatic joint, and node 3 be the intersection



of the first and the second segments of the transition beam element. However, the
displacement and slope at node 3 are continuous. Thus, the tangent of node 3 is in the X;

direction and node 3 can move in the x; direction only. Because the displacement and

virtual displacement of node 3 can be determined from the positions and virtual displacements
of nodes 1 and 2, and the assumption of the uniform unit extension of the beam element, node

3 is not an independent node. The transition beam element developed here has two
independent nodes — nodes 1 and 2, and four degree of freedoms - Uy, u,, Vo, and ¢, as

shown in Fig. 3. Let L; and L, denote the length of the first and second segments in the
undeformed state. Note that L; and L,are functions of time. However, their sum is a
constant and may be expressed by

L+Ly=L (23)

where L is the total length of the undeformed beam element.
When the positions and of nodes 1 and 2, and the value of ¢, are determined, ¢4 and 7,
the current chord length of the first and second segment, and @3, the deformation rotation of

node 3, can be calculated.
Making use of the assumption of uniform unit extension and Eq. (7), one may obtain

a1 2
g=—-1="%+¢,-1
0 L L, v (24)
_ 1 LZ 2
&y _E 0 vxdx (25)
From Eqgs. (23) and (24), one may obtain
Lty oL Lty /4L
Ll—T(l—g—zgv)l L2 —7(1+75v) (26)
&0 I%-i-%gv—l, £=f1+f2 (27)

The position vector of an arbitrary point in the undeformed and deformed configurations of
the first segment may be expressed as

rg = Xep +Yyeo, OSXSL]_ (28)

and

r=[U; + (1+&g)x]ep + ye, (29)
wheree; (i=1, 2) are unit vectors associated with the X; axis - Uy is the displacement of
node 1 in the X; direction. & is given in Eq. (27). Note that due to the definition of the

element coordinate system, the value of uU; is equal to zero. However, the variations and
time derivatives of U; are not zero.



Let U3z denote the displacement of node 3 in the Xx; direction. From Eqgs. (28) and (29),
one may obtain
Uz =0 +5oly (30)

From Eqgs. (27) and (30), the variation of U3 may be expressed by
L.
Sz = 50 +T1(5u2 —50) (31)

The position vector of an arbitrary point in the undeformed and deformed configurations of
the second segment may be expressed as

Ig = Xeq +Yyes, OSXSLZ (32)

and
r= [xp (x,t)—ysingle; +[v(x,t)+ ycosgler (33)
Xp () =ug + [ [+ 0)? VA1 20k (34)

where ug is the displacement of node 3 in the x; direction. v(x,t), ¢ is the angle
measured from x; axis to centroid axis of the beam element, and e; (i = 1, 2) denote the
unit vectors associated with the x; axis. Note that due to the definition of the element
coordinate system, the value of uz and vz is equal to zero, where vs is the displacement
of node 3 in the X, direction. However, their variations and time derivatives are not zero.
From the continuity of the displacement and slope at node 3 and Fig. 3, one may obtain

OUg =0U3C0S@3, OVz =AUzSings (35)

Here, the lateral deflections of the centroid axis, v(x,t)is assumed to be the Hermitian
polynomials of x, and may be expressed by

v(x,t) ={N1,N2, N3, N4} {v3,v3,vp,v5} = Njup (36)

N =5 @-92(@+9). N2=%(1—52)(1—§)

Ng =y @+822-8), Na=2(-1+6+8), é=-1+25  (3)

2X
2
where v (j = 2, 3) are nodal values of v at nodes j, respectively, vj ( =2, 3) are nodal
values of v, at nodes j, respectively. Note that the variations and time derivatives of the
shape functions should be considered for the second segment.
From Egs. (3), (4) (29), (33), (10) and (11) and retaining all terms up to the second order,
one may obtain



ell =&0, 0<x< L]_ (38)
and
ern=eo+(—eg)YWyx, 0<x<Ly (39)

The derivation of the element nodal force for the transition element is similar to that for the
conventional beam element and given as follows:
The virtual work principle requires that

t .
Mext = Sy +0uf fy = Miny = [ (Jelyogy + por'F)dv (40)
Sug ={6Uy,8uz}, Suf ={6v,,54,} (41)
fo =15 +f4 ={f11, f12}, fi =f€ +fy ={f,my} (42)

where fj (j = a, b) denotes the internal nodal force vector corresponding to Ju,, §ug,

f f' and f} ( = a, b) are the deformation nodal force vectors and the inertia nodal force
vectors, respectively, V is the volume of the undeformed beam element. &gy is the variation
of e inEgs. (38) and (39) with respect to the nodal parameters for segment 1 and segment
2, respectively.

Substituting Egs. (29)-(31), (33), (35)-(36), (38) and (39) into Eg. (40), and using
consistent linearization, fJQI and f} (j = a, b) may be given by

td = AEL5G, (43)
d L2 ' LZ "
f, =EA50IO NpaV ydXx+ EIJ'0 Np2V xxdX (44)
i _ L t gy L X la.2
fl = ijO N N dxii +ij0 Na(tj0 v5.dx)dx (45)
_ Lo oo Lp+X Ly+XpX.2
ijO (-t = }jo V5 dx)dx
i L, . Lo\t o t. (laar o
f, = ijO N Vdx + pl jo NhoV xxdx — 201G hit, jo NV ydx (46)
Np2 ={N3, N4} (47)
where G, and N, are defined in Egs. (20), respectively, N3 and N, are defined in Eq.

(37).
The element stiffness matrix and inertia matrix may be obtained by differentiating the
element nodal force vector f; (j =a, b) in Eqgs. (42) with respect to the nodal parameters and



their time derivatives. The element stiffness matrices and consistent mass matrices of the
transition beam element may be given by
Stiffness matrices:

L L
ka = AELG,G. kp =ko+kg = E|j0 2 NpaNphdx + AEgojO *NpaNi,dx  (48)
Mass matrices:

L t L t Lo s it
m, = ijo N NLdx, my = ijoz NbZNbZdX+pAIOZ NpoNLdx (49)

2.6 Element damping force vector

Here the proportional damping is considered. The element damping force vector may be
expressed by [8]

f{ =cju; (50)

cj=omj+fk; (51)
where j =a, b, ¢ is the so called damping matrix, u; is the element nodal velocity,

m; and k; are the corresponding mass and stiffness matrix, respectively for the

conventional and the transition beam element. Note that only kg is considered for kp
given in Egs. (21) and (48). « and g are the so called damping coefficients.
2.7 Equations of Motion
The nonlinear equations of motion may be expressed by
v-=F +FP+F -P=0 (52)
where ¥ is the unbalanced force among the inertia nodal force F', deformation nodal

force FD, damping nodal force o , and the external nodal force P.
In this paper, an weighted Euclidean norm of the unbalanced force is employed for the
equilibrium iterations, and is given by

M <e (53)
\/W e (0]

where N is number of the equations of the system; ey, is a prescribed value of error
tolerance.
3 NUMERICAL EXAMPLES

An incremental iterative method based on the Newmark direct integration method [6, 9]
and the Newton-Raphson method is employed here. The procedure proposed in [9] to
determine the nodal deformation rotation for individual elements is employed here.



Let L and Ly denote the total length of the sliding beam and the initial length of the

sliding beam outside the prismatic joint, respectively. The prescribed end displacement
U a(t) of the sliding beam considered here has two different types and may be expressed as

1
Ual(t) :v0t+za0t2 (54)
and
Co to 2t
—(t———sIn—), t<t
UA(t) =11p ( 27 to ) 0 (55)
U a(to), t>tg

where vg, ag, Cp,and ty are constants.
To obtain the damping coefficients in Eq. (51), the modal damping functions used in [3, 5]
are used here and given by
04874 ~ 3.124
DAL tUAPe T Al U0 e

(56)

where Ly is the initial length of the sliding beam outside the prismatic joint, @; is the ith
natural frequencies of a cantilever beam of length Ly +U a(t) .

The geometry and material properties of the sliding beam used here are [3, 5]: cross
section area A=4.3434x10‘5m2, area moment of inertia | =1.059x10 1tm*, Young's

modulus E =68.96x10°N/m? , and the density p=3144.3858kg/m3. Four cases are

considered: (a) L=0.762m , Lg=0.521m , vp=-0.03m/s , aQ:—O.054m/s2 (b)
L=1.05m, Ly=0.35m, ¢y =0.7m, ty=12s

For all cases, the sliding beam is initially at rest, and the magnitude of the initial lateral tip
deflection is 0.024 m, which is induced by the application of a lateral force at the free end of
the beam. Note that the lateral force is removed whent > 0. The beam initially inside and
outside the prismatic joint is discretized by 14 and 10 equal element, respectively. The time
step sizes are chosen to be 0.001 sec. The time history of the tip displacements are shown in
Figs. 4-5. The agreement between the present results, the experimental results reported by
[3] (not shown) and the results of linear analysis [3, 5] (not shown) is very good. The
nonlinear solution reported by [5] exhibits period elongation relative to the linear solution and
shows higher amplitudes. Thus, the nonlinear solution reported by [5] might be incorrect.
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Figure 4: Tip deflection for case (a)
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Figure 5: Tip deflection for case (b)

4 CONCLUSIONS

A simple and effective consistent co-rotational total Lagrangian finite element formulation
and a numerical procedure are proposed to investigate the geometric nonlinear dynamic
response of sliding beam.

To exactly predict the dynamic response of the sliding beam, the total length of the sliding

11



beam is considered. The beam element is regarded as a conventional beam element when it is
inside or outside the prismatic joint, and regarded as a transition beam element when it is
partially inside the prismatic joint. The beam element proposed in [6] is adapted and used as
the conventional beam element here. A transition beam element is developed here. The
total undeformed length of the beam element is constant. However, the undeformed length of
the first segment and the second segment of the transition element are time dependent. The
kinematics, deformations, and equations of motion of the transition beam element are defined
in terms of two element coordinate systems constructed at the current configuration of the
deformed beam element. The principle of virtual work, d’Alembert principle and the
consistent second order linearization of the fully geometrically nonlinear beam theory are
used to derive the deformation nodal force and inertia nodal force of the beam element.

An incremental-iterative method based on the Newmark direct integration method and the
Newton-Raphson method is employed for the solution of nonlinear dynamic equilibrium
equations. From the numerical examples studied, the accuracy and efficiency of the
proposed method is well demonstrated..

REFERENCES

[1] C.D. Jr. Mote. Dynamic stability of axial moving material. Shock Vibration Dig., U. S.
Naval Research Laboratory, 4, 2-11, 1972.

[2] J.A. Wickert and C.D. Mote. Current research on the vibration and stability of
axially-moving materials. The Shock and Vibration Digest, 20, 3-13, 1988.

[3] J. Yuh and T. Young. Dynamic modeling of an axially moving beam in rotation:
simulation and experiment. ASME J. Dyn. Systems Measurements Control, 113, 34-40,
1991.

[4] L. Vu-Quoc and S Li. Dynamics of sliding geometrically-exact beams: large angle
maneuver and parametric resonance. Comput. Meth. Appl. Mech. Engng., 120, 65-118,
1995.

[5] K. Behdinan and B. Tabarrok. A finite element formulation for sliding beams, Part I. Int.
J. Numer. Meth. Engng., 43, 1309-1333, 1998. Part Il : time integration. Int. J. Numer.
Meth. Engng., 43, 1335-1363, 1998.

[6] K.M. Hsiao, R.T. Yang and A.C. Lee. A consistent finite element formulation for
non-linear dynamic analysis of planar beam. Int. J. Numer. Meth. Engng., 37, 75-89,
1994,

[7] T.J. Chung. Continuous Mechanics. Prentice-Hall, Inc., Englewood CIiff, New Jersey,
1988.

[8] S.S.Rao. Mechanical Vibrations, Third Edition. Addision-Wesley, 1995.

[9] K.M. Hsiao and J.Y. Jang. Nonlinear Dynamic Analysis of Elastic Frames. Comput.
Struct., 33, 1057-1063, 1989.

12



