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Dynamical properties of a nonequilibrium quantum dot close
to a dissipative quantum phase transition
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The dynamical decoherence rate and charge susceptibility of a nonequilibrium quantum dot close to a dissipative
quantum phase transition are calculated. The setup concerns a resonance-level quantum dot coupled to two spinless
fermionic baths with a finite bias voltage and an ohmic bosonic bath representing a dissipative environment.
The system is equivalent to an anisotropic Kondo model. As dissipation strength increases, the system at zero
temperature and zero bias exhibits a quantum phase transition of the Kosterlitz-Thouless (KT) type between a
conducting delocalized phase and an insulating localized phase. Within the nonequilibrium frequency-dependent
renormalization group (RG) approach, the finite bias crossover in dynamical decoherence rate and charge
susceptibility close to the transition are addressed. The dynamical decoherence rate is found to increase with
increasing frequency. In the delocalized phase, it shows a singularity at frequencies equal to positive or negative
bias voltage. As the system cross overs to the localized phase, the decoherence rate at low frequencies gets
progressively smaller and the singular feature is gradually smeared out, leading to a single linear frequency
dependence. The dynamical charge susceptibility at low frequencies shows a dip-to-peak crossover across the
transition. Relevance of these results to the experiments is discussed.
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I. INTRODUCTION

Quantum phase transitions (QPTs)1,2 due to competing
quantum ground states are of fundamental importance in
condensed matter physics and have attracted much attention
both theoretically and experimentally. Near the transitions,
exotic quantum critical properties are realized. In recent years,
there has been a growing interest in QPTs in nanosystems.3–10

Very recently, QPTs have been extended to nonequilibrium
nanosystems with a large bias voltage being applied to
the setups. Close to QPTs much of the attention has been
focused on equilibrium properties, while relatively less is
known of the nonequilibrium properties. The key difference
between equilibrium and nonequilibrium properties near QPTs
is the voltage-induced nonequilibrium decoherence rate, which
behaves very differently from that in equilibrium at finite
temperatures, leading to distinct nonequilibrium properties
near QPTs.

Generic examples of nonequilibrium QPTs in quantum dot
devices that have been studied recently include the transport
through (i) a dissipative resonance level (spinless quantum
dot) at a finite bias voltage in which a dissipative bosonic
bath (noise) comes from the environment in the leads,11 (ii) a
spinful quantum dot coupled to two interacting Luttinger liquid
leads12 where the electron interactions can be regarded as an
effective ohmic dissipative bosonic bath,10 and (iii) a single
electron transistor (SET) attached to ferromagnetic leads.13

In particular, for the first two examples, as dissipation (or
interaction) strength is increased, both systems can be mapped
onto different effective Kondo models. These models exhibit
QPT in transport from a conducting delocalized phase (or
the Kondo-screened phase in the context of the anisotropic
Kondo model) where resonant tunneling dominates to an
insulating localized phase (or the ferromagnetic local-moment
phase in the anisotropic Kondo model) where the dissipation

(or electron-electron interaction) prevails. Similar dissipation
driven QPTs have been investigated in various systems.14,15

To obtain the nonequilibrium transport properties, the authors
of Refs. 11 and 12 applied the nonequilibrium frequency-
dependent renormalization group (RG) approach16 in the
form of self-consistent scaling equations for frequency-
dependent Kondo couplings and the static decoherence rate
�(V,T ,B). Though the dynamical nonequilibrium effects in
Kondo models have been addressed,17–19 less is known of
the steady-state nonequilibrium decoherence effect on the
anisotropic and/or two-channel Kondo models. In this paper,
we address the dynamical properties of the nonequilibrium
decoherence effect of a dissipative resonance-level quantum
dot across the Kosterlitz-Thouless (KT) transition (the first
example mentioned above). To obtain the dynamics or the
frequency dependence of the decoherence rate, we generalize
the frequency-dependent RG approach taken in Refs. 11 and
12 to include the frequency dependence of the decoherence
rate self-consistently. The nonequilibrium decoherence rate
is directly proportional to the width of the peak in dy-
namical spin susceptibility. We furthermore investigate the
spectral properties of the dynamical decoherence rate close
to the QPT and its implications to the dynamical charge
susceptibility, which can be measured experimentally. In
particular, as the system goes from the delocalized to the
localized phase we find the dynamical decoherence rate at
small frequencies gets smaller in magnitude and the singular
“kink-like” behavior occurring at the frequencies equal to
the bias voltage (ω = ±V ) gets smeared out. As the system
moves from the delocalized to the localized phase, we find
the dynamical (charge) susceptibility shows a dip-to-peak
crossover and the smearing of the sharp feature at ω ≈
±V . The relevance of our results to the experiments is
discussed.
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II. MODEL HAMILTONIAN

The system we study here is a spin-polarized quantum
dot coupled to two Fermi-liquid leads subjected to a noisy
ohmic environment. The dissipative environment consists of
a collection of harmonic oscillators with ohmic correlation
coupled capacitively to the quantum dot.11 For a dissipative
resonant level (spinless quantum dot) model, the quantum
phase transition separating the conducting and insulating
phases for the level is solely driven by dissipation. The
Hamiltonian is given by11

H =
∑

k,i=1,2

[ε(k) − μi]c
†
kicki + tic

†
kid + H.c.

+
∑

r

λr (d†d − 1/2)(br + b†r ) +
∑

r

ωrb
†
rbr

+ εd (d†d − 1/2), (1)

where ti is the hopping amplitude between lead i and the
quantum dot, cki and d are electron operators for the Fermi-
liquid leads and the quantum dot, respectively, μi = ±V/2 is
the chemical potential (bias voltage) applied on the lead i, and
εd is the energy level of the dot. We assume that the electron
spins have been polarized by a strong magnetic field. Here, bα

are the boson operators of the dissipative bath with an ohmic
spectral density:4 J(ω) = ∑

r λ2
r δ(ω − ωr ) = αω with α being

the strength of the dissipative boson bath.
Through similar bosonization and refermionization pro-

cedures as in equilibrium,3,4,6,7 the above model is mapped
onto an equivalent anisotropic Kondo model in an effective
magnetic field εd with the effective left L and right R

Fermi-liquid leads.11 The effective Kondo model takes the
form

HK =
∑

k,γ=L,R,σ=↑,↓
[εk − μγ ]c†kγ σ ckγ σ

+ (J 1
⊥s+

LRS− + J 2
⊥s+

RLS− + H.c.)

+
∑

γ=L,R

Jzs
z
γ γ Sz + hSz, (2)

where c
†
kL(R)σ is the electron operator of the effective lead

L(R) with spin σ . Here, the spin operators are related to
the electron operators on the dot by S+ = d†, S− = d, and
Sz = d†d − 1/2 = nd − 1/2, where nd = d†d describes the
charge occupancy of the level. The spin operators for electrons
in the effective leads are s±

γβ = ∑
α,δ,k,k′ (1/2)c†kγ ασ±

αδck′βδ ,
the transverse and longitudinal Kondo couplings are given
by J

1(2)
⊥ ∝ t1(2) and Jz ∝ (1/2)(1 − 1/

√
2α∗), respectively,

and the effective bias voltage is μγ = ±V
2

√
1/(2α∗), where

1/α∗ = 1 + α. Note that μγ → ±V/2 near the transition
(α∗ → 1/2 or α → 1) where the above mapping is exact.20

The spin operator of the quantum dot in the effective Kondo
model, �S, can also be expressed in terms of the spinful
pseudofermion operator fσ : Si=x,y,z = f †

ασ
αβ

i=x,y,zfβ . In the
Kondo limit where only the singly occupied fermion states
are physically relevant, a projection onto the singly occupied
states is necessary in the pseudofermion representation.11,16

This can be achieved by introducing the Lagrange multiplier
λ so that Q = ∑

γ f †
γ fγ = 1.21,22 In equilibrium, the above

anisotropic Kondo model exhibits the KT transition from

a delocalized phase with a finite conductance G ≈ 1
2πh̄

(e = h̄ = 1) for J⊥ + Jz > 0 to a localized phase for J⊥ +
Jz � 0 with vanishing conductance. The distinct profile in
nonequilibrium transport near the localized-delocalized KT
transition has been addressed in Ref. 11. Below we will turn
our attention to the dynamical decoherence rate and charge
susceptibility of the quantum dot close to the transition.

III. NONEQUILIBRIUM FREQUENCY-DEPENDENT
RG FORMALISM

The nonequilibrium frequency-dependent RG approach is
based on the generalization of the previous RG approach in
Ref. 16 for the nonequilibrium Kondo model. The frequency-
dependent RG scaling equations for the effective Kondo
couplings in the Keldysh formulation are given by16

∂gz(ω)

∂ ln D
= −

∑
β=−1,1

[
g⊥

(
βV

2

)]2


ω+ βV

2
,

(3)
∂g⊥(ω)

∂ ln D
= −

∑
β=−1,1

g⊥

(
βV

2

)
gz

(
βV

2

)

ω+ βV

2
,

where g⊥(ω) = N (0)J 1
⊥ = N (0)J 2

⊥σ and gz(ω) = N (0)Jz are
dimensionless frequency-dependent Kondo couplings with
N (0) being density of states per spin of the conduction
electrons (where we assume symmetric hopping, t1 = t2 = t).
Here, 
ω = 
(D − |ω + i�(ω)|) (with D < D0 being the
running cutoff) comes from the leading logarithmic corrections
for the Kondo vertex function originated from the product of
the Keldysh component of the lead electron Green function
GK

α (ω) with the real part of the retarded or advanced dressed
pseudofermion propagator Re(G̃R/A

f ):23

GK
α (ω) = −2π i tanh

(
ω − μα

2T

)
N0
(D0 − |ω|),

G̃R
f σ (ω) = 1

ω − �R
σ (ω)

= [
G̃A

f σ (ω)
]∗

, (4)

where �R
σ (ω) = Re[�R

σ (ω)] + i
2�σ (ω) is the impurity self-

energy (defined below) with the imaginary part being the
dynamical decoherence rate �σ (ω), and N0 = 1

2D0
. Note that

we generalize the approach in Ref. 16 by allowing the fre-
quency dependence for the decoherence rate. More precisely,
the decoherence rate � in Ref. 16 corresponds to �(ω = 0)
here. At T = 0, the above correction can be approximated
by the 
 function in the RG equations shown above. Also,
the dynamical decoherence (dephasing) rate �σ (ω) at finite
bias, which serves as a cutoff to the RG flow of g⊥,z(ω),16 is
determined self-consistently along with the RG equations for
the Kondo couplings. Note that in general �σ (ω) depends on
the impurity spin σ ; however, in the absence of magnetic fields
as we consider here, we have the spin symmetry and hence we
have �↑(ω) = �↓(ω) = �(ω). Here, the frequency-dependent
decoherence rate �(ω) is obtained from the imaginary part of
the pseudofermion self-energy via second-order renormalized
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=
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+

FIG. 1. Diagram for the pseudofermion self-energy. The double-
dashed line represents the dressed pseudofermion propagator; the
single-dashed lines denote the bare pseudofermion propagators. The
solid lines are the conduction electron propagators. The small shaded
circles denote the Kondo interaction vertex, and g(ω + ε) and g(ε −
�) represent the frequency-dependent renormalized dimensionless
Kondo couplings defined in the text.

perturbation theory21 (see Fig. 1):

�σ (ω) = Im[�σ (ω)] = i
(
�R

σ − �A
σ

)
,

i�R(A)
σ (ω) =

∑
σ ′,α,β=L,R

θσσ ′

16

∫
dε

2π
gαβ(ω + ε) (5)

×χ
<(>),αβ

cf,σ ′ (ε)G>(<)
β (ε + ω),

where σ,σ ′ =↑ , ↓, gLR ≡ g⊥, gLL/RR ≡ gz, θσσ ′ is the tensor
associated with the product of the Pauli matrices:16

θγ γ ′ = 1

2

∑
σ,σ ′

τ i
σσ ′τ

i
γ γ ′τ

j

σ ′σ τ
j

γ ′γ = δγ γ ′ + 2τ 1
γ ′γ , (6)

and χ
<(>),αβ

cf,σ reads

χ
<(>),αβ

cf,σ (ε) =
∫

d�

2π
gβα(ε − �)[Ĝασ (ε + �)Ĝf σ (�)]<(>),

(7)

where Ĝ is the Green’s function in 2 × 2 Keldysh space and its
lesser and greater Green’s functions are related to its retarded,
advanced, and Keldysh components by

G< = (GK − GR + GA)/2,
(8)

G> = (GK + GR − GA)/2.

Specifically, the lesser and greater components of the
Green’s function of the conduction electron in the leads and
of the quantum dot (impurity) are given by (in the absence of
a magnetic field)

G<
L/R(ε) = iAc(ε)fε−μL/R

,

G>
L/R(ε) = iAc(ε)(1 − fε−μL/R

),
(9)

G<
f σ (ε) = 2π iδ(ε)nf σ (ε),

G>
f σ (ε) = 2π iδ(ε)[nf σ (ε) − 1],

where Ac(ε) = 2πN2
0 
(D0 − ε) is the density of states of

the leads and nf σ (ε) = f †
σ fσ is the occupation number of the

pseudofermion which obeys nf ↑ + nf ↓ = 1, nf σ (ε → 0) =
1/2 in the delocalized phase and nf ↑(ε → 0) → 0, nf ↓(ε →
0) → 1 in the localized phase.11,22 Here, the pseudofermion
occupation number nf σ and the occupation number on the dot,
nd , are related via 〈nf ↑ − nf ↓〉 = 〈nd〉 − 1/2. Also, fω−μL/R

is the Fermi function of the L/R lead given by fω−μL/R
=
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FIG. 2. (Color online) Frequency-dependent Kondo couplings of
a dissipative resonant level model at zero temperature for (a) g⊥(ω)
and (b) gz(ω) across the localized-delocalized transition for different
bare Kondo couplings (in unit of D0) via our generalized frequency-
dependent RG approach (solid lines) and the approach in Ref. 11
(dot-dashed lines). We have set V = 0.2D0, where D0 = 1 for all the
figures.

1/(1 + e(ω−μL/R )/kBT ). After simplifications, we have

χ
<,αβ

cf,σ (ε) = 2π igβα(ε)Ac(ε)[1 − nf σ (ε)]fε−μα
,

(10)
χ

>,αβ

cf,σ (ε) = 2π igβα(ε)Ac(ε)nf σ (ε)(1 − fε−μα
).

The dynamical decoherence rate is therefore given by

�(ω) = 3

4π

∫
dεg⊥(ε + ω)g⊥(ε)

[
fε−μL

(
1 − fε+ω−μR

)]
+ gz(ε + ω)gz(ε)

[
fε−μL

(
1 − fε+ω−μL

)]
+ (L → R). (11)

The frequency-dependent RG approach here is accom-
plished by self-consistently solving the RG scaling Eq. (3)
subject to Eq. (11). The solutions at zero temperature for g⊥(ω)
and gσ,z(ω) across the transition are shown in Fig. 2.11

Here, we make the following remarks on our RG approach:
First, the approach used in this paper is the generalized version
of the previous frequency-dependent RG approach in Ref. 16:
We include the frequency dependence for the decoherence
rate, while in Ref. 16 it is fixed at zero frequency. Similar to
Ref. 16, we self-consistently solve the frequency-dependent
decoherence rate within renormalized perturbation theory
along with the RG scaling equations for the Kondo couplings.
Though a more rigorous functional renormalization group
(FRG) approach has been developed in Ref. 23 where the
decoherence rate is determined entirely within the framework
of the FRG, our approach is a well-justified procedure: It
includes all the leading logarithmic corrections for the Kondo
couplings within renormalized perturbation theory where the
renormalized Kondo couplings are obtained from the RG
procedure (rather than from the bare Kondo couplings). As
shown in Refs. 16 and 24, the results via this approach
are in excellent agreement with the recent experiments on
nonequilibrium transport in Kondo dot systems. In the present
work, we take the generalized version of this well-justified

115308-3



CHUNG-HOU CHUNG PHYSICAL REVIEW B 83, 115308 (2011)

approach by including the frequency dependence in the
decoherence rate. This allows us to extract the dynamical
properties of the decoherence rate.

Second, our nonequilibrium RG approach is controlled not
only in the localized phase for all values of V but also in the
delocalized phase provided V � Tk . In the localized phase
and for V → 0, under RG, J

1,2
⊥ flow to 0 and J 1,2

z flow to a
small fixed-point value. Hence, all Kondo couplings are in the
perturbative regime under RG. In the delocalized phase, our
RG approach is uncontrolled for V → 0 as Kondo couplings
are divergent. Nevertheless, in this paper we restrict ourselves
to the parameter range V � Tk ∝ e−1/|α−αc |, where the large
bias voltage leads to a cutoff for the divergent RG flows of the
Kondo couplings, keeping the renormalized Kondo couplings
in the perturbative regime, g⊥,z(ω) � 1.16 Therefore, similar
to Refs. 16,21, and 24 where the frequency-dependent RG
approach is applied to study the nonequilibrium transport
through a Kondo dot in the limit of large bias voltage (V � Tk),
our approach is still a controlled method in the delocalized (or
equivalently the Kondo) phase.

As the system moves from the delocalized to localized
phase transition, the features in g⊥(ω) at ω = ±V/2 undergo a
crossover from symmetric double peaks to symmetric double
dips, while the symmetric two peaks in gz(ω = ±V/2) still re-
main peaks. We find the above results based on the generalized
frequency-dependent RG approach are in good agreement with
the previous heuristic methods,11,16 which provides us with an
independent check on the previous results in Refs. 11 and 16.
Note that from previous approaches in Refs. 11, 12, and 16 the
decoherence rate was taken approximately as �(ω = 0); we
now generalize this � by including the frequency dependence.
This generalization improves the previous RG formalism and
it also provides us with more features in the dynamical
quantities across the transition, such as in dynamical charge
susceptibility.

It is worthwhile mentioning that unlike the equilibrium
RG at finite temperatures where RG flows are cut off by
temperature T , here in nonequilibrium the RG flows will
be cut off by the decoherence rate �, a much lower energy
scale than V , � � V . This explains the dips (peaks) structure
in g⊥(z)(ω) in Fig. 2 . In contrast, the equilibrium RG will
lead to approximately frequency-independent couplings [or
“flat” functions g⊥(ω) ≈ g⊥,z(ω = 0)]. In the absence of
field (h = 0), g⊥,(z)(ω) show dips (peaks) at ω = ±V/2.
We use the solutions of the frequency-dependent Kondo
couplings g⊥,zσ (ω) to compute the dynamical decoherence
rate and charge susceptibility of the resonance level near the
delocalized-localized quantum phase transition.

IV. DYNAMICAL DECOHERENCE RATE
AND CHARGE SUSCEPTIBILITY

We have solved for the dynamical decoherence rate �(ω)
at zero temperature self-consistently along with the RG
equations (3) subject to Eq. (11). The results are shown in
Fig. 3. The general trend we find is that �(ω) increases
with increasing frequency, while it decreases in magnitude
at low frequencies |ω| < V as the system cross overs from
the delocalized to the localized phase. In addition, in the
delocalized phase, it shows a singular kink-like behavior at
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+
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FIG. 3. (Color online) �(ω) (rescaled to g2
⊥ + g2

z with g⊥,z being
the bare Kondo couplings in units of D0) vs ω at zero temperature
across the delocalized-localized KT transition. The inset shows the
log-log plot of �(ω) vs ω. The bias voltage is fixed at V = 0.2D0.
Here, D0 = 1 for all the figures.

frequencies ω = ±V , separating two different behaviors for
|ω| > V and |ω| < V . The curves of �(ω) for |ω| < V are
closer to the linear behavior than those for |ω| > V . As the
system moves to the localized phase, �(ω) for both |ω| < V

and |ω| > V gradually changes its slopes or curvatures and
finally merges into a single linear behavior deep in the localized
phase (see Fig. 3).

To understand the above qualitative features, it proves use-
ful to simplify the zero-temperature dynamical decoherence
rate in Eq. (11) to the following form:

�(ω) = 3

4π

[∫ V/2+ω/2

−V/2−ω/2
+

∫ V/2−ω/2

−V/2+ω/2

]
dε

×g⊥(ε − ω/2)g⊥(ε + ω/2)

+ 3

4π

[∫ V/2+ω/2

V/2−ω/2
+

∫ −V/2+ω/2

−V/2−ω/2

]
dε

×gz(ε − ω/2)gz(ε + ω/2) (|ω| < V ),

�(ω) = 3

4π

[∫ V/2+ω/2

−V/2−ω/2
+

∫ −V/2+ω/2

V/2−ω/2

]
dε

×g⊥(ε − ω/2)g⊥(ε + ω/2)

+ 3

4π

[∫ V/2+ω/2

V/2−ω/2
+

∫ −V/2+ω/2

−V/2−ω/2

]
dε

×gz(ε − ω/2)gz(ε + ω/2) (|ω| > V ). (12)

In the “flat” (or in the “equilibrium form”) approximation
where g⊥,z(ω) are treated as flat functions g⊥,z(V,ω = 0) ≈
g⊥,z(V = T ) with T being temperature,11 Eq. (12) can be
simplified as the following linear behaviors:

�e(ω) = 3

2π

[
Vg2

⊥(0) + ωg2
z (0)

]
(|ω| < V ),

(13)

�e(ω) = 3

2π
ω

[
g2

⊥(0) + g2
z (0)

]
(|ω| > V ).

As shown in Fig. 3, the above approximated form �e(ω) agrees
well with �(ω) for |ω| < V , but it shows deviation from �(ω)
for |ω| > V . The approximated form �e(ω) exhibits two linear

115308-4



DYNAMICAL PROPERTIES OF A NONEQUILIBRIUM . . . PHYSICAL REVIEW B 83, 115308 (2011)

behaviors with different slopes for |ω| < V and |ω| > V ,
respectively, leading to a kink-like singularity at ω = ±V .
As the system moves from the delocalized to the localized
phase, the ratio g⊥(0)/gz(0) becomes progressively smaller,
leading to suppressions of the two slopes. Finally, as the system
moves deeply in the localized phase, these two lines merge
into a single line since |g⊥(0)| � |gz(0)| there. The qualitative
behaviors of �e(ω) can explain the overall monotonically
increasing trend of �(ω) with increasing frequency as well
as the decreasing trend of �(|ω| < V ) as the system moves
from the delocalized to the localized phase.

When the full frequency dependence of g⊥,z(ω) is con-
sidered, we find that �(ω) deviates from the perfect linear
behavior in �e(ω) (see Fig. 3). Furthermore, in the delocalized
phase, the correction to the linear behavior, �(ω) − �e(ω), is
more noticeable in the high-frequency regime (|ω| > V ) than
in the low-frequency regime (|ω| < V ) (see Fig. 3). This comes
as a result of the wider range in energy ε to be integrated over
in Eq. (12) for |ω| > V , which accumulates more deviations
from the flat approximation due to the dip-peak frequency
dependence of g⊥,z(ω). As the system moves to the localized
phase, �(|ω| > V ) becomes closer to the linear behavior as a
result of the flatter gz(ω) in the localized phase. Meanwhile,
we find that the correction to the linear behavior as well
as the singularities at ω = ±V for �(ω) are logarithmic in
nature in the delocalized phase (g⊥ = 0.05D0 = gz) and at
the KT transition (g⊥ = 0.05D0 = −gz), while they are power
law in nature for |g⊥| �= |gz|. This comes as a result of the
logarithmic and power-law behaviors for g⊥,z(ω) in these
limits, respectively.11 Note also that for |ω| > V we find
�(ω) < �e(ω) in the delocalized phase, while the opposite
holds in the localized phase. This can be understood as follows:
In the delocalized phase |g⊥(z)(ω)| < |g⊥(z)(0)| for the majority
of the frequencies (except for ω very close to ±V/2), leading
to a smaller value of �(ω) compared to �e(ω), while the
opposite is true in the localized phase. We have checked
numerically that �(ω = 0) obtained here indeed reproduces
the frequency-independent decoherence rate � obtained in
Ref. 11.

The effect of the dynamical decoherence rate can be
measured experimentally via dynamical charge susceptibility
χc(ω): Im(χc(ω)) ∝ limεd→0 dnd (ω)/dεd with εd ∝ (N−1/2)
being the effective magnetic field measuring the deviations of
N electrons on the dot from the charge degeneracy point. Here,
χc(ω) is the Fourier-transformed charge susceptibility defined
as

χc(t) ≡ iθ (t)〈[(nd (t) − 1/2), (nd (0) − 1/2)]〉. (14)

Experimentally, the dynamical charge susceptibility can be
measured by the capacitance line shape in an ac field near
the charge degeneracy point via the high-sensitivity charge
sensor in the SET connected to the dot.25 The decoherence rate
�(ω = 0) here corresponds to the broadening of the resonance
peak in the imaginary part of χc(ω). We have calculated
χc(ω) at zero temperature based on renormalized second-order
perturbation theory (see the diagram in Fig. 4). From the
mapping mentioned above, the dynamical charge susceptibility
χc(ω) is related to the z component of the effective spin-spin

ω

ω+ν

FIG. 4. Diagram for the charge susceptibility. The dressed
pseudofermion propagator (double-dashed line) is calculated via the
diagram in Fig. 1.

correlation function χzz in the effective Kondo model through

χc(t) ≡ −iθ (t)〈[(nd (t) − 1/2),(nd (0) − 1/2)]〉
≡ χzz(t), (15)

χzz(t) ≡ −iθ (t)〈[Sz(t),Sz(0)]〉.

By taking the Fourier transform of χzz(t) and evaluating
the diagram in Fig. 4, the imaginary part of χzz(ω), χ ′′

zz(ω) =
Im(χzz(ω)) is given by

χzz
′′(ω) =

∫
dε

2π

∑
σ=↑,↓

[Ḡ〈
f,σ (ω + ε)Ḡ〉

f,σ (ε)

−Ḡ>
f,σ (ω + ε)Ḡ<

f,σ (ε)], (16)

where Ḡ>(<)) denote the greater (lesser) components of the
dressed pseudofermion Green’s functions

Ḡ<
f σ (ω) = 2π inf σ (ω)Āf σ (ω),

Ḡ>
f σ (ω) = 2π i(nf σ (ω) − 1)Āf σ (ω), (17)

Āf σ (ω) = Im

[
1

ω + �f σ (ω) + iη

]
,

and where nf σ (ω) is the nonequilibrium occupation num-
ber determined self-consistently by the quantum Boltzmann
equation:21

nσ (ω) = [1 − �>
σ (ω)/�<

σ (ω)]−1 (18)

with �>(<)
σ (ω) as defined in Ref. 22. The resulting expression

for χzz(ω) at T = 0 is given by

χ ′′
zz(ω) = �(ω)

ω2 + �2(ω)
× [1 − 2nf ↑(ω)], (19)

where nf ↑(ω) is given by21

nf ↑(ω) ≈ 1

2

g2
⊥(0)(V − ω)

2g2
z (0)ω + g2

⊥(0)(V + ω)
(0 < ω < V )

(20)

nf ↑(ω) ≈ 1

2

g2
⊥(0)(V − ω − 2g2

zω)

g2
⊥(0)(V + ω)

(−V < ω < 0).

Note that we have neglected the vertex correction21 in the
calculation for χzz(ω) as it gives only a subleading correction
to Eq. (19).

As shown in Fig. 5, in the delocalized phase, χzz(ω →
0) ∝ ω → 0, while χzz(ω → 0) → 1/ω in the localized phase.
Hence, as the system cross overs from the delocalized to
the localized phase χ ′′

zz(ω) shows a dip-to-peak crossover
for small ω. This behavior can be understood as follows. In
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FIG. 5. (Color online) χ ′′
zz(ω) vs ω at zero temperature across

the localized-delocalized KT transition. The bias voltage is fixed
at V = 0.2D0. Here, the bare Kondo couplings g⊥,z are in unit of
D0 = 1.

the delocalized (Kondo-screened) phase, the effective local
spin gets Kondo screened in the low-energy scale; therefore,
the spin susceptibility should vanish. On the other hand, in
the localized (ferromagnetic) phase, the unscreened free spin
gives rise to the Curie-law susceptibility χ ′′

zz(ω) ∝ 1/ω at low
energies. Meanwhile, in the delocalized phase, we find a a
kink-like singular behavior in χ ′′

zz(ω) at ω = V , coming from
the singular behaviors of both �(ω = V ) [see Eq. (3)] and the
factor 1 − 2nf ↑ in χ ′′

zz(ω = V ) [see Eq. (19) and discussions
below]. However, this singularity gets smeared out as the
system cross overs to the localized phase. We have checked
that our results for χ ′′

zz(ω) in the isotropic Kondo limit agree
qualitatively well with those in Refs. 17 and 26. For ω � V , we
find Curie-like susceptibility χ ′′

zz(ω) ∝ 1/ω in both localized
and delocalized phases, following Eqs. (19) and (13).

Our results can be furthermore linked to the equilibrium
and nonequilibrium fluctuation-dissipation theorem.17–19,26,27

To do so, it is useful to define the dynamical fluctuation-
dissipation ratio h(ω):

h(ω) = χ ′′
zz(ω)

Szz(ω)
, (21)

where Szz(ω) is the Fourier-transformed longitudinal spin-spin
correlation function with its real-time form given by

Szz(t) = 1
2 〈{Sz(t),Sz(0)}〉. (22)

The dynamical spin-spin correlation function Szz(ω) is
given by

Szz(ω) =
∫

dε

2π

∑
σ=↑,↓

[Ḡ〈
f,σ (ω + ε)Ḡ〉

f,σ (ε)

+ Ḡ>
f,σ (ω + ε)Ḡ<

f,σ (ε)]. (23)

Carrying out similar calculations as in χ ′′
zz(ω), we find the

fluctuation-dissipation ratio h(ω) reads

h(ω) = 1 − 2nf ↑(ω), (24)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

      / D
0

10
-9

10
-6

10
-3

10
0

0.1    0
0.05  0.05
0.05 -0.05
0.05 -0.15
0      -0.1

ω

(    )h ω

gg z⊥

FIG. 6. (Color online) The fluctuation-dissipation ratio h(ω) vs
ω at zero temperature across the localized-delocalized KT transition.
The bias voltage is fixed at V = 0.2D0. Here, the bare Kondo
couplings g⊥,z are in units of D0 = 1.

where nf ↑(ω) is defined in Eq. (20). In equilibrium,
the ratio h(ω) = h0(ω) respects the fluctuation-dissipation
theorem,17–19,26 given by h0(ω) = 1 − 2n0

f (ω) = tanh(βω/2),

where n0
f (ω) = 1

eβω+1 is the Fermi function for pseudofermions
in equilibrium. At T = 0 (β → ∞), we have h0(ω > 0) =
1, the signature of the equilibrium fluctuation-dissipation
theorem at T = 0. In nonequilibrium and at T = 0, however,
we find in general a deviation of h(ω) in the delocalized
phase from the equilibrium fluctuation-dissipation theorem:
h(ω) < 1 for ω < V ,17,19 and h(ω → 0) ∝ ω → 0 [see Fig. 6
and Eqs. (24) and (20)], while we recover the equilibrium
fluctuation-dissipation theorem h(ω) = 1 for ω > V , in agree-
ment with the results found in Ref. 17. However, as the system
moves deeply to the localized phase, the above deviation
gets smaller and finally the equilibrium fluctuation-dissipation
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FIG. 7. (Color online) χ ′′
zz(ω)/h(ω) (normalized to 1) vs ω at zero

temperature across the localized-delocalized KT transition. Here,
h(ω) is defined in the text. The inset shows the log-log plot of
χ ′′

zz(ω)/h(ω) (normalized to 1) vs ω. The bias voltage is fixed at
V = 0.2D0. Here, the bare Kondo couplings g⊥,z are in units of
D0 = 1 for all the figures.
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theorem is recovered for all frequencies: h(ω) = 1 for ω < D0

(see Fig. 6). To more clearly observe the singular property
of χ ′′

zz(|ω| = V ), we plot the normalized Lorentzian form
�(0)χ ′′

zz(ω)/h(ω) = �(ω)�(0)/[ω2 + �2(ω)] (see Fig. 7). As
the system moves from the delocalized to the localized phase,
the width of the Lorentzian peak gets narrower and the
singularity at |ω| = V gradually disappears.

V. CONCLUSIONS

In conclusion, we have calculated the zero-temperature
nonequilibrium dynamical decoherence rate and charge sus-
ceptibility of a dissipative resonance-level quantum dot
close to the localized-delocalized quantum phase transition.
The system corresponds to a nonequilibrium anisotropic
Kondo model. We generalized the previous nonequilibrium
frequency-dependent RG approach approach to include the fre-
quency dependence for the decoherence rate self-consistently.
Within this generalized frequency-dependent RG approach,
we calculated the dynamical decoherence rate and charge
susceptibility. In the delocalized phase, both quantities exhibit
singular behavior at |ω| = V . In particular, the dynamical
decoherence rate increases monotonically with increasing
frequency. As the system cross overs to the localized phase

(or effectively the ferromagnetic phase in the Kondo model),
the decoherence rate at low frequencies gets progressively
smaller and the singular feature is gradually smeared out,
leading to a single linear frequency dependence, while
the dynamical charge susceptibility shows a dip-to-peak
crossover for |ω| < V , indicating the crossover from the
Kondo-screened to the local-moment (ferromagnetic) phase.
Meanwhile, singular behaviors in dynamical decoherence rate
and charge susceptibility at ω = ±V are also smeared out
in the above crossover. Furthermore, we show the deviation
of the equilibrium fluctuation-dissipation theorem for small
frequencies ω < V , while the theorem is respected when
ω > V or when the system is deeply in the localized phase. The
analytical understanding of these properties is also provided.
The above signatures can be used to identify experimentally
the localized-delocalized quantum phase transition out of
equilibrium in a dissipative quantum dot.
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