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Abstract

The purpose of this study is to identify the hydraulic parameters of the aquifers using the
extended Kalman filter (EKF). By re-iterating measurement data, this approach can overcome the
problem of on-line analyzing the real-time measurement data. Besides, the aquifer parameters
may not be identified accurately because some aquifer parameters (e.g., specific yield) only
influence the drawdown at certain period after the start of pumping. Therefore, this study provides
the sensitivity analysis of aquifer parameters to the drawdown for exploring the detail of the
parameter properties. Concurrently, the rea-time model is applied to identify the aquifer
parameter for clarifying the influence of the pumping time to the results of parameter identification.
Some results of this study have been published at Journal of Hydrology, February, 2005, 2004
Western Pacific Geophysics Meeting, Hawaii, and the Agriculture Engineering Conference, 2004,
Taiwan.
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1. Introduction

The conventional EKF can quickly identify the parameters, using only part of observed
drawdown data, and the obtained parameters are shown to have good accuracy. In the field
pumping test, along pumping time may not be necessary if the proposed method is implemented on
a computer which is connected to pressure transducers and adatalogger.  Besides, differing from
other conventional methods, the EKF can reflect physica nature of the aquifer system in the
identified procedures. This property indicates that the EKF may identify specific parameter when
that parameter starts affecting the drawdown. However, this procedure may introduce new errors
in the algorithm and lead to the divergence during the identified procedures. Accordingly, this
study concentrates on two purposes. (1) to recursively use the field measurement data during the
stepwise identification process for eliminating the extra errors; (2) to anayze the properties of the

EKF in parameter estimation processes.

2.  Methodology
2.1 The Extended Kalman filter (EKF)
A nonlinear dynamical state vector is described as (Grewal and Andrews, 1993)

X = f (X, K=+ W, W, ~(O!Qk) (2.1)
where x, is state vector of system, f(x _,,k—1) isthe function for the state vector, and w, is

the state noise assumed to be normally distributed with zero mean white (uncorrelated) sequence

with known covariance structure Q, .

The nonlinear implementation equations for the state vector can be described as

X (=) = F (X (+).k=D (2.2)
where X, (—) denotes the prior (or a priori) estimate at k step and X, (+) represents the posterior
(or a posteriori) estimate at k-1 step.

A measurement model of system can be described as (Grewal and Andrews, 1993)

2. =h(x.K)+v,, v ~OR,) (2.3)
where z, is the measurement vector, h(x,,k) is the function for the measurement system, and
v, isthe measurement noise assumed to be a white sequence with known covariance structure R, .

The nonlinear implementation equation for the measurement may be expressed as
Z = h(%(=).k) (2.4)



The recursive processes of the EKF can be described as

R.(-) = Ele. ()&l ()] = El(x - % ()% — % )| (2.5)
R< (_) = (Dk—la—l(—i—)q)-ll(——l + Qk—l (2-6)
Kk:Pk(_)HJ[HkPk(_)HJ"'Rk]_l (2.7)
R.(+) ={1 =K,H,}P.(-) (2.8)
% (+) = X () +Ku(z - 2) (2.9)

where P (-)is a priori error covariance matrix, €(—)is defined as x, —X.(-), Q. is state
transition matrix, K, is defined as the Kaman gain, P, (+) is a posteriori covariance, H, is
measurement matrix, and X, (+) isthe updated estimate at step k.

The state transition matrix @, , and measurement matrix H, can, respectively, expressed as

D, , = w (2.10)
X x=%_1 (=)
and
Hk - ah(X, k) (211)
X |

With Egs. (2.2), (2.4)-(2.7), and (2.13), the recursive process of EKF is then established.

2.2 Senditivity Analysis
Sensitivity analysis has been widely used because the most engineering, physical, chemical,
and biological systems can be viewed as input-output models that relate the output information to
the appropriate input parameters. The form of the traditional sensitivity (Kabala, 2001) analysis
isshown as

20
E)_R (2.12)
where O is the output of the system (i.e., the aquifer drawdown in this study) and P; is the ith input
parameter of the system. However, the traditiona sensitivity analysis should not be used to
compare the influence of one parameter to the influence of another one when the two have
different dimensions. This study utilizes normalized sensitivity (Kabala, 2001) which can be
used to compare the influence of one parameter with the influence of another one when the two
have different dimensions because, as is apparent from its definition, it measures the influence that

the fractional change in the parameter, or its relative error, exerts on the output. The form of
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normalized sensitivity is

, 90 __90 (2.13)
P P/P
0-0F 1) (2.14)

where O isthe aquifer drawdown, P; isthe ith input parameter, and t is the pumping time.

3. Resultsand discussions
3.1 Parameter identification while analyzing the pumping data being recursively used

Three time-drawdown data sets measured from observation wells, as reported in Cooper (1963)
and cited by Lohman (1972, p.31, Table 11), are selected for data analyses. The distances between
the pumping well and the observation well 1, 2, and 3 are respectively 30.48 m, 152.4 m, and 304.8

m. The pumping rate Q is 5450.98 m’/day, the thickness of the aquitard is 30.48 m and total
pumping time is 1000 minutes (16.67 hours). Table 1 illustrates the results of estimated

parameters and prediction errors while measurement data is recursively used in the EKF
identification process using the three-parameter and four-parameter models, respectively. The
results indicate that the EKF method gives slightly more accurate results, even though many more

time steps are needed, due to the measurement data that is recursively used.

Table1
Initial guess values for EKF and the estimated parameters and prediction errors when using EKF to analyze Cooper’s
data (Cooper, 1963) for leaky aquifer without considering the effect of aquitard storage

three-parameter model

Initial guesses for hydraulic parameters Initial error covariance matrix for hydraulic parameters
Case No. T S L T S L
1 1000 2.00E-04 1.00E-02 55000 1.00E-09 1.00E-03
2 1000 2.00E-04 1.00E-01 55000 1.00E-09 2.00E-02
3 1000 2.00E-04 1.00E-01 55000 1.00E-09 1.00E-02
Estimated parameters Prediction errors
Case No. T S L ME RMSE SEE Step
EKF on interpolated data
1 1257.9 9.09E-05 4.82E-02 -6.53E-04 1.46E-02 1.69E-02 236
2 1311.4 9.29E-05 2.28E-01 3.72E-03 7.46E-03 8.62E-03 1508
3 1228.0 1.00E-04 5.08E-01 -2.44E-04 3.42E-03 4.09E-03 7603
EKF on recursively used data
1 1239.4 9.78E-05 4.94E-02 1.56E-04 1.15E-02 1.33E-02 14656

Table 2 lists the estimated parameters and prediction errors in different number of observations
when used EKF to identify the drawdown data from the well one. The standard error estimated
(SEE) decreases when the number of observations increase and the magnitude of SEE ranges from
4.3x10" t0 1.33x10°3.  Note that the prediction errors are calculated based on all of the observed
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drawdown data to demonstrate whether those two methods can provide reasonable results when
using only part of the drawdown data. The relative errors of T are compared with the estimated
parameters when analyzing 12 observed drawdown data.  The relative error of T when using EKF
ranges from 14.36% to 0.19%. The relative error of T is less than 1.5% if the number of the
observed drawdown data is more than 9, i.e.,, 100 min. Both the parameter S and L are dlightly
overestimated when utilizing part of the observed drawdown data.  Thus, the estimated drawdown
is smaller than the observed one in the last two observed data. The overestimate of these two
parameters may attribute to aquifer heterogeneity. However, these errors are quite small and

negligible.

Table 2 The estimated results and related errors when using EKF to analyzing field data

Number of Observed Last Observed Estimated values Errors Relative
Drawdown Time (min) T Sx10° <102 ME <E errorsof T

4 2 1061.40 112 15.7 -2.82E-01 4.32E-01 14.36%

5 1182.24 1.05 6.78 -5.01E-02  8.86E-02 4.61%

6 10 1183.07 1.05 6.75 -4.93E-02 8.73E-02 4.54%

7 20 1203.61 1.03 5.86 -2.08E-02 4.12E-02 2.89%

8 50 1216.34 1.01 551 -1.22E-02 2.79E-02 1.86%

9 100 122251 1.00 5.32 -7.43E-03  2.00E-02 1.36%

10 200 1232.49 0.99 5.09 -2.79E-03  1.45E-02 0.56%

11 500 1237.05 0.98 4,99 -8.24E-04  1.35E-02 0.19%

12 1000 1239.39 0.98 4,94 156E-04 1.33E-02 0.00%

3.2 Sengitivity analysis of aquifer parameters

The drawdown due to a pumping in an unconfined aquifer with assumed parameter values is
estimated using Neuman’s model (1974). The thickness of the aguifer, b, is 10 m, pumping rate Q
is 3000 m*/day, and the distance between the pumping well and observation well Ris10 m.  The
radial hydraulic conductivity Kr, vertical hydraulic conductivity Kz, storage coefficient S, and
specific yield Sy are set to 1x 10 m/sec, 1x 10 m/sec, 1x10™, and 1x 10, respectively.

The synthetic drawdowns and the results of the sensitivity analysis are plotted in Fig. 1. This
figure clearly indicates that all aquifer parameters have their own influence period. The influence
period of parameter Sranges from 1 to 10 seconds, Kz is in the range of 1 to 1000 seconds, and Sy
appears from 80 seconds to the end of pumping. The parameter Kr is most sensitive to the
drawdown except the early period of the pumping and continuously increasing through the end of
the pumping. Physically, the drawdown in an unconfined aquifer can be divided into three
segments (Charbeneau, 2000). In the early stage, water is instantaneously released from storage
by the compaction of the aquifer and the expansion of the water. The volume of water removed

from aquifer per unit surface area per unit change in hydraulic head is defined as the coefficient of
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storage S. In the second stage, the vertical gradient near the water table causes drainage of the
porous matrix. The vertical hydraulic conductivity Kz starts to contribute to the pumping and the
rate of decline in the hydraulic head slows or stops after aperiod of time.  Finally, when the flow is
essentially horizontal and most of the pumping is supplied by the specific yield, Sy. The
sengitivity analysis displays similar behaviors as those physical phenomena. The sensitivity
coefficient of S begins with highest value and drops quickly after the start of the pumping. The
sensitivity coefficient of Kz reaches its highest value in the stage between 10 and 1000 seconds,
implying that the slow decline of the water table is attributed to the contribution of the Kz at the
moderate pumping time. The increasing of the drawdown in the observation well stops when the
magnitude of KZ's contribution approaches its maximum. The sensitivity analysis shows that the
aquifer parameter Sy does not contribute to the pumping at the beginning of the test and starts to
react at about 80 seconds. Therefore, the parameter estimation model may not obtain accurate

resultsfor Sy if the time-drawdown datais too short to cover the period of Sy reaction.
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Fig. 1 The sensitivity coefficient of four parameters versustime
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The results shown above demonstrate that two purposes of this study are successfully
accomplished. By re-iterating measurement data, the EKF method takes significantly less number
of observations in the identification process to get convergent results. From the sensitivity
analysis, the parameter Sy has been shown to have a time lag in response to a pumping. This
phenomenon indicates that the parameter estimation model for analyzing unconfined aquifer data
on-line may be inaccurate if the pumping time is too short. In addition, the estimated result of Sy
approach to a constant and keep stably when the Sy begins contributing to the pumping. Then this
is an indication for an on-line parameter estimation model to terminate the test. Some results of
this study have been published at journal and conference. In sum, the results of this study are
valuable in both engineering applications and researches.
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Parameter Estimation for Leaky Aquifers Using the Extended Kalman Filter, and
Considering Model and Data M easurement Uncertainties

By H. D. Yeh* and Y. C Huang
Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, Taiwan

Abstract

A method using the extended Kalman filter (EKF) is proposed to identify the hydraulic
parametersin leaky aguifer systems both with and without considering the aquitard storage. In the
case without considering the aguitard storage, Hantush and Jacob’s model combined with EKF can
optimally determine the parameters for the leaky aquifer when analyzing the drawdown data.
Coupled with Neuman and Witherspoon's model, the EKF is also employed to estimate the four
parameters of aquifers. The observed drawdown data may be either interpolated using the
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Lagrangian polynomial or recursively used while implementing the EKF.  The proposed method
can identify the parameters, using part of the interpolated drawdown data or recursively used data,
and obtains results with good accuracy. In the field pumping test, along pumping time may not be
necessary if the proposed method is implemented on a computer which is connected to pressure
transducers and a data logger. In the process of parameter estimation, the leakage coefficient
changes marginaly for the first few observations. This phenomenon reflects the fact that thereis a
time lag between the start of pumping and the leakage effect on the drawdown. The analyses of
the data uncertainty demonstrate that the EKF approach is applicable for drawdown data even when
it contains white noise or temporal correlated noise. Finaly, the choice between Hantush and
Jacob’s model and Neuman and Witherspoon’s model depends on the hydrogeological condition of
the aquifer system indicated in the analyses of the model uncertainty. Hantush and Jacob’s model
is shown to be a good choice for representing the leaky aquifer system if the aguitard storage is
comparatively small.

Key words. Parameter estimation, Kalman filter, Lagrangian polynomial, groundwater, leaky
aquifer, model uncertainty.
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Uncertainty and Sensitivity Analysesin Identifying L eaky Aquifer Parameter s using Extended
Kalman Filter

Huang, Y.C. and Yeh, H.D.
Institute of Environmental Engineering, National Chiao Tung University, No.75, Bo-ai Street,
Hsinchu, 300 Taiwan

Abstract

Hydrogeologic parameters are very important in site characterization, so groundwater
hydrologists often conduct pumping tests to determine hydrogeol ogic parameters, such as hydraulic
conductivity and storage coefficient. These parameters are necessary information for quantitative
and/or qualitative groundwater studies. Hantush and Jacob (1955) described non-steady radial flow
to a well in a fully penetrated leaky aquifer under a constant pumping rate. In their model, the
aquitard is overlain by an unconfined aquifer, and the main aquifer is underlain by an impermeable
bed. Their solution is herein called the three-parameter model. Neuman and Witherspoon (1969)
gave a solution describing the drawdown of the lower and pumped aquifer in a hydrogeologic
system which is composed of two confined aguifers and one aquitard. Their solution, which
considers the effect of agquitard storage and neglects the drawdown in the unpumped aquifer, is
called the four-parameter model. In this study, the uncertainties of the measurement data are
represented by white noise and temporaly correlated noise, and sensitivity analyses for the
extended Kalman Filter (EKF) method are performed for data with those two types of noise. The
MATLAB function randn is first chosen to generate a realization of white noise (The MatlabWorks,
1995). The elements in this realization are normally distributed random numbers with zero mean
and unit variance. The origina realization of white noise is employed to generate temporaly
correlated noise. The MATLAB function Hamming(n) with n = 5 is used to produce five
coefficients of a Hamming window (The MatlabWorks, 1995). The MATLAB function conv(A, B)
is applied to convolve vectors A and B (The MatlabWorks, 1995), where vector A represents the
original realization and vector B represents the coefficients of the Hamming window. Algebraicaly,
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convolution is an operation which multiplies two polynomias with coefficients containing the
elements of A and B. The estimated parameters have no significant difference of all cases and the
standard error estimate (SEE) values are on the same order of magnitude. Therefore, the effect of
data with either white noise or temporal noise is negligible in the identification procedure. The third
type of uncertainty listed in Eisenberg et al. (1989) is the conceptual model uncertainty regarding to
the geometrical configuration, major features, and boundary conditions. Generaly speaking, field
hydrogeologic information is never known in sufficient detail. Also, the development of a
mathematical model usually depends on some assumptions and/or simplifications. Thus, the
selection of a model for describing a target aguifer system is aways subject to some degree of
uncertainty. The model uncertainty in the parameter estimation is assessed for the case of employing
both three-parameter and four-parameter models for analyzing three data sets. The first two data
sets are taken from Cooper (1963) and Sridharan (1987), and the third data set is taken from Batu
(1998, p. 265). The choice between Hantush and Jacob’s model and Neuman and Witherspoon's
model for representing the leaky aquifer system depends on the hydrogeological condition of the
system indicated in the analyses of the model uncertainty. However, Hantush and Jacob’s model is
suggested for use if theratio of the aquitard storage to the aquifer storage is less than 10-3.
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Sensitivity analysis for aquifer parameter identification

Y. C. Huang H.D. Yeh

Abstract

Generally speaking, the conventional pumping test is considered to require more than 24 hours
to obtain drawdown data for analyzing aquifer parameters. However, the pumping test would
spend a lot of time, money, and groundwater resources. Those drawbacks can be avoided if the
aquifer parameters are simultaneously identified when the drawdown data are measured, i.e.,
identifying parameters on-line by a parameter estimation model. However, the drawdown of an
unconfined aquifer in response to the pumping may havetimelag. The estimated parameters may
be in poor accuracy if the measured drawdown data is too short to reflect the hydrogeologic
characteristics of the aquifer. In addition, the shut-down time for the pumping test is difficult to
decide when applying a parameter estimation model on-line to analyze the aquifer parameters.
The purpose of this study is to explore when the aquifer parameters starts to affect the drawdown
using the sensitivity analysis for unconfined aquifer. The result may provide useful information
for aquifer parameter estimation.
Keywords: pumping test, sensitivity analysis, parameter estimation model
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data logger

The proposed approach, EKF, can be applied to identify aquifer
parameters. From the results of this study, the EKF can reflect the
characteristics of the aquifer parameter during the process of the
identification. Therefore, EKF can be combined with the field data
logger and the pumping test would be terminated earlier for saving the
cost when al aguifer parameter have contributed to the drawdown.




