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Abstract

Making accurate functional predictions
for genes plays an important role in the era of
proteomics. The most reliable functional
information is extracted from orthologs in
other species when annotating an unknown
gene. Here a site-based approach is proposed
to predict orthologous relations. We explore
functionally important sites in the multiple
sequence aignment of orthologous and
paralogous proteins and use these sites to
build a model that is able to classify
orthologous relations of unknown proteins.
Our method provides substantial information
for guiding experiments such as site-directed
mutagenesis to elucidate the orthologous
relations. We tested our prediction system on
the bacterial transcription factor PurR/Lacl
family, the a-proteasome family, the
glycoprotein hormone family and the growth
hormone family to demonstrate its ability to
predict orthologs. In addition, we aso
compared it with other current similar
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methods such as ClustaW, BLAST and
INPARANOID.

Keywords:. functionally important sites,
ortholog, paralog

Introduction

Rapid sequencing has generated lots of
data to be annotated. Thisis typically done by
searching sequence databases for the best-fit
homolog and then assigning its functional
annotation to novel proteins/genes. Although
the homologous relations have been identified
for most of the sequences, as the advance of
functional genomics, an accurate and efficient
functional prediction method is required to
distinguish between orthologs and paraogs
[6]. Since incorrect prediction of orthologous
relations may result in misjudgment of cellular
function and erroneous metabolic pathway
[resppstrustionN[ ® 19]D careful  discrimination
between orthologs and paralogs has drawn
much attention recently.

Severa approaches have been developed
to detect orthologous sequences. Cotter et al.
used closely related sequences as outgroup
sequences to refine the BLAST search [4].
However, selecting proper  outgroup
sequences requires domain knowledge that is
not always available. Others applied statistical
resampling techniques to multiple sequence
aignments to verify the rdiability of
phylogenetic tree [18]. Storm and
Sonnhammer introduced the support value for
evaluating sequence orthology [16]. One
drawback of the methods above is that they
highly depend on the correctness of calculated
phylogenetic trees. Unlike previous works, we
develop a novel orthology prediction method
based on the functionally important sites of
orthologs. The motivation behind our method
is that active protein residues are under
evolutionary pressure to maintain ther
functional integrity. They undergo fewer
mutations than less functionally important
amino acids. Consequently, functionally
important sites may be used to Dbetter
characterize orthologous relations. The



orthologous relation of an unknown protein
sequence is then inferred from the important
sites found. We assume that some important
residues are conserved in orthologous proteins
to maintain their identical function while
divergent in paralogous proteins to reflect
their specificity. We explore functionally
important sites in the multiple sequence
aignment of orthologous and paralogous
proteins and use these sites to build a model
that is able to classify orthologous relations of
unknown proteins.
System

We refer the functionally important sites
of an orthologous family to those residues: (1)
well conserved within orthologs and (2)
divergent among paralogs. Residues with both
properties in a multiple sequence alignment of
homologs (orthologs and paralogs) are
considered important and will be used to
construct the classification model of
orthologous subfamilies. Given an alignment
of homologous proteins that have been
properly  partitioned into  orthologous
subfamilies, we evaluate the degree of
inter-paralog divergence and intraortholog
conservation of each site by calculating the
adjust Rand Index [10] and the entropy. Given
an unknown protein x and a set of homologs
already divided into | ortholog subfamilies
that are paralogous to each other, our goa is
to classify x to the most appropriate subfamily
based on the important sites found. Our
procedure of classification is asfollows:

Q) Cdculate the similarity of x to
each sequence j in subfamily i,
respectively.

(2 Cdculate the similarity of x to
entire subfamily i.

©)] Assign x to the subfamily with the
highest similarity.

Experimental Results

We tested our method on the PurR/Lacl
family and the protein kinase AGC family to
verify its ability to identify functionally
important sites. We also applied our method to
the AGC family, the glycoprotein hormone
family, the a-proteasome family and the
somatotropin hormone family to demonstrate
its performance in the prediction of
orthologous relations. Sensitivity and positive
predictive value(PPV) are commonly used to
measure prediction performance. They are
defined as follows:
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Higher sensitivity of a prediction algorithm
reflects its ability to cover more true positives,
and higher positive predictive value indicates
the ability to better avoid false positives.
However, for most prediction agorithms, it is
difficult to obtain a high score of both
sensitivity and positive predictive value
because these two measures generdly
contradict each other. To consider both
measures at the same time, we further
combine them into an F-score [12] to evaluate
prediction performance. The definition of
F-score on prediction is as follows:

PPV
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Identification of Functionally Important
Sites

We compared our method with Mirny and
Gelfand's [8] in the identification of
functionally important sitesin two families.

There are twelve important sites in the
PurR/Lacl family, nine of which are binding
sites (DNA or ligand) and the others interact
with other resdues or form specia
conformation. Our method successfully
identified the twelve important sites and four
putative sites that are next to or in the
proximity of the binding sites.

There are 39 important sites in the AGC
family, including the substrate-inhibitor
binding sites, the Mg2ATP binding sites, and
some residues that are close to or interact with
these binding sites [13, 15, 3]. Our method
identified 22 sites, ten (Trp84, Glul27,
Phel29, Glul70, Thrl83, Phel87, Thrl97,
Leul98, Pro202 and Leu205) of which are
substrate-inhibitor binding sites or ATP
binding sites, two (Lys189 and Cysl199) of
which are related to the protein structure, and
five (Args6, Met120, Leul32, Prol69 and
Alal88) of which are next to particular
binding sites. Seventeen sites identified by our
method have been biologically verified and
published in literature.

The results of sensitivity and positive
predictive value are summarized in Table 1.
The sensitivity and positive predictive vaue
of our method are 1.000 and 0.750 in
PurR/Lacl family; 0.436 and 0.773 in AGC
family. In both cases, our method obtains



better F-scores than Mirny and Gelfand's
method [14, 13]. Furthermore, our method
requires much less CPU time than Mirny and
Gelfand’'s, which is hindered by the complex
resampling procedure. Simulated on an AMD
Athlon 1.0GHZ machine with 512 MB RAM,
our computational time was in the order of
minutes compared with hours of Mirny and
Gelfand's.
Prediction of Orthologous Relations

We tested our method on the AGC family,
the glycoprotein hormone family, the
a-proteasome family and the somatotropin
hormone family to demonstrate its
performance in the prediction of orthologous
relations. For comparison, we applied
CLUSTALW [17], profile HMMs [13],
PSIBLAST [1] and Meta-MEME [2, 7] to the
same data. A three-fold cross validation was
used to evaluate the predictive accuracy. In
each run, we used one third of the data for
testing, and the remaining data for training.
The results were summarized in Table 2. It
shows that our method is comparable with
others. Profile HMMs had an almost perfect
prediction for the AGC family, the
glycoprotein  hormone family, and the
o-proteasome family, but they were short of
comprehensible interpretations of  the
orthologous relations found. Unlike others,
our method makes a prediction based on the
functionally  important  sites  carrying
biologicalk meanings. The orthologous
relations with the functional sites predicted by
our method can be further analyzed by
site-directed  mutageneses.  Associations
between functionally important residues and
evolutionary relations can be established.
Discussion

We have proposed a method capable of
not only identifying functionally important
sites in a set of homologous proteins, but also
predicting orthologous relations for new

protein sequences. It first identifies the
putative functionally important residues
related to specificity among paralogous

proteins and then it uses these residues to
construct a model to classify unknown protein

sequences.

For the PurR/Lacl family, our method not
only successfully identified al the binding
sites, but also highlighted the residues that are
responsible for protein conformation. As for
the AGC family, we found 17 residues that are
located in the binding domains or interact with
other important sites to form particular
conformation related to the kinase function.

Our method identified several active sites
in the cleft between the two lobes with the
adenine ring of ATP deeply buried at the base
of the cleft. Many of the important sites we
identified interact with other residues to form
the interaction network.

In addition to demonstrating the ability of
our method to detect functionally important
sites, we aso systematically evaluated its
performance in the prediction of orthologous
relations on four families. Compared with
other approaches, our method is more accurate
and efficient in general.

Unlike most previous works, besides the
prediction of orthologous relations, our
method aso suggests useful associations
between functionally important sites and
orthologous families. This type of information
may provide biologists with new research
topics and eventualy become useful domain

knowledge.
Our current method can be further
improved in two directions. Firstly, as

multiple sequence alignment is essentia to the
identification of important sites, we can
improve the quality of sequence alignment by
incorporating more background knowledge to
ensure the correctness of the alignment.
Secondly, associations between important
sites and their physicochemical properties can
be further exploited to refine the predictive
accuracy
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Abstract

RNA plays a crucia role in post-transcriptional regulation. Similar to transcriptiona
regulation, post-transcriptional regulation is often accomplished by the binding of proteins to
specific motifs in mMRNA molecules. Unlike DNA binding proteins, which recognize motifs
composed of conserved sequences, RNA protein binding sites are more conserved in structures
than in sequences. A lot of works have been done for RNA structure prediction; however, most of
them focus on single RNA structure prediction instead of finding characteristic structure motifs
within a RNA family. Though some current approaches can now identify common structure
motifs from a set of RNAS, they typically assume the given set forms a single family, which is not
necessarily correct. We propose a new adaptive method that conducts structure prediction and
clustering simultaneoudly. Its performance is demonstrated on several real RNA families.

Introduction

RNA molecules are the key players in the biochemistry of the cell, playing many important
roles in regulation, catalysis and structural support. Like proteins, their functions generally
depend on their structures. Although structural genomics, the systematic study of all
macro-molecular structures in a genome, is currently focused more on proteins, thousands of
genes produce transcripts exerting their functions without ever producing protein products [1]. It
can be easily argued that the comprehensive understanding of the biology of a cell requires the
knowledge of identity of all functional RNAs (both non-coding and protein-coding) and their



molecular structures. Since it is often difficult to acquire the 3D spectrum data of RNA molecules
for structure determination, versatile and reliable computational methods that can predict RNA
structures are highly desirable.

Many functional RNAs have evolutionarily conserved secondary structures in order to
fulfill their rolesin a cell. For protein-coding RNAs, some of the functions can be presented by
functional motifs. For example, several best-understood structurally conserved RNA motifs are
found in virad RNAS, such as the TAR and RRE structures in HIV and the IRES regions in
Picornaviridae [2]. Apparently, structural information is very useful in characterizing a class of
functional RNAs. Based on characteristic structures, we can likely identify novel functional
RNAs or partition given RNAs into biologically meaningful families. Several systems have been
developed to find consensus structural elements within a family of functionaly related RNAs
[3-5]; however, there is little work on clustering of unaligned RNAs based on characteristic
secondary structures. Given a set of unaligned RNA sequences without prior knowledge of the
number or identity of families in the set, our goal is to automate both clustering and secondary
structure prediction simultaneously. In this paper, we propose an adaptive approximation
approach combined with a genetic programming-based structure prediction method to identify
from unaligned RNAs reasonable clusters associated with characteristic secondary structure
elements. To demonstrate its performance, we tested it on several real datasets.

RNA Clustering and Structure Prediction

Unlike previous studies of RNA secondary structure prediction whose input is either a
single RNA sequence or a known class of functionally related sequences, our new method is
instead applied to a set of unaligned RNA sequences which consist of an unknown number of
classes. In order to find a reasonable partition for a given set of unaligned RNAs without
knowing beforehand how many clusters actually existing in this set, we assume that each cluster
islikely afunctional family that contains characteristic structure motifs. Based on this assumption,
our new method is focused on finding significant consensus structure motifs that can be used to
characterize the families of RNAs. Since the number of clusters and its size are unknown in
advance, we take a generate-and-test strategy that iteratively adjusts the hypothesized cluster size
until some significant consensus structure elements can be found associated with this cluster.
After acluster is obtained, al its members are then removed from the given RNAs. We repeat the
same separate-and-conquer strategy to identify other clusters from the remaining RNAS.
Generate-and-Test

The generate-and-test strategy we use is an adaptive approximation approach that
systematically revises the hypothesized cluster size. During the generate-and-test process, the
cluster size is defined by a range between an upper bound U and a lower bound L. Without any
prior information of clusters, the cluster size isinitialized within a range between an upper bound
U=n and alower bound L=0, that is, we first assume that al the given RNA sequences consist in
an entire family. To the entire family, a genetic programming-based structure prediction method is
applied to look for the fittest consensus structure motifs. If the specificity of the structure motifs
associated with a cluster exceeds or equals some pre-specified threshold, the hypothesis of the
cluster is accepted, and the cluster along with the associated structure elements will be reported.
On the other hand, low specificity suggests that the current hypothesized cluster size is too big to
be real and needs to be decreased. In this case, we reduce the current hypothesized cluster, and
search the fittest consensus structure motifs and evaluate their specificity again. If the specificity
is still lower than the threshold, we further decrease the cluster size. The same process for cluster
size reduction can be repeated till we find a cluster with structure motifs of high-specificity. On
the contrary, if the specificity is over or equa to the threshold, one of the two possibilities holds:
(2) the current cluster is real, and any more sequences added will be harmful to the specificity of
consensus structures, or (2) the current cluster found is only a subset of a bigger real cluster. To
verify which event actually happens, we increase the cluster size and a new search for the fittest
consensus structure motifs is conducted. As each update generates a tighter range for cluster size,
we expect the cluster size will eventually converge to the appropriate one.
Secondary Structure Element Prediction by Genetic Programming

The objective hereisto learn the structure elements that can be used to distinguish the given
functionally related sequences from the random sequences. We modify the fitness function of our
previous work [6] on RNA consensus secondary structure prediction to find significant structure



elements from a dataset that may contain multiple variable-sized clusters of unaligned sequences.
The fitness function is used to measure the quality of individuals (i.e. candidate

structure elements) in a population. The higher the fitness of an individual, the better
its chances of survival to the next generation. In the previous work, the input dataset
was assumed to be a single class of functionally related RNA sequences. We were
interested in those structure elements that can reflect the characteristics conserved in
a family, e.g. the RNA protein binding sites. Derived from the F-score, the fitness
function was aimed to balance the importance of two measures, recall (i.e. sensitivity)
and precision (i.e. positive predictive value) [4]. It assigns higher values to those
structural motifs commonly shared by the given family of RNAs, and rarely
contained in random sequences. For a given set of RNA sequences that form a single
family only, the fitness function used in [4,6] can effectively guide the evolutionary
process in genetic programming. Nevertheless, when the input dataset contains
multiple functional classes, the recall measure may dominate the calculation of
F-score if the fitness function treats the entire dataset as a single class. This will
mislead the system to find over-general elements shared by most sequences. To
aleviate the bias, we define a new measure of recall, and present the fitness function
as below, where p is the number of positive examples containing motif;, Q is the total
number of positive examples, R is the total number of examples containing motif;,
and U isthe upper bound of the hypothesized range for cluster size.
2[Recall (motif; ) UPr ecision(motif; )

Recall (motif;) + Pr ecision(motif; )

Fitness(motif;) =

Plitp<u

Recall (motif;) =
l,ifp=U

Pr ecision(motif; ) =§

By taking cluster size into account, we can better constrain the search space and
allow conserved clusters to emerge more likely instead of being buried in bigger but

much less coherent clusters.

Consensus Structure Specificity and Separ ate-and-Conquer Strategy

The GP (Genetic Programming)-based structure prediction method can find the fittest
secondary structure elements according to a given range of the cluster size, while the significance
of the cluster found along with its characteristic structure elements highly depends on the range
we choose. With proper adjustment of cluster size through the generate-and-test procedure
combined with the GP-based prediction method, we can identify a meaningful cluster and the
associated characteristic structure elements.

The adaptive adjustment of cluster size in the generate-and-test procedure is controlled by
the consensus structure specificity. It is defined as the Laplace prior precision. The Laplace prior
approach has also been applied to inductive leaning to evaluate the significance of inductive rules
[7]. The Laplace prior precision of cluster C; is given by the formula:
number of positiveexamplesinCi +1

total number of examplesinCi + 2
We consider the Laplace prior in the calculation of precision with the aim to avoid well

LaplacePrior Precision(Ci) =




conserved clusters whose size is too small. For example, the Laplace prior precision of a cluster
of 50 positive examples and five negative examples is better than that of a cluster of only five
positive examples. Note that the Laplace prior precision is only used to determine the
significance of a cluster found, unlike the F-score, which is used to direct the optimization
process to find the best structure elements under the constraints of the cluster size. Based on the
comparison of the Laplace prior precision with a pre-specified threshold, we adjust the range of
cluster size accordingly, and then re-run the GP-based method to predict new structure elements
and anew cluster they characterize.

Once a significant cluster is found, we separate all its members out of the given dataset of
RNA sequences. We then apply the same procedure to those that still remain in the dataset until
the entire set is emptied. This separate-and-conquer strategy is effective when no prior knowledge
of the identities of the clusters is given. It can automatically partition the given dataset into
meaningful clusters, and also identify their characteristic structure elements.
Experimental Results

Two types of quality were considered to evaluate the performance of our method. Oneis to
measure the agreement between the predicted clusters and the actual cluster identities; the other,
to quantify the agreement between the predicted structure elements and the actual structure
assignment. Since no other current approaches known to perform clustering and structure
prediction in parallel, no comparative study can be done. Instead we applied the widely-used
precision and recall to measure the first quality; the Matthews correlation coefficient [8], to
measure the second quality.

For each sequence in the data set, two secondary structure assignments were
compared by counting the number of true positives P, (base pairs exist in actual
assignment and are predicted), true negatives N, (base pairs do not exist in actual

assignment and are not predicted), false positives P; (base pairs do not exist in

actual assignment but are predicted) and false negatives N; (base pairs exist in
actual assignment but are not predicted), respectively. The Matthews correlation
coefficient can then be computed as:
o= PNy — Py Ny
\/(Nt +N¢ )(Ng +P; )(R + N¢ )(R +Pr)

Given that the sequence length is sufficiently large, the Matthews correlation
coefficient can be approximated in the following way [5].

c~ | R
R+N¢ R+F

With the published/curated alignments, we can calculate the Matthews correlation

coefficient. Higher correlation coefficients mean more accurate structure predictions.

Our agorithm is designed to automatically partition a given set of unaligned RNA
sequences into meaningful clusters, each with characteristic conserved secondary structure
elements. The number of real clusters and the distribution of cluster size may affect the prediction
of partitions and characteristic structure elements. To measure their effect on the performance, we
tested our method on different datasets with various RNA families. We used three families,
including 16S RNA, IRE (Iron Response Element) and viral 3'UTR as summarized in Table 1, to
prepare the test datasets. They have been used in previous experiments and published in literature
[4,5]. The sequence data and the correct structure elements can be accessed at public databases
[9,10]. The 16S RNA dataset contains 34 archaea 16S ribosomal sequences originally derived
from a set of 311 sequences extracted from the SSU rRNA database. The archaea set of 311




sequences was further reduced to 34, filtering out the sequences that miss base assignments or are
greater than 90% identical. The IRE dataset was constructed by Gorodkin et al. [5] from 14
sequences from the UTR database. They modified the IREs and their UTRs to make the search
more difficult. By iteratively shuffling the sequences and randomly adding one nucleotide to the
IRE conserved region, they built a set of 56 IRE-like sequences from the 14 IRE UTRs. The third
data set includes 18 viral 3'UTRs each of which contains a pseudoknot. Seven of the RNA
sequences are the soil-borne rye mosaic viruses; the others are the soil-borne wheat mosaic
Viruses.

On the basis of the three real families of RNA sequences, we tested our method on each
possible pair of the families, i.e. 16S RNA/IRE, 16S RNA/viral 3 UTR, and IRE/viral 3 UTR. In
each run of the experiment, no information regarding the number of families or the family size
was given to the algorithm beforehand. One purpose of this experiment is to analyze the effect
incurred by the distribution of cluster size in a dataset. Furthermore, as the real conserved
structure elements differ in various families, we can also observe how the interleaving of distinct
structure motifs within a single dataset may affect the prediction process. The results are
presented in Table 2, and some partial predicted secondary structures are shown in Figure 1.

Conclusion

In this paper, we propose a new approach that can perform structure prediction and
clustering simultaneously for RNA analysis. The predicted results provide biologists with
reasonable hypotheses and suggest further biological verifications. The performance of the new
strategy has been demonstrated on several real RNA functiona families. The system can be
extended in the following directions. First, in case domain knowledge is available, we expect the
results can be better improved by incorporating the background knowledge into the optimization
process to effectively constrain the search space. Second, the discovery of important clusters in
data usually goes through a repeated process cycle of finding clusters, interpreting results and
augmenting data. No current unsupervised clustering system can produce maximally useful
resultsif operated alone [11]. We plan to design a human-machine interface, so that biologists can
easily monitor the system status and adapt the system parameter settings. Third, the agorithm
itself is highly modular and most of the modules are independent of each other. This property
may lead to a parallel-processing version of the system to significantly reduce its computational
time.

Data Set 16S RNA IRE-like vira 3UTR
Total Sequences 34 56 18
Min Seq Length 90 117 37
Max Seq Length 108 330 137
Avg Seq Length 97.59 202.93 63.89

Seq Length std 3.77 59.31 25.95

Table 1. Summary of the RNA families used in experiments. The first row shows the total number
of sequences in each data set. Row 2 to 4 present the minimum, the maximum and the average
sequence length respectively. The fifth row gives the standard deviation of sequence length.

@
IRE+viral 3 UTR Recall Precision Matthews
IRE 0.97 0.99 0.97
viral 3UTR 0.71 0.95 0.79

(b)



16S RNA+viral 3UTR Recall Precision Matthews
16S RNA 0.97 0.95 0.83
vird 3UTR 0.77 0.98 0.77
(©)
IRE+16S RNA Recall Precision Matthews
IRE 0.73 0.99 0.85
16S RNA 0.81 0.73 0.67

Table 2. Summary of the experimenta results. Table (a), (b) and (c) present the result for the
dataset containing IRE and vira 3'UTR, 16S RNA and vira 3'UTR, IRE and 16S RNA,

respectively.
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publ i shed:
SccccccccooccccccccccCcCcCcccccccCCCs )) D)) ) ))) ).
2))D))))I)))I)I)Y) )y ) ) ) )

*k k k% Vlral 3’ LJTR * k k k%

> PKB183

14 16 18 24 25 27 32 38
acgucgugcaguacgguaaacugcacau
predicted:

.cccorrrrcecrty)y o117 10
publ i shed:

~cccoorcerrcryyY)yoe 111111010

Figure 1. A partial result of the predicted RNA motifs. The numbers above the sequences are the
indices of the nucleotides. The predicted and the published motifs are both shown for reference.
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