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一、中文摘要 

準確預測基因功能在蛋白質體的時代扮演

著重要的角色。在替未知基因作功能註解

時，最可靠的方式是透過其他物種的直系

同源基因來萃取功能資訊。我們提出了一

個以重要位置為基礎的方法來辨識直系同

源關係。本研究在同源基因的多序列排比

上找出可以區分不同旁系同源基因的重要

位置，並且利用這些位置作為特徵，對於

未知基因進行直系同源關係的預測。本研

究應用於數個家族，例如一個高度探討的

桿 菌 轉 錄 子 家 族 LacI family ，
α-proteasome family ，  glycoprotein 
hormone family 以 及 growth hormone 
family 等來驗證本研究對於直系同源基因
的預測準確度，並且與其他的親緣分析方

法，諸如 ClustalW，BLAST，INPARANOID

等，做有系統之比較。 

關鍵詞: 功能重要位置，直系同源，旁系同

源 

Abstract 
 Making accurate functional predictions 
for genes plays an important role in the era of 
proteomics. The most reliable functional 
information is extracted from orthologs in 
other species when annotating an unknown 
gene. Here a site-based approach is proposed 
to predict orthologous relations. We explore 
functionally important sites in the multiple 
sequence alignment of orthologous and 
paralogous proteins and use these sites to 
build a model that is able to classify 
orthologous relations of unknown proteins. 
Our method provides substantial information 
for guiding experiments such as site-directed 
mutagenesis to elucidate the orthologous 
relations. We tested our prediction system on 
the bacterial transcription factor PurR/LacI 
family, the α-proteasome family, the 
glycoprotein hormone family and the growth 
hormone family to demonstrate its ability to 
predict orthologs. In addition, we also 
compared it with other current similar 

methods such as ClustalW, BLAST and 
INPARANOID. 
Keywords: functionally important sites, 
ortholog, paralog 
Introduction 

Rapid sequencing has generated lots of 
data to be annotated. This is typically done by 
searching sequence databases for the best-fit 
homolog and then assigning its functional 
annotation to novel proteins/genes. Although 
the homologous relations have been identified 
for most of the sequences, as the advance of 
functional genomics, an accurate and efficient 
functional prediction method is required to 
distinguish between orthologs and paralogs 
[6]. Since incorrect prediction of orthologous 
relations may result in misjudgment of cellular 
function and erroneous metabolic pathway 
reconstruction [5, 9], careful discrimination 
between orthologs and paralogs has drawn 
much attention recently. 

Several approaches have been developed 
to detect orthologous sequences. Cotter et al. 
used closely related sequences as outgroup 
sequences to refine the BLAST search [4]. 
However, selecting proper outgroup 
sequences requires domain knowledge that is 
not always available. Others applied statistical 
resampling techniques to multiple sequence 
alignments to verify the reliability of 
phylogenetic tree [18]. Storm and 
Sonnhammer introduced the support value for 
evaluating sequence orthology [16]. One 
drawback of the methods above is that they 
highly depend on the correctness of calculated 
phylogenetic trees. Unlike previous works, we 
develop a novel orthology prediction method 
based on the functionally important sites of 
orthologs. The motivation behind our method 
is that active protein residues are under 
evolutionary pressure to maintain their 
functional integrity. They undergo fewer 
mutations than less functionally important 
amino acids. Consequently, functionally 
important sites may be used to better 
characterize orthologous relations. The 



orthologous relation of an unknown protein 
sequence is then inferred from the important 
sites found. We assume that some important 
residues are conserved in orthologous proteins 
to maintain their identical function while 
divergent in paralogous proteins to reflect 
their specificity. We explore functionally 
important sites in the multiple sequence 
alignment of orthologous and paralogous 
proteins and use these sites to build a model 
that is able to classify orthologous relations of 
unknown proteins. 
System 

We refer the functionally important sites 
of an orthologous family to those residues: (1) 
well conserved within orthologs and (2) 
divergent among paralogs. Residues with both 
properties in a multiple sequence alignment of 
homologs (orthologs and paralogs) are 
considered important and will be used to 
construct the classification model of 
orthologous subfamilies. Given an alignment 
of homologous proteins that have been 
properly partitioned into orthologous 
subfamilies, we evaluate the degree of 
inter-paralog divergence and intraortholog 
conservation of each site by calculating the 
adjust Rand Index [10] and the entropy. Given 
an unknown protein x and a set of homologs 
already divided into I ortholog subfamilies 
that are paralogous to each other, our goal is 
to classify x to the most appropriate subfamily 
based on the important sites found. Our 
procedure of classification is as follows: 

(1) Calculate the similarity of x to 
each sequence j in subfamily i, 
respectively. 

(2) Calculate the similarity of x to 
entire subfamily i. 

(3) Assign x to the subfamily with the 
highest similarity. 

 
Experimental Results 

We tested our method on the PurR/LacI 
family and the protein kinase AGC family to 
verify its ability to identify functionally 
important sites. We also applied our method to 
the AGC family, the glycoprotein hormone 
family, the α-proteasome family and the 
somatotropin hormone family to demonstrate 
its performance in the prediction of 
orthologous relations. Sensitivity and positive 
predictive value(PPV) are commonly used to 
measure prediction performance. They are 
defined as follows: 
 

 

 
Higher sensitivity of a prediction algorithm 
reflects its ability to cover more true positives, 
and higher positive predictive value indicates 
the ability to better avoid false positives. 
However, for most prediction algorithms, it is 
difficult to obtain a high score of both 
sensitivity and positive predictive value 
because these two measures generally 
contradict each other. To consider both 
measures at the same time, we further 
combine them into an F-score [12] to evaluate 
prediction performance. The definition of 
F-score on prediction is as follows: 

 
Identification of Functionally Important 
Sites 

We compared our method with Mirny and 
Gelfand’s [8] in the identification of 
functionally important sites in two families. 

 There are twelve important sites in the 
PurR/LacI family, nine of which are binding 
sites (DNA or ligand) and the others interact 
with other residues or form special 
conformation. Our method successfully 
identified the twelve important sites and four 
putative sites that are next to or in the 
proximity of the binding sites.  

There are 39 important sites in the AGC 
family, including the substrate-inhibitor 
binding sites, the Mg2ATP binding sites, and 
some residues that are close to or interact with 
these binding sites [13, 15, 3]. Our method 
identified 22 sites, ten (Trp84, Glu127, 
Phe129, Glu170, Thr183, Phe187, Thr197, 
Leu198, Pro202 and Leu205) of which are 
substrate-inhibitor binding sites or ATP 
binding sites, two (Lys189 and Cys199) of 
which are related to the protein structure, and 
five (Arg56, Met120, Leu132, Pro169 and 
Ala188) of which are next to particular 
binding sites. Seventeen sites identified by our 
method have been biologically verified and 
published in literature. 

The results of sensitivity and positive 
predictive value are summarized in Table 1. 
The sensitivity and positive predictive value 
of our method are 1.000 and 0.750 in 
PurR/LacI family; 0.436 and 0.773 in AGC 
family. In both cases, our method obtains 



better F-scores than Mirny and Gelfand’s 
method [14, 13]. Furthermore, our method 
requires much less CPU time than Mirny and 
Gelfand’s, which is hindered by the complex 
resampling procedure. Simulated on an AMD 
Athlon 1.0GHZ machine with 512 MB RAM, 
our computational time was in the order of 
minutes compared with hours of Mirny and 
Gelfand’s. 
Prediction of Orthologous Relations 

We tested our method on the AGC family, 
the glycoprotein hormone family, the 
α-proteasome family and the somatotropin 
hormone family to demonstrate its 
performance in the prediction of orthologous 
relations. For comparison, we applied 
CLUSTALW [17], profile HMMs [13], 
PSIBLAST [1] and Meta-MEME [2, 7] to the 
same data. A three-fold cross validation was 
used to evaluate the predictive accuracy. In 
each run, we used one third of the data for 
testing, and the remaining data for training. 
The results were summarized in Table 2. It 
shows that our method is comparable with 
others. Profile HMMs had an almost perfect 
prediction for the AGC family, the 
glycoprotein hormone family, and the 
α-proteasome family, but they were short of 
comprehensible interpretations of the 
orthologous relations found. Unlike others, 
our method makes a prediction based on the 
functionally important sites carrying 
biological meanings. The orthologous 
relations with the functional sites predicted by 
our method can be further analyzed by 
site-directed mutageneses. Associations 
between functionally important residues and 
evolutionary relations can be established. 
Discussion 

We have proposed a method capable of 
not only identifying functionally important 
sites in a set of homologous proteins, but also 
predicting orthologous relations for new 
protein sequences. It first identifies the 
putative functionally important residues 
related to specificity among paralogous 
proteins and then it uses these residues to 
construct a model to classify unknown protein 

sequences.  
For the PurR/LacI family, our method not 

only successfully identified all the binding 
sites, but also highlighted the residues that are 
responsible for protein conformation. As for 
the AGC family, we found 17 residues that are 
located in the binding domains or interact with 
other important sites to form particular 
conformation related to the kinase function.  

Our method identified several active sites 
in the cleft between the two lobes with the 
adenine ring of ATP deeply buried at the base 
of the cleft. Many of the important sites we 
identified interact with other residues to form 
the interaction network. 

In addition to demonstrating the ability of 
our method to detect functionally important 
sites, we also systematically evaluated its 
performance in the prediction of orthologous 
relations on four families. Compared with 
other approaches, our method is more accurate 
and efficient in general. 

Unlike most previous works, besides the 
prediction of orthologous relations, our 
method also suggests useful associations 
between functionally important sites and 
orthologous families. This type of information 
may provide biologists with new research 
topics and eventually become useful domain 
knowledge.  

Our current method can be further 
improved in two directions. Firstly, as 
multiple sequence alignment is essential to the 
identification of important sites, we can 
improve the quality of sequence alignment by 
incorporating more background knowledge to 
ensure the correctness of the alignment. 
Secondly, associations between important 
sites and their physicochemical properties can 
be further exploited to refine the predictive 
accuracy 
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報告內容應包括下列各項： 

一、參加會議經過 

於06/20辦理註冊報到，隨即參加Opening Address，於06/20-06/23期間，參加與會學
者之論文發表，同時，06/22 發表論文。並與多位國外學者討論相關研究議題。由於

Human Genome Project即完成，會議中有數篇有關後基因體研究之論文，其中不乏有關
基因發掘，蛋白質結構分析，調控訊號檢視等等，對於我國內生物資訊的發展，將提供

非常多的助益與新的發展方向。 
 

二、與會心得 

本次參加人數及國家眾多，其研究領域更包括計算機科學、醫學、生物學等之應用，藉

由討論及論文發表，獲得寶貴經驗，對於未來研究提供了新的方向。其中更結識他國友

人，經由研討，可明白其他國家的發展經驗。 

國內已有許多研究單位的多位學者及專家致力於生物晶片的開發，這將使我國未來有自

主能力採集重要基因組的基因表現資料，這不但可減少購買設備之成本，也使我國生物

科技產業邁前一大步。雖然微矩陣相關技術及硬體設備的蓬勃發展僅是近年的事，然

而，其應用的潛力己深獲肯定，可預見的是，在不久的將來，大量的基因表現資料將如

同 DNA及蛋白質序列般，不斷地被產生及發表，如何能從這些不同類型的生化資料中
發掘有用的訊息將是重要課題。硬體必須要有軟體的配合，硬體所產生的實驗數據資料

有賴軟體的分析，藉由這次與會學習的經驗，我們可以得知國外研究之重點，作為我國

在生物科技的發展依據。 
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四、建議 

數學與工程的應用極廣，由於生物科技是目前國內新興研究發展之重要產業，懇請國科

會及相關單位，能多支持與獎勵國內學者多參與此類國際研討會，除了增加我國在國際

相關領域的能見度，同時，提供相互學習之機會。此外，建議由國科會主導，召集國內

各大學與民間企業支援，以召開國際性生物資訊與相關科技研討會，邀請國內外學者共

同參與，這是直接提昇我國在生技發展地位的最有效做法。 
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Abstract 

RNA plays a crucial role in post-transcriptional regulation. Similar to transcriptional 
regulation, post-transcriptional regulation is often accomplished by the binding of proteins to 
specific motifs in mRNA molecules. Unlike DNA binding proteins, which recognize motifs 
composed of conserved sequences, RNA protein binding sites are more conserved in structures 
than in sequences. A lot of works have been done for RNA structure prediction; however, most of 
them focus on single RNA structure prediction instead of finding characteristic structure motifs 
within a RNA family. Though some current approaches can now identify common structure 
motifs from a set of RNAs, they typically assume the given set forms a single family, which is not 
necessarily correct. We propose a new adaptive method that conducts structure prediction and 
clustering simultaneously. Its performance is demonstrated on several real RNA families. 

 
 
 
 
 
 
 

Introduction 
RNA molecules are the key players in the biochemistry of the cell, playing many important 

roles in regulation, catalysis and structural support. Like proteins, their functions generally 
depend on their structures. Although structural genomics, the systematic study of all 
macro-molecular structures in a genome, is currently focused more on proteins, thousands of 
genes produce transcripts exerting their functions without ever producing protein products [1]. It 
can be easily argued that the comprehensive understanding of the biology of a cell requires the 
knowledge of identity of all functional RNAs (both non-coding and protein-coding) and their 



molecular structures. Since it is often difficult to acquire the 3D spectrum data of RNA molecules 
for structure determination, versatile and reliable computational methods that can predict RNA 
structures are highly desirable. 

Many functional RNAs have evolutionarily conserved secondary structures in order to 
fulfill their roles in a cell. For protein-coding RNAs, some of the functions can be presented by 
functional motifs. For example, several best-understood structurally conserved RNA motifs are 
found in viral RNAs, such as the TAR and RRE structures in HIV and the IRES regions in 
Picornaviridae [2]. Apparently, structural information is very useful in characterizing a class of 
functional RNAs. Based on characteristic structures, we can likely identify novel functional 
RNAs or partition given RNAs into biologically meaningful families. Several systems have been 
developed to find consensus structural elements within a family of functionally related RNAs 
[3-5]; however, there is little work on clustering of unaligned RNAs based on characteristic 
secondary structures. Given a set of unaligned RNA sequences without prior knowledge of the 
number or identity of families in the set, our goal is to automate both clustering and secondary 
structure prediction simultaneously. In this paper, we propose an adaptive approximation 
approach combined with a genetic programming-based structure prediction method to identify 
from unaligned RNAs reasonable clusters associated with characteristic secondary structure 
elements. To demonstrate its performance, we tested it on several real datasets. 
RNA Clustering and Structure Prediction 

Unlike previous studies of RNA secondary structure prediction whose input is either a 
single RNA sequence or a known class of functionally related sequences, our new method is 
instead applied to a set of unaligned RNA sequences which consist of an unknown number of 
classes. In order to find a reasonable partition for a given set of unaligned RNAs without 
knowing beforehand how many clusters actually existing in this set, we assume that each cluster 
is likely a functional family that contains characteristic structure motifs. Based on this assumption, 
our new method is focused on finding significant consensus structure motifs that can be used to 
characterize the families of RNAs. Since the number of clusters and its size are unknown in 
advance, we take a generate-and-test strategy that iteratively adjusts the hypothesized cluster size 
until some significant consensus structure elements can be found associated with this cluster. 
After a cluster is obtained, all its members are then removed from the given RNAs. We repeat the 
same separate-and-conquer strategy to identify other clusters from the remaining RNAs.  
Generate-and-Test 

The generate-and-test strategy we use is an adaptive approximation approach that 
systematically revises the hypothesized cluster size. During the generate-and-test process, the 
cluster size is defined by a range between an upper bound U and a lower bound L. Without any 
prior information of clusters, the cluster size is initialized within a range between an upper bound 
U=n and a lower bound L=0, that is, we first assume that all the given RNA sequences consist in 
an entire family. To the entire family, a genetic programming-based structure prediction method is 
applied to look for the fittest consensus structure motifs. If the specificity of the structure motifs 
associated with a cluster exceeds or equals some pre-specified threshold, the hypothesis of the 
cluster is accepted, and the cluster along with the associated structure elements will be reported. 
On the other hand, low specificity suggests that the current hypothesized cluster size is too big to 
be real and needs to be decreased. In this case, we reduce the current hypothesized cluster, and 
search the fittest consensus structure motifs and evaluate their specificity again. If the specificity 
is still lower than the threshold, we further decrease the cluster size. The same process for cluster 
size reduction can be repeated till we find a cluster with structure motifs of high-specificity. On 
the contrary, if the specificity is over or equal to the threshold, one of the two possibilities holds: 
(1) the current cluster is real, and any more sequences added will be harmful to the specificity of 
consensus structures, or (2) the current cluster found is only a subset of a bigger real cluster. To 
verify which event actually happens, we increase the cluster size and a new search for the fittest 
consensus structure motifs is conducted. As each update generates a tighter range for cluster size, 
we expect the cluster size will eventually converge to the appropriate one. 
Secondary Structure Element Prediction by Genetic Programming 

The objective here is to learn the structure elements that can be used to distinguish the given 
functionally related sequences from the random sequences. We modify the fitness function of our 
previous work [6] on RNA consensus secondary structure prediction to find significant structure 



elements from a dataset that may contain multiple variable-sized clusters of unaligned sequences. 
The fitness function is used to measure the quality of individuals (i.e. candidate 

structure elements) in a population. The higher the fitness of an individual, the better 
its chances of survival to the next generation. In the previous work, the input dataset 
was assumed to be a single class of functionally related RNA sequences. We were 
interested in those structure elements that can reflect the characteristics conserved in 
a family, e.g. the RNA protein binding sites. Derived from the F-score, the fitness 
function was aimed to balance the importance of two measures, recall (i.e. sensitivity) 
and precision (i.e. positive predictive value) [4]. It assigns higher values to those 
structural motifs commonly shared by the given family of RNAs, and rarely 
contained in random sequences. For a given set of RNA sequences that form a single 
family only, the fitness function used in [4,6] can effectively guide the evolutionary 
process in genetic programming. Nevertheless, when the input dataset contains 
multiple functional classes, the recall measure may dominate the calculation of 
F-score if the fitness function treats the entire dataset as a single class. This will 
mislead the system to find over-general elements shared by most sequences. To 
alleviate the bias, we define a new measure of recall, and present the fitness function 
as below, where p is the number of positive examples containing motifi, Q is the total 
number of positive examples, R is the total number of examples containing motifi, 
and U is the upper bound of the hypothesized range for cluster size. 
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By taking cluster size into account, we can better constrain the search space and 
allow conserved clusters to emerge more likely instead of being buried in bigger but 
much less coherent clusters.  

Consensus Structure Specificity and Separate-and-Conquer Strategy 
The GP (Genetic Programming)-based structure prediction method can find the fittest 

secondary structure elements according to a given range of the cluster size, while the significance 
of the cluster found along with its characteristic structure elements highly depends on the range 
we choose. With proper adjustment of cluster size through the generate-and-test procedure 
combined with the GP-based prediction method, we can identify a meaningful cluster and the 
associated characteristic structure elements.  

The adaptive adjustment of cluster size in the generate-and-test procedure is controlled by 
the consensus structure specificity. It is defined as the Laplace prior precision. The Laplace prior 
approach has also been applied to inductive leaning to evaluate the significance of inductive rules 
[7]. The Laplace prior precision of cluster Ci is given by the formula:  
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We consider the Laplace prior in the calculation of precision with the aim to avoid well 



conserved clusters whose size is too small. For example, the Laplace prior precision of a cluster 
of 50 positive examples and five negative examples is better than that of a cluster of only five 
positive examples. Note that the Laplace prior precision is only used to determine the 
significance of a cluster found, unlike the F-score, which is used to direct the optimization 
process to find the best structure elements under the constraints of the cluster size. Based on the 
comparison of the Laplace prior precision with a pre-specified threshold, we adjust the range of 
cluster size accordingly, and then re-run the GP-based method to predict new structure elements 
and a new cluster they characterize. 

Once a significant cluster is found, we separate all its members out of the given dataset of 
RNA sequences. We then apply the same procedure to those that still remain in the dataset until 
the entire set is emptied. This separate-and-conquer strategy is effective when no prior knowledge 
of the identities of the clusters is given. It can automatically partition the given dataset into 
meaningful clusters, and also identify their characteristic structure elements.  
Experimental Results 

Two types of quality were considered to evaluate the performance of our method. One is to 
measure the agreement between the predicted clusters and the actual cluster identities; the other, 
to quantify the agreement between the predicted structure elements and the actual structure 
assignment. Since no other current approaches known to perform clustering and structure 
prediction in parallel, no comparative study can be done. Instead we applied the widely-used 
precision and recall to measure the first quality; the Matthews correlation coefficient [8], to 
measure the second quality. 

For each sequence in the data set, two secondary structure assignments were 
compared by counting the number of true positives Pt  (base pairs exist in actual 
assignment and are predicted), true negatives Nt  (base pairs do not exist in actual 

assignment and are not predicted), false positives Pf  (base pairs do not exist in 

actual assignment but are predicted) and false negatives N f  (base pairs exist in 

actual assignment but are not predicted), respectively. The Matthews correlation 
coefficient can then be computed as: 

C =
Pt Nt − Pf N f

(Nt + N f )(Nt + Pf )(Pt + N f )(Pt + Pf )
 

Given that the sequence length is sufficiently large, the Matthews correlation 
coefficient can be approximated in the following way [5].  

C ≈
Pt

Pt + N f
⋅

Pt
Pt + Pf

 

With the published/curated alignments, we can calculate the Matthews correlation 
coefficient. Higher correlation coefficients mean more accurate structure predictions. 
Our algorithm is designed to automatically partition a given set of unaligned RNA 

sequences into meaningful clusters, each with characteristic conserved secondary structure 
elements. The number of real clusters and the distribution of cluster size may affect the prediction 
of partitions and characteristic structure elements. To measure their effect on the performance, we 
tested our method on different datasets with various RNA families. We used three families, 
including 16S RNA, IRE (Iron Response Element) and viral 3’UTR as summarized in Table 1, to 
prepare the test datasets. They have been used in previous experiments and published in literature 
[4,5]. The sequence data and the correct structure elements can be accessed at public databases 
[9,10]. The 16S RNA dataset contains 34 archaea 16S ribosomal sequences originally derived 
from a set of 311 sequences extracted from the SSU rRNA database. The archaea set of 311 



sequences was further reduced to 34, filtering out the sequences that miss base assignments or are 
greater than 90% identical. The IRE dataset was constructed by Gorodkin et al. [5] from 14 
sequences from the UTR database. They modified the IREs and their UTRs to make the search 
more difficult. By iteratively shuffling the sequences and randomly adding one nucleotide to the 
IRE conserved region, they built a set of 56 IRE-like sequences from the 14 IRE UTRs. The third 
data set includes 18 viral 3'UTRs each of which contains a pseudoknot. Seven of the RNA 
sequences are the soil-borne rye mosaic viruses; the others are the soil-borne wheat mosaic 
viruses. 

On the basis of the three real families of RNA sequences, we tested our method on each 
possible pair of the families, i.e. 16S RNA/IRE, 16S RNA/viral 3’UTR, and IRE/viral 3’UTR. In 
each run of the experiment, no information regarding the number of families or the family size 
was given to the algorithm beforehand. One purpose of this experiment is to analyze the effect 
incurred by the distribution of cluster size in a dataset. Furthermore, as the real conserved 
structure elements differ in various families, we can also observe how the interleaving of distinct 
structure motifs within a single dataset may affect the prediction process. The results are 
presented in Table 2, and some partial predicted secondary structures are shown in Figure 1. 
Conclusion 

In this paper, we propose a new approach that can perform structure prediction and 
clustering simultaneously for RNA analysis. The predicted results provide biologists with 
reasonable hypotheses and suggest further biological verifications. The performance of the new 
strategy has been demonstrated on several real RNA functional families. The system can be 
extended in the following directions. First, in case domain knowledge is available, we expect the 
results can be better improved by incorporating the background knowledge into the optimization 
process to effectively constrain the search space. Second, the discovery of important clusters in 
data usually goes through a repeated process cycle of finding clusters, interpreting results and 
augmenting data. No current unsupervised clustering system can produce maximally useful 
results if operated alone [11]. We plan to design a human-machine interface, so that biologists can 
easily monitor the system status and adapt the system parameter settings. Third, the algorithm 
itself is highly modular and most of the modules are independent of each other. This property 
may lead to a parallel-processing version of the system to significantly reduce its computational 
time. 
 

 
Data Set 16S RNA IRE-like viral 3’UTR 

Total Sequences 34 56 18 
Min Seq Length 90 117 37 
Max Seq Length 108 330 137 
Avg Seq Length 97.59 202.93 63.89 
Seq Length std 3.77 59.31 25.95 

Table 1. Summary of the RNA families used in experiments. The first row shows the total number 
of sequences in each data set. Row 2 to 4 present the minimum, the maximum and the average 
sequence length respectively. The fifth row gives the standard deviation of sequence length. 
 
 
 
 
 
          (a) 

IRE+viral 3’UTR Recall Precision Matthews 
IRE 0.97 0.99 0.97 

viral 3’UTR 0.71 0.95 0.79 
 

(b) 



16S RNA+viral 3’UTR Recall Precision Matthews
16S RNA 0.97 0.95 0.83 

viral 3’UTR 0.77 0.98 0.77 
 

(c) 
IRE+16S RNA Recall Precision Matthews 

IRE 0.73 0.99 0.85 
16S RNA 0.81 0.73 0.67 

Table 2. Summary of the experimental results. Table (a), (b) and (c) present the result for the 
dataset containing IRE and viral 3’UTR, 16S RNA and viral 3’UTR, IRE and 16S RNA, 
respectively.  
 
 
 
***** IRE ***** 
 
> seq_D15071.1 
 
  41     45   47      51            58     62 63      67  
t g c g g u c c u g g c c a g u g a g c u g g g c c g c  
 
predicted: 
. ( ( ( ( ( . ( ( ( ( ( . . . . . . ) ) ) ) ) ) ) ) ) )  
 
published: 
. ( ( ( ( ( . ( ( ( ( ( . . . . . . ) ) ) ) ) ) ) ) ) ) 
 
***** 16S RNA ***** 
 
> U51469  
 
  13            20    23              31          37                46          52                61           
g u u u c a u u g a a g u u u g c u u u u a g u g a g g u g a c g u c u a a u u g g c g u u a u c g 
 
  62        67              75    78            85 
  a a c u u g u g g u a a g c g a c a a g g g a a a a 
 
predicted: 
. ( ( ( ( ( ( ( ( . . ( ( ( ( ( ( ( ( ( . . . . . ( ( ( ( ( ( ( ( ( ( . . . . . ) ) ) ) ) ) ) ) ) ) 
  . . . . . ) ) ) ) ) ) ) ) ) . . ) ) ) ) ) ) ) ) . . 
 
published: 
. ( ( ( ( ( ( ( ( . . ( ( ( ( ( ( ( ( ( ( ( ( ( . . ( ( ( ( ( ( ( ( ( . . . . . ) ) ) ) ) ) ) ) ) . 
  . ) ) ) ) ) ) ) ) ) ) ) ) ) . . ) ) ) ) ) ) ) ) . . 
 
***** viral 3’UTR ***** 
 
> PKB183 
 
  14  16  18         24 25  27        32          38  
a c g u c g u g c a g u a c g g u a a a c u g c a c a u 
 
predicted: 
. ( ( ( . [ [ [ [ [ [ [ ) ) ) . . . . ] ] ] ] ] ] ] . . 
 
published: 
. ( ( ( . [ [ [ [ [ [ [ ) ) ) . . . . ] ] ] ] ] ] ] . . 
 

Figure 1. A partial result of the predicted RNA motifs. The numbers above the sequences are the 
indices of the nucleotides. The predicted and the published motifs are both shown for reference. 
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