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鏈結學習型基因演算法之設計改進研究 

Design Enhancement of 

Linkage Learning Genetic Algorithms 

中文摘要  

本研究計畫測試與驗證先前於文獻中為鏈結學習型基因演算法  (linkage learning 
genetic algorithm) 所提出之子染色體表現方式 (subchromosome representation) 的功能

與效用。子染色體表現方式的設計目的，乃在於程式執行時期，將建構基石被處理的

個數有效地減低，以避開在鏈結學習型基因演算法的收斂時間模型 (convergence time 
model) 中所指出的執行效能極限。於先前的文獻中，已提出子染色體表現方式的設計

與初步實作嘗試。在本研究中，我們希望經由再次的測試與驗證，來呈現出於鏈結學

習型基因演算法使用子染色體表現方式，確實有效顯著的功能與效用。我們的實驗結

果顯示出，在鏈結學習型基因演算法使用子染色體表現方式，除了可以明顯地改進其

在處理含有貢獻一致之建構基石的問題時之效能，同時在當預先得知的基因鏈結資訊

存在時，子染色體表現方式也能做為充分利用此種資訊的良好機制。 
 
關鍵字：鏈結學習、基因演算法、表現方式、建構基石 

ABSTRACT 

This research work examines and verifies the use of subchromosome representations 
previously introduced to the linkage learning genetic algorithm (LLGA). The 
subchromosome representation is utilized for effectively lowering the number of building 
blocks in order to escape from the performance limit implied by the convergence time 
model for the linkage learning genetic algorithm. A preliminary implementation was 
developed to realize subchromosome representations in the literature. In this study, we once 
more examine and verify the use of subchromosomes in the linkage learning genetic 
algorithm. The experimental results indicate that the representation can improve the 
performance of the linkage learning genetic algorithm on uniformly scaled problems, and 
the implementation provides a potential way for the linkage learning genetic algorithm to 
incorporate prior linkage information when such knowledge exists. 
 
Keywords: Linkage learning, genetic algorithms, representations, building blocks 
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I.  INTRODUCTION 

Linkage learning, making genetic algorithms (GAs) capable of detecting associations 
among genes or variables and properly arranging these closely related genes to form 
building blocks, is one of the key challenges of the genetic algorithm design. In order to 
ensure a genetic algorithm works well, the building blocks represented on the chromosome 
have to be tightly linked (D.E. Goldberg et al., 1993; Thierens & Goldberg, 1993). One way 
to alleviate the burden of choosing an appropriate chromosome representation for genetic 
algorithm users is to employ the genetic linkage learning technique. Among the existing 
linkage learning methods, such as perturbation-based techniques (Kargupta, 1996; 
Munetomo & Goldberg, 1999) , model builders (Baluja, 1994; Muhlenbein & Mahnig, 1999; 
Pelikan et al., 1999) , and linkage learners (Levenick, 1995; Smith & Fogarty, 1996), is the 
linkage learning genetic algorithm (LLGA), using an evolvable genotype capable of 
learning genetic linkage during the evolutionary process. 

While the linkage learning genetic algorithm achieved successful linkage learning on 
problems with badly scaled building blocks, it was less successful on problems consisting of 
uniformly scaled building blocks. The convergence time model for the linkage learning 
genetic algorithm (Chen & Goldberg, 2004) explains the difficulty faced by the linkage 
learning genetic algorithm and indicates the performance limit of the linkage learning 
genetic algorithm on uniformly scaled problems. This research project seeks to enhance the 
design of the linkage learning genetic algorithm based on the time models to improve the 
performance of the linkage learning genetic algorithm on uniformly scaled problems. 

In particular, we would like to examine and improve a previously proposed design, 
called subchromosome representations of the linkage learning genetic algorithm. The 
subchromosome representation was developed to avoid the performance limit implied by 
the convergence time model for the linkage learning genetic algorithm. 

In the remainder of the report, we will first briefly review the linkage learning genetic 
algorithm in the next section, followed by the discussion on the limit to competent of 
linkage learning genetic algorithm. The subchromosome representation will then be 
described, followed by the experiments for verficiation purpose. Finally, this report will be 
concluded in section VI. 

II.  THE ESSENSE OF 

THE LINKAGE LEARNING GENETIC ALGORITHM 

The key elements of the linkage learning genetic algorithm (G. R. Harik, 1997) include the 
chromosome representation, the exchange crossover, and the probabilistic expression. The 
linkage learning genetic algorithm is capable of learning genetic linkage in the evolutionary 
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process without the help of extra measurements and techniques. A modified version of the 
algorithm working with promoters (Chen & Goldberg, 2002) will be used in this project. 

The LLGA's chromosome representation is mainly composed of moveable genes, 
non-coding segments, probabilistic expression, and promoters. Moveable genes are encoded 
as (gene number, allele) pairs on the LLGA chromosome, and an LLGA chromosome is 
considered as a circle. These genes are allowed to move around and reside anywhere on the 
chromosome. Non-coding segments are inserted into the chromosome to create an evolvable 
genotype capable of learning linkage. Non-coding segments act as non-functional genes 
residing between functional genes to form gaps for precisely expressing genetic linkage. 

Probability expression (PE) was proposed to preserve building-block level diversity. 
For each gene, all possible alleles coexist in a PE chromosome at the same time. For the 
purpose of evaluation, a chromosome is interpreted with a point of interpretation. The allele 
for each gene is determined by the order according to which the chromosome is traversed 
clock-wisely from the point of interpretation. A complete string is then expressed. 

Consequently, each PE chromosome represents not just a single solution but a 
probability distribution over the range of possible solutions. If different points of 
interpretation are selected, a PE chromosome might be interpreted as different solutions. 
Furthermore, the probability of a PE chromosome to be expressed as a particular solution 
depends on the length of the non-coding segment between genes critical to that solution. It 
is the essential technique of the linkage learning genetic algorithm to capture the knowledge 
about linkage and to prompt the evolution of linkage. 

The use of promoters was proposed (Chen & Goldberg, 2002) to handle separation 
inadequacy and to improve nucleation potential. Promoters are special non-functional 
elements on the chromosome. While in the linkage learning genetic algorithm without 
promoters, all genes and non-coding segments can be the points of interpretation of the 
child created by crossover, only promoters can be the points of interpretation in the linkage 
learning genetic algorithm with promoters. 

The exchange crossover operator is another key mechanism to make the linkage 
learning genetic algorithm capable of learning genetic linkage. In the linkage learning 
genetic algorithm with promoters, although the grafting point can still be any genes or 
non-coding segments, the point of interpretation of the offspring is no longer the grafting 
point. Instead, the new point of interpretation is the nearest promoter before the grafting 
point on the chromosome. After the grafting point is randomly chosen, the first promoter in 
front of the grafting point is the point of interpretation of the offspring. The genetic material 
is then transferred in the following order: (1) the segment between the promoter and the 
grafting point, (2) the segment chosen from the donor, and (3) the rest of the recipient. 
Exchange crossover in the linkage learning genetic algorithm with promoters selects only 
one cutting point at random. The other cutting point is always the element (either functional 
or non-functional) just before the point of interpretation of the donor. 
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The linkage learning genetic algorithm has been studied on problems containing 
multiple building blocks in two forms---the uniformly scaled problem and the exponentially 
scaled problem---not only because of their prevalence in the literature but also because they 
are abstract versions of many decomposable problems (D.E. Goldberg, 2002). Uniformly 
scaled problems resemble those with subproblems of equal importance, and exponentially 
scaled problems represent those with subproblems of distinguishable importance. As 
reported previously (G. R. Harik, 1997), when the building blocks of a problem are 
exponentially scaled, the linkage learning genetic algorithm can solve the problem in a 
linear time function of the number of building blocks. However, when the building blocks 
are uniformly scaled, the linkage learning genetic algorithm either needs a population size 
that grows exponentially with the problem size or takes exponential time to converge. In 
order to explain LLGA's seemingly inconsistent behavior, the tightness time models (Chen 
& Goldberg, 2003) and the convergence time model (Chen & Goldberg, 2004) were 
previously proposed to understand how the linkage learning genetic algorithm works. 

III.  LIMIT TO COMPETENCE OF 

THE LINKAGE LEARNING GENETIC ALGORITHM 

First of all, before providing a solution to the performance issue of the linkage learning 
genetic algorithm, we need to understand the implication of the convergence time model 
and then enhance the design of the linkage learning genetic algorithm accordingly. In 
addition to describing the way the linkage learning genetic algorithm works on uniformly 
scaled problems as well as explaining the seemingly inconsistent behavior of the linkage 
learning genetic algorithm on problems with building blocks of different scalings, the 
convergence time model for the linkage learning genetic algorithm also reveals a critical 
limit to competence of the linkage learning genetic algorithm that the computational time 
for the linkage learning genetic algorithm to solve uniformly scaled problems grows 
exponentially with the number of building blocks in the problem. 

By examining the proposed convergence time model more carefully, we can find that 
the parameters involved in the model are either the properties of the problem to solve, such 
as the order of building blocks, k, and the number of building blocks, m, or the 
uncontrollable constants and variables, such as the linkage-skew coefficient, cs, and the 
level of linkage, ε. Unlike many facetwise models that contain algorithmic parameters and 
can shed light on how to appropriately set these parameters to enable the genetic algorithm, 
little guidance can be obtained from the time model for setting the existing algorithmic 
parameters of the linkage learning genetic algorithm. For example, the schema theorem (De 
Jong, 1975; David E. Goldberg, 1989; Holland, 1975) describes the market share growth of 
building blocks in terms of selection pressure and crossover probability. It shows us the 
correct way to choose these two parameters. However, the convergence time model cannot 
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provide us such practical indications because there is no algorithmic parameters involved in 
the model. Therefore, instead of trying to adjust those existing algorithmic parameters, 
another way to improve the performance of the linkage learning genetic algorithm on 
uniformly scaled problems has to be taken, such as the one examined in this project. 

IV.  SUBCHROMOSOME REPRESENTATIONS 

The subchromosome representation in the linkage learning genetic algorithm separates a 
LLGA chromosome into several parts, called subchromosomes. The structure of a 
subchromosome is identical to that of a regular LLGA chromosome. Like a regular LLGA 
chromosome, a subchromosome contains moveable genes, non-coding segments, as well as 
promoters and is interpreted with probabilistic expression. All subchromosomes belonging 
to one individual form a complete LLGA chromosome. In subchromosome representations, 
there is no separate fitness measurement for each subchromosome. The fitness obtained 
from interpreting the complete chromosome is used by all subchromosomes. Therefore, the 
unimetric characteristic of the linkage learning genetic algorithm is still maintained because 
there is no extra measurement regarding the structure of the chromosome. 

The goal of subchromosome representations is to create a flexible encoding that makes 
LLGA chromosomes capable of grouping closely related building blocks to form 
higher-level ones in addition to moving genes together on the chromosome to form the 
first-level building blocks. Similar to genetic linkage learning, the process of forming 
higher-level building blocks should be integrated with the evolutionary and problem-solving 
process. The subchromosomes of an LLGA chromosome can be considered as building 
blocks of the second level. The subchromosome representation can be designed to 
hierarchically express building blocks of even higher levels, such as the third level, the 
fourth level, and so on. 

V.  EXPREIMENTS 

The experiments to observe the effect of using the subchromosome representation in the 
linkage learning genetic algorithm are presented in this section. First, the parameter settings 
of the experiments are described in detail. Then, the experimental results are shown in the 
remainder of this section. 

V. 1  Experimental Settings 

Trap functions (Ackley, 1987; Deb & Goldberg, 1993; Deb et al., 1993) are used for 
examining the effect of adopting subchromosome representations in the linkage learning 
genetic algorithm because trap functions provide decent linkage structures, and good 
linkage is required in order to solve problems consisting of traps. The experiments here 
were done for order-4 traps, and all traps contribute equally to the fitness. 
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To simulate the infinite-length chromosome, we let one order-4 building block 
embedded in 250 genes, including functional genes and non-coding elements. For example, 
for five order-4 building blocks, the 20 genes are embedded in a 1,250-gene chromosome 
with 1,230 non-coding elements. The total number of building blocks in one experiment is 
the number of building blocks per subchromosome times the number of subchromosomes. 
From 2 to 8 building blocks per subchromosome, all conditions for the total number of 
building blocks less than or equal to 80 are included in the experiments. 

The gambler's ruin model (G. Harik et al., 1997)is utilized for population sizing. Other 
parameters are set as follows. The crossover rate is 1.0 such that the crossover event always 
happens. The maximum number of generations is 100,000. The number of promoters on 
each subchromosome is set to 2m, where m is the number of building blocks on the 
subchromosome. Finally, each experiment was repeated with 50 independent runs. 

V. 2  Experimental Results 

For each experiment, the success rate is calculated according to the results obtained in the 
50 independent runs. Here, a success is determined by the final solution quality. The 
solution quality is the ratio between the number of correctly solved building blocks in the 
end of the run and that of the total building blocks in the trial. For example, if in a particular 
run for solving 20 building blocks, 12 building blocks are correctly solved, the solution 
quality of this run is 0.6. If the final solution quality of a run is equal to or greater than 0.9, 
the run is recorded as a success. The success rate is therefore the ratio between the number 
of success trials and that of runs. 
 Figures 1, 2, and 3 give the success rates of all the experiments with the total number 
of building blocks less than or equal to 80. The number of building blocks distributed on 
each subchromosome varies from 2 to 8. The results for each number of building blocks on 
subchromosomes are shown with different line-point styles in the figures. As shown in these 
figures, utilizing subchromosome representations in the linkage learning genetic algorithm 
can significantly improve the performance of the linkage learning genetic algorithm on the 
uniformly scaled problems. Compared to the previously reported results, the linkage 
learning genetic algorithm with the subchromosome representation can solve uniformly 
scaled problems about five times larger in terms of the total number of building blocks than 
that can be solved by the linkage learning genetic algorithm without subchromosomes. 

In addition to the performance improvement, the figures also show that the limit for the 
linkage learning genetic algorithm with the subchromosome representation in our first 
attempt of implementation to solve uniform scaled problems seems to be around 50 in terms 
of the total number of building blocks. Even with different numbers of building blocks 
distributed on one subchromosome, no successful trial was found among all the experiments 
with totally 60 or more building blocks. However, according to the importance of 
building-block identification and exchange, we had to use a crossover probability as high as 
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1.0 in the linkage learning genetic algorithm without subchromosomes in order to 
effectively promote the linkage learning process, which proceeds with only the differential 
selection of linkage, which is generated indirectly from the schema theorem. 

Such a high crossover probability not only promotes the linkage learning process but 
also raises the probability to disrupt building blocks. Therefore, by using the same setting of 
the crossover probability in these experiments, the procedure to apply exchange crossover 
on subchromosomes may cause serious building-block disruption, as it does in the linkage 
learning genetic algorithm without subchromosomes. Based on the discussion, the exchange 
crossover operator is slightly modified as follows. Instead of applying exchange crossover 
to all pairs of subchromosomes, each pair is now chosen with a probability of 0.5 for 
applying exchange crossover in order to reduce building-block disruption as much as 
possible without influencing the mixing rate too much. The previous experiments were 
repeated to check the effect of adjusting the crossover probability. The results are shown in 
Figure 4 and indicate that the subchromosome works well in the range of these experiments. 
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Figure 1: 2, 3, & 4 Subchromosomes. 
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Figure 2: 5 & 6 Subchromosomes. 
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Figure 3: 7 & 8 Subchromosomes. 
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Figure 4: 5 & 6 Subchromosomes w/ pc=0.5.
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VI.  CONCLUSIONS 

We started with a brief review of the linkage learning genetic algorithm, including the 
chromosome representation, exchange crossover, linkage learning mechanisms, and time 
models. The subchromosome representation was developed and employed in the linkage 
learning genetic algorithm for effectively lowering the number of building blocks to escape 
from the limit implied by the convergence time model. An initial step to realize 
subchromosome representations in the linkage learning genetic algorithm was taken. The 
preliminary experimental results of using subchromosomes in the linkage learning genetic 
algorithm indicated that the proposed scheme can improve the performance of the linkage 
learning genetic algorithm on uniformly scaled problems. 
 In addition to showing that the subchromosome representation helps the linkage 
learning genetic algorithm to solve larger uniformly scaled problems, the initial step for 
implementation the proposed representation in the current work also leads a possible way in 
making the linkage learning genetic algorithm capable of incorporating the prior linkage 
information. With the use of subchromosomes, the distribution of genes, non-coding 
segments, and building blocks can be determined according to the available linkage 
information of the problem. In the linkage learning genetic algorithm without 
subchromosomes, utilizing prior linkage information is extremely difficult. Overall, the 
results reveal a promising path for achieving scalable genetic linkage learning techniques. 
 Finally, although the ultimate goal of the research project was not successfully 
accomplished, several minor objectives were achieved, including extending the scale of 
problems that can be solved by the linkage learning genetic algorithm, providing a 
controllable mechanism for the linkage learning genetic algorithm to adjust the gene 
distributions, and developing a way for the user to incorporate the prior linkage information 
into the linkage learning genetic algorithm. The research results of this project have been 
compiled in the form of academic papers and have been submitted to important 
international conferences in the field of evolutionary computation. Hopefully, there will be 
positive outcomes and the research work along this line can be carried on. 
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