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國科會研究計畫進度報告 (May 25, 2005)
計畫名稱 : 複雜流體系統之研究 : 電腦模擬 , 理論及實驗之互補互成 (1/3)
(NSC93-2113-M-009-015-)
主持人: 林銀潢 教授, 國立交通大學應化系

The interplay of theory, experiment and simulation has been a main interest of my research
project. Progresses in all three areas have been made to different degrees in the past one
year. Linkages in certain aspects among the three have been made: (1) The theoretical
analysis of the Plazek’s creep compliance J(t) results in both the entangled and
entanglement-free regions; (2) The emergence of entropy-derived viscoelastic
dynamics)Rouse normal modes of motion)from energetically interacting chains as
revealed from the Monte Carlo simulation; (3) Comparison of the relaxation modulus G(t)
as extracted from Plazek’s 0

eJ and J(t) result in the entanglement-free region and that
obtained from the Monte Carlo simulation. As these three research activities are taking up
most of our human resources, a molecular dynamics simulation study on molecular
motions in glass-forming binary fluids is temporarily coming to a halt while the computer
programs for running the simulation under either NVE or NVT using the NoseHoover
thermostat are developed; and some results at high temperatures are obtained whose
validity is confirmed by comparison with literature. Before the molecular dynamics
simulation work is resumed, a large disk storage capacity need be installed to our PC to
facilitate the data handling. Below, I shall mainly highlight the three linkages between
theory, experiment and simulation as mentioned above.

(1) Theoretical Analysis of the Creep Compliance J(t)
There are two main motives behind the analysis of Plazek’s results: (1) Plazek’s J(t) results
are very accurate and contain very rich information of polymer dynamics)from the
glassy-relaxation region to the flow region. Even though his results are more than thirty
years old, the rich information they contain has remained basically untapped. (2) Using the
quantitatively successful description of the rubber(lik)-fluid region by the extended
reptation theory (ERT) as the reference frame for analyzing the Tg-related dynamics that
occurs in the short-time region of J(t). This represents a totally new approach to studying
the Tg-related dynamics.. The outcomes of the analysis are the understanding of the basic
mechanism of the thermorheological complexity and the deduction that this basic
mechanism should also be responsible for the break-down of the StokeEinstein relation
occurring in glass-forming liquids as the glass-transition point is approached from above)a
well-known effect that has been under intensive studies in the past decade. The analysis is
quantitative; it explains the temporal unevenness of the thermorheological complexity
naturally in a precise way. The study also shed light on the difference between the motion
associated with a single Rouse segment and the Tg-related Relaxation. In the past, due to
the lack of clear definition of these two types of motion and the proximity of one to the
other in the time scale, they could be easily confused. From this extensive study, two
reports: “Whole Range of Chain Dynamics in Entangled Polystyrene Melts Revealed from
Creep Compliance: Thermorheological Complexity between Glassy-Relaxation Region
and Rubber-Fluid Region”and “Motion Associated with a Single Rouse Segment versus
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the Relaxation”were prepared. Probably because the two reports are long as a result of
very comprehensive studies and contain several ground-breaking concepts and ideas, their
reviews have been very slow coming. Anyway, their reviews were only recently received;
the reports are revised in response to the review comments and sent back to Journal of
Physical Chemistry. The abstracts of the two reports as well as their figures are attached in
the following:

(A)
Whole Range of Chain Dynamics
in Entangled Polystyrene Melts Revealed from Creep Compliance:
Thermorheological Complexity
between Glassy-Relaxation Region and Rubber-Fluid Region

Y.-H. Lin
Department of Applied Chemistry
National Chiao Tung University
Hsinchu, Taiwan

Abstract
The rubber(like)-fluid region of the creep compliance J(t) results reported by Plazek of two
nearly monodisperse polystyrene melts in the entanglement region have been quantitatively
analysed in terms of the extended reptation theory (ERT), giving the frictional factor K
(=b2/kT2m2) in quantitative agreement with the values obtained previously from
analysing the relaxation modulus G(t) line shapes as well as calculated from the viscosity
and diffusion data)a quantity shown independent of molecular weight as expected from the
theory. Using the successful description of J(t) in terms of ERT in the rubber(like)-fluid
region as the reference frame in time, the glassy-relaxation process G(t) that occurs in the
small-complianceshort-time region of J(t) can be studied in perspective. As shown from
the analysis in terms of a stretched exponential form for G(t) incorporated into ERT, the
temperature dependence of the energetic interactions-derived G(t) process being stronger
in a simple manner than that of the entropy-derived ERT processes accounts fully for the
uneven thermorheological complexity occurring in J(t) as initially observed by Plazek.
When the results of analysis being displayed in the G(t) form, the relative roles of the
energetic interactions-derived dynamic process and the entropy-derived ones in
polystyrene are clearly revealed. It is shown that at the calorimetric glass transition
temperature, Tg, the contribution from energetic interactions among segments to G(t) at the
time scale of the highest RouseMooney normal mode greatly exceeds that derived from
entropy, indicating vitrification at the Rouse-segmental level. At the same time the
RouseMooney normal modes provide an internal yardstick for estimating the
characteristic length scale of a polymer at Tg, giving 3 nm for polystyrene. Based on the
obtained results, the basic mechanism for the thermorheological complexity occurring in
polystyrene is analysed. It is shown that this basic mechanism should be also responsible
for the breakdown of the StokeSEinstein equation in relating the translational diffusion
constant and viscosity as observed in glass-forming liquids, such as OTP and TNB, in
approaching Tg from above.
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Figure A1
Creep compliance J(t) data of sample A measured at 114.5 (); 109.6 (); 104.5 (); 100.6 ();
and 97 () oC in comparison with the theoretical curves ( ))) ; from left to right, respectively)
calculated with K=5x10-9, GN=1.89x106 dyne/cm2; and the AG, and s values as explained
and given in the text.
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Figure A2
Creep compliance J(t) data of sample B measured at 119.8 (); 113.8 (); 105.5 (); 101.0 ();
and 98.3 () oC in comparison with the theoretical curves ( ))) ; from left to right,
respectively) calculated with K=5x10-9, GN=1.89x106 dyne/cm2 ; and the AG, and s values as
explained and given in the text.
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Figure A3
Comparison of the J(t) curves calculated at =0.36 (upper dashed line), 0.41 (solid line)
and 0.46 (lower dashed line) with AG=5482, s=56550; the one with =0.41 is the same as
the calculated curve shown in Figure 1 for sample A at 97oC.
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Figure A4
The normalized glassy-relaxation time s of samples A () and B () at different
temperatures. See the text.
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Figure A5
Comparison of the G(t) ( ))) ) and J(t)-1 ( ) curves for sample B at 113.8 oC (same
J(t) as the corresponding one shown in Figure 2). Also shown are the curves calculated
without the AGG(t) process: ( ) ) ) ) for G(t) and ( ) for J(t)-1; the dotted line indicates
the G(t) curve calculated without both the AGG(t) and A(t) processes.
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Figure A6
Calculated G(t) curves corresponding to three J(t) curves shown in Figure 1 for sample A:
a for 114.5oC ( ))) ), b for 104.5oC ( ) ) ), and c for 97oC ( ) ) ). Line d is
calculated without the AGG(t) process; line e is calculated without both the AGG(t) and
A(t) processes. The ( ) ) ) ) lines from bottom up represent the sums of line e and the
first 3, 6, 9, and 12 modes in A(t), respectively. The dots represent the locations of the
relaxation times as indicated. In the three dots under G, the left one is for a; the middle
one, for b; and the right one, for c.
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Figure A7
Calculated G(t) curves corresponding to three J(t) curves shown in Figure 2 for sample B:
a for 113.8oC ( ))) ), b for 105.5oC ( )) ), and c for 98.3oC ( )) ). The rest are
the same as in Figure 6.
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(B)
Motion Associated with a Single Rouse Segment
versus
the Relaxation

Y.-H. Lin
Department of Applied Chemistry
National Chiao Tung University
Hsinchu, Taiwan

Abstract
The dynamics in polystyrene melt and concentrated solution as probed by

depolarized photon-correlation spectroscopy has been shown to reflect the motion
associated with a single Rouse segment. In the concentrated-solution case
(entanglement-free), the analysis using the frictional factor K (=b2/kT2m2) extracted
from the viscosity data in terms of the Rouse theory and aided by the Monte Carlo
simulation based on the Langevin equation of the Rouse model confirms the conclusion
in a precise manner. In the melt case (entangled), the Rouse-segmental motion as
observed by depolarized photon-correlation spectroscopy is compared with the 
relaxation and the highest RouseMooney normal mode extracted from analyzing the
creep compliance J(t) of sample A reported in the previous paper. Another well-justified
way of defining the structural- (-) relaxation time is shown basically physically
equivalent to the one used previously. Based on the analysis, an optimum choice S

=18G (G being the average glassy-relaxation time) is made, reflecting both the
temperature dependence of G and the effect on the bulk mechanical property by the
glassy-relaxation process. In terms of thus definedS, two traditional ways of defining
the -relaxation time are compared and evaluated. It is shown that as the temperature
approaches the calorimetric Tg, two modes of temperature dependence are followed by
the dynamic quantities concerning this study: One includes the time constant of the
highest RouseMooney normal mode, v; the temperature dependence of the viscosity
corrected for the changes in density and temperature, /T; and the average correlation
time obtained by depolarized photon-correlation spectroscopy, c. The other, being
steeper, is followed by the -relaxation time S derived from the glassy-relaxation process,
and the temperature dependence of the recoverable compliance Jr(t) as obtained by
Plazek. The comparison of the dynamic quantities clearly differentiates the motion
associated with a single Rouse segment as characterized by v or cfrom the 
relaxation as characterized by S; due to the lack of clear definition of these two types of
motion in the past and the proximity of one to the other in the time scale)actually the two
crossing over each other)as the temperature is approaching Tg, the two modes could be
easily confused. Below 110oC, the rate of cchanging with temperature lags behind
that of v is explained as due to the loss of effective ergodicity taking place in the system.
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Figure B1
Comparison of the P2 [u(0)u(t)]2 dynamic processes obtained from the depolarized
photon-correlation functions of the S1 ()and S2 () samples and the simulation results of
the Rouse chain with Nr=8 (the left solid line) and with Nr=16 (the right solid line).
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Figure B2
H indicating the declining rate of log G(t) vs. log t, as defined in the text, is shown as a
function of time for sample A at 114.5, 109.6, 104.5, 100.6, and 97oC corresponding to
lines from left to right, respectively; all calculated with K fixed at 5x10-9 and the
respective s values listed in Table 1.

Time (sec.)

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

H

10-2

10-1

100

101

102



13

Figure B3
Comparison of the storage- and loss-modulus spectra, G() and G”(), of sample A at
114.5 ()))), 104.5 () )), and 97oC ())) all calculated with K fixed at 5x10-9 and the
respective s values listed in Table 1.
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Figure B4
Comparison of the storage-modulus ( ))) ) and loss-tangent () ) )) spectra of sample
corresponding to those shown in Fig. 3: a for 114.5oC, b for 104.5oC and c for 97 oC.
Also shown are the S=0.7/S values (right for a; middle for b; left for c) calculated
with K fixed at 5x10-9 and the respective s values listed in Table 1; and the v=0.7/v

value () calculated with the same K. The upper dotted line is G’() calculated without
the AGG(t) term; the lower dotted line is calculated without both AGG(t) and A(t).
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Figure B5
Comparison of v (!), 0.77c(#) and S (") as a function of temperature with the
temperature dependence of /T ( ))); the extended line below 104.5oC is indicated by 
) and Jr(t) ( )))); see the text.
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(C)
Analysis of Je

0 and J(t) of an Entanglement-Free Polystyrene Melt
As used to analyze the J(t) results in the entangled region and reported in the
Thermorheological Complexity paper mentioned above, a similar analysis scheme is
developed to analyze the steady-state compliance Je

0 data and the J(t) result of Plazek in
the entanglement-free region. The basic difference is the replacement of ERT by the
Rouse theory. In both the entangled and entanglement-free region, the thermorheological
complexity is characterized by the single parameter s, defined as the ratio of the average
glassy-relaxation time to the frictional factor K. s increases with decreasing temperature,
reflecting the stronger temperature dependence of the energetic interactions-derived
dynamic process, the glassy relaxation, in comparison to the entropy-derived dynamics.
As shown in Figure C1, s rises in a similar way as the temperature approaches Tg from
above for three different molecular weights: 3400(Tg70oC), 46900(Tg97oC) and
122000(Tg98oC))one molecular weight (3400) in the entanglement-free region and two
(46900 and 122000) in the entangled region, indicating the universality of the way in
which the thermorheological complexity exists in polystyrene. A report on this subject is
under preparation.
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Figure C1. Increase in s as the temperature approaching Tg from above, for three
different molecular weights: 3400 (); 46900(□); and 122000 (○).
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(2) Computer Simulation

(D)
Emergence of Entropy-Derived Viscoelastic Dynamics)Rouse Normal Modes of
Motion)from Energetically Interacting Chains as Revealed from the Monte Carlo
Simulation.

In the Rouse model, only the interaction between nearest neighboring beads
described by
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is considered. Based on the functional form of the potential, the distance between two
connected beads would collapse to zero if there were no thermal fluctuations. Here, the
interactions of each bead with its surrounding will be modeled in a way more analogous
to a real concentrated polymer solution system. The results of simulations on such
systems may shed light on why the theories using the Rouse segment as the most basic
structural unit)the Rouse theory and the extended reptation theory)are so successful in
describing the viscoelastic responses of concentrated polymer solution systems in the
frequency region below that corresponding to the motion associated with a single Rouse
segment, which will be referred to as the entropic region below.

We consider a system consisting of c chains, each with N beads, in a cubic box of
length L on each side. In order to mimic the presence of an infinite bulk surrounding the
c chains, the periodic boundary condition is applied; namely, at the coordinates:
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there exist beads identical to those at (x, y, z). Each bead interacts with its nearest
neighbors in the same chain through the Fraenkel potential:
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(the chain is labeled by the superscript index: k or l; the bead by the subscript index: n or
m) where HF is the force constant and b0 is the bond length at which the potential is at its
minimum or the tension on the bond is zero; and interacts with all other beads, belonging
to the same chain or not, through the truncated and shifted LennardJones (LJ) potential:
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with rc set at 2.5and
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where is the depth of the potential well; rkl
nm =Rl

mRk
n for all n and m when kl and

nm2 when k=l; and is the inter-bead distance at which the potential is zero. 
may be used to define the concentration or volume fraction, , of the studied system:
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In the simulation, the beads of all the chains in the cube are labeled and their movements
are followed. At each time-step, the center of mass of each of these chains is checked
and will be converted to its image inside the cubic box by applying the periodic boundary
condition, if it is not already in the box. For easily calculating the Fraenkel potential
force between two neighboring beads, no chain is separated into two parts)i.e. on the
opposite surfaces of the box separated by the distance L. As a result, some of the
labeled beads may be outside of the cubic box; however, they cannot go beyond a
distance, (N/2).5b0, from the surface of the box. This does not cause a problem in
calculating the forces on these labeled beads as required in following their movements, as
the minimum distance between any two beads can be automatically used in calculating
the LJ interaction forces in the simulation program)by subtracting L automatically from
the absolute value of any component of rkl

nm whenever it has a value greater than L. The
simulation is run using parallel processing with each cpu responsible for the
time-evolution of an individual chain.

The non-random force on each bead in the Langevin equation represents the sum of
forces derived from all kinds of interactions. Then the Langevin equation for a bead can
be written as
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where Fk
n is the sum of potential forces exerted on the bead, Rk

n; and the fluctuation gk
n(t)

is defined by:
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k
nF can be expressed as the sum of three types of forces:
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where k
n,FF is the Fraenkel force; k

nLJ,F the LJ force between beads belonging to the

same chain; and k
nLJ,F the LJ force between beads not belonging to the same chain.

With HF and expressed in unit of kT, Eq. (D6) can be transformed into
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For studying the stress relaxation behavior of the c chains, each with N beads,
confined inside a L3 cubic box as described above, a step shear deformation as given by
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is applied to the configuration of the chains denoted by {Rk
n(0)}in an equilibrium state

at ti=0, using the affine-deformation assumption. In carrying out the execution of Eq.
(D10) following a step deformation, the coordinates of and forces on all the individual
beads, {Rk

n(i)} and {Fk
n(i)}, at each time-step i are calculated. Then the stress tensor (i)

at the ith time-step following the step deformation at ti=0 is calculated by
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where the bar denotes averaging the quantity under it over the repetition of applying a
step shear strain at ti=0. The initial deformed configuration {Rk

n(0+)} is created
numerically from{Rk

n(0)} by the application of the affine deformation. Such a
numerical process may be different from a physical situation, where potential barriers
may be encountered during the deformation. Here, the numerically created affine
deformation is a part of our model system; it should not affect in a substantial way the
main point which the simulation is intended to illustrate.

Shown in Figures D1 and D2 are stress relaxation modulus results obtained from the
simulation for the systems consisting of 9-beads chains and consisting of 5-beads chains,
respectively. The relaxation curves clearly display two major relaxation processes. The
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slow one is closely described by the Rouse relaxation (solid lines) expected for chains
with 9 beads and 5 beads, respectively. Not only the dependence of relaxation time on the
number of beads follows that given by the Rouse theory, the modulus is of the order of
magnitude expected from the entropy force constant on the Rouse segment. More
simulations need be carried out before we can better understand the basic physics behind
the emergence of the entropy-derived dynamics from energetically interacting chains.
Such studies may shed light on why the theories using the Rouse segment as the most
basic structural unit)the Rouse theory and the extended reptation theory)are so
successful in describing the viscoelastic responses of concentrated polymer solution
systems in the long-time region.
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Figure D1. Comparison of the stress relaxation modulus obtained from the Monte Carlo
simulation (◦) and that calculated from the Rouse theory ())) in the long-time region for
a system consisting of chains with 9 beads.
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Figure D2. Comparison of the stress relaxation modulus obtained from the Monte Carlo
simulation (◦) and that calculated from the Rouse theory ())) in the long-time region for
a system consisting of chains with 5 beads.
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Comparison of Simulation and Experiment
(E)
Comparison of G(t) from Simulation and That Extracted from J(t) and Je

0

The relaxation modulus G(t) is related to J(t) and Je
0 through the following equations:
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Using the above two equations, G(t) has been extracted from the J(t) and Je
0 results of

Plazek for a nearly monodisperse polystyrene sample with MW=3400. The mass of a
Rouse segment is about 850; thus, the studied sample is equivalent to a system consisting
of Rouse chains with 5 beads. Shown in Figure E1 is the comparison of the G(t) extracted
from the J(t) and Je

0 data and that obtained from the Monte Carlo simulation as described
in (D) for the 5-beads chain. The overall agreement between the simulation and the
experimental result is very encouraging; the agreement between the two may suggest a
generic pattern for the viscoelastic behavior of a flexible linear polymer and the
fundamental ingredients for its rising.



25

Figure E1. Comparison of G(t) extracted from the J(t) and Je
0 results ())) of a nearly

monodisperse polystyrene sample with MW=3400 and that obtained from the Monte
Carlo simulation for a system consisting of chains with 5 beads (◦). In the superposition
process, a shift has been applied to the simulation result along both the modulus and time
axes.
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