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Two-phase, incompressible, immiscible flow in fractured media with tall matrix blocks
is concerned. Suppose € denotes horizontal size ratio of matrix blocks to whole medium,
and suppose the horizontal widths of the fracture planes and matrix blocks are in same
order. As e goes to 0, microscopic model for the two-phase flow problem converges to
1) a dual-porosity model if permeability ratio of matrix blocks to fracture planes is of
order €2; 2) a single-porosity model for fracture flow if the ratio is smaller than order €?;
3) another type of single-porosity model if the ratio is greater than order €2.
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1. Introduction

Homogenization for two-phase, incompressible, immiscible flow in fractured media
with tall matrix blocks is concerned. Within a fractured medium there is an in-
terconnected system of fracture planes dividing the porous rock into a collection
of matrix blocks. The fracture planes, while very thin, form paths of high perme-
ability. Most of the fluids reside in matrix blocks, where they move very slow. Let
€ be the horizontal size ratio of tall matrix blocks to the whole medium, and let
the horizontal widths of the fracture planes and matrix blocks be in same order.
In case permeability ratio of matrix blocks to fracture planes is of order €2, micro-
scopic models for the two-phase flow problem converge to a dual-porosity model
as € tends to 0. For the macroscopic model, a fractured medium is regarded as a
porous medium consisting of two superimposed continua, a continuous fracture sys-
tem and a discontinuous system of matrix blocks. Matrix blocks play the role of a
global source distributed over the entire medium. The immiscible two-phase flow is
formulated by conservation of mass principles for each continum plus sources from
tall matrix blocks. This problem was also considered by formal asymptotic expan-
sion in [8]. If the ratio is smaller than order €2, the microscopic models approach
a single-porosity model for fracture flow. If the ratio is greater than order €2, then
microscopic models tend to another type of single-porosity model. Our intention is
to prove the convergence of the microscopic models.
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Rest of the paper is organized as follows: In next section §2, we state microscopic
model for two-phase flow in fractured media. Notation and assumption will be given
in §3. Then in §4, we present our main results. Some known results needed for our
main results will be recalled in §5. Proof of main result is in §6. In §6, we need
to use the convergence of oil saturation in matrix blocks. The proof is lengthy and
tedious, so we present it in last section §7.

2. Microscopic Model for Tall Matrix Blocks

Let Y = [0,1]? be a cell consisting of a matrix block domain Y,, completely
surrounded by a connected fracture domain Yy. X, (y) is the characteristic function
of Y,,, extended Y-periodically to all of 2. Q C R? contains two subdomains, Q;
and Q5,. Qf, C {Z € QX (F/e) = 1}, Q5 = O\ Q5,. Let I'c = 005 N 905, N Q.
Boundary of  includes two parts T'y and 'y satisfying T'; UT'y = 89 and f“f mfg = .
Porous medium considered is a cylindrical aquifer Q = Q x [0, H] € ®* and is
assumed to be a two-connected domain with a periodic structure. It contains two
subdomains, Q% = Q; x [0, H] and Qf, = QF, x [0, H], representing the system of
fracture planes and matrix blocks respectively. Let I'. = I, x [0, H] be that part
of the interface of €27, with Q} that is interior to . Both I'y = Iy x [0, H] and
Iy = 'y x [0, H] are part of lateral boundary of Q.

In fracture subdomain Q;, porosity is denoted by ®€, absolute permeability by
K¢, saturation of oil phase by S¢, capillary pressure by T(S5¢), relative permeability
by A, (S€), phase pressure by Pg,
%, ke, s€,0(s9), Aa(s9), P, g for a = w, 0, in subdomain ¢, represent same quan-
tities as those denoted by upper case symbol in fracture subdomain. Conservation
of mass in each phase are written as, in Q%, ¢ > 0,

and a density-gravity term by G¢, for a = w, 0.

P9, — V- (KA (SO)V(PE — GS,)) = 0, (2.1)
B9,S¢ — V- (KA,(S)V(PE — GS)) =0
T(5%) = Ps— Py,

in Q¢,,t >0,
—¢ 05  — V- (KI2% N\ (s)V(pS, — GS,)) =0, (2.4)
6 0rs" =V - (KZZ7 Ao (s)V (0, — G)) =0,
v(s) =P, — P
e 00
where Z9 is a diagonal matrix defined by 79 = 0 ¢4 0 |. Phase fluxes and
0 0

1
pressures are required to be continuous on interface I'¢, t > 0, a = w, o,

KN (S)V(P; — Gg) - vE = K I27 Ao (s)V(pf, — G5, - v, (2.7)
Pt = p;

a?
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where v¢ is the unit vector normal to I'.. Boundary conditions are, for a = w, o,

KAL(SOV(P, —G:)-1=0 on Ty, (2.9)
KD (5)00s (P = Go)las=0,8 = K Aa(5) 0 (P, = Go)ls=01 = 0, (2.10)
PS =Py, on Ty, (2.11)

where 71 is the unit vector outer normal to I';. Initial conditions are

S0, z) = S5(x)  in Qf, (2.12)
s(0,2) = sG(x)  in Q. 2.13)

3. Notation and Assumption

For any € R, x = (& x3) where Z € R2. Q(2) = {i €

={7:7 € (Y +7) C Q2e) for j € 22}, Q;EQ :
Z€€(Y+j) e(Yom +7) C Q(2¢) for j € Z%}. Q° = Q° x [0, H], Q H],
YHE =Y, x[0,H],Q=0xY, Q5 =QxY,,, Q; =QxY,,i=fm. Bt = (O,t)xB
for B=Y2 T.,0 0,00 Q;i=fm

RS = R U{0}. Time difference is defined to be O"1)(t) = M For a
set B, X is a characteristic function of B. ¢(t,z,y) € L"(Q"; L}, (Y)),1 < r < oo,
coincides with a function in L"(Q7) extended by Y-periodicity in y to the whole
of R2. For B = Y;,Y,,, we define Q" Ly.(B) = {v € L"(Q"; Ly, .(Y)) :
Y(t,z,y) =0ify € Y\ By Wy () = {¢p € WH(Q) : #|r, = 0} if i € N and
r>1,U= Wé’Q(Q), Uy =U X U, dual X = dual space of X, s; (resp. 1 — s,.) is
residual matrix oil (resp. water) saturation. L9 (Q7) = L"(0,T; LY(Q)).

If Y :[0,1) — RS (vesp. v : [s1,8,) — RY) is onto and strictly increasing,
YT~ (resp. v~!) denotes the inverse function of YT (resp. wv). Then we define
J : [s1,8:) — [0,1) by J(2) = T (v(2)), and denote by J~! the inverse function
of J.

Pye=PFPyo— Pyw, Sp = Tﬁl(Pb,c)a A=Ay + Ao, A=Ay + Aoy

and Q6

m?

Q: : dist(Z, aQ) > 2e},
\ = {z
[0

R(z) = foz Awho dT(g)df for z € [0,1),
A(z) = foz W/AAA (T-1(€))d¢  for 2z € [0, 00), (3.1)
M(2) = [ Audo du (£)q¢ for z € [s1, s,).

Y € (0,1/8) is a number such that R’ is increasing (resp. decreasing) in (0,9) (resp.
(1-0,1)).
Next let us assume the following conditions: For a = w, o,

Al. Ty #0,Y,, C R? is a bounded smooth domain, and 2 C R2 is open, bounded,
and connected with Lipschitz boundary,

A2, K, G (n5) € WER(Q), 0 Pya € L2(0,T; H'(Q)), Pyu € C(0,T;C14(Q),
Ss,s5 € HY(Q) N C%42(Q) for dy,ds € (0,1),
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A3. Ke, kE,A,A € [d37d4], Sb, Sg,j(sg) € (d5, 1-— d5) and ds € (O, 1),
Ad. ¢¢ = @(%), k¢ = k(%), where ¢, k are smooth Y-periodic functions,

A5, Ay, Ay (tesp. Ao, Xp) @ [0,1] — [0,1] are continuous and decreasing (resp.
increasing), A, (1 — 2) o 296, A,(2) o 297 for 2 € (0,9), AT"‘(j(z)) = %(2)7
A6. Y:[0,1) = R$ (v:[s;,s.) — R) is onto, increasing, and a locally Lipschitz

continuous function, and 1r{1f N %( ) >0, dsds,‘? j)) o€, ¢¢ € [ds,do] for z €

[ShSTL g_z ~ 1a

AT AP (2) < [P(A — A(T(€)))d¢ for z € (0,9) and
Ai,/2(1 —2) < [° 2Z(A(T(§)) — A(T(1 = 22)))dé for z € (0,9),

A8. [An(21) — Aa(22)] < dio/(R(21) — R(22))(21 — 22) for any z1, 22 € [0, 1],
A9. max |A(z) — 1|+ max |A(z) — 1] <dj1 (d11 only depends on Q, K€, k°),

z€[0,1] 2€[s1,87)
A10. ApAy(2) < diez|l —2|\/R/(2), R'(z) x z2™|1 — z|™ for z € (0,9)U (1 —9,1)
and m,m; > 1,

where m,mq, d;,2 = 1,---,12 are positive constants.

Remark 3.1 From Al, Q; 18 an open, bounded, and connected domain with Lip-
schitz boundary. In A2, the density-gravity terms G<,, GS are functions depending
on x3 variable. Initial and boundary saturations are away from two end points 0
and 1 (see A8). A5 implies that relative permeability Ay, (resp. Ay ) in the neigh-
bor of end point 1 has similar properties as A, (resp. X,) in the neighbor of end
point 0. Relative phase mobilities in fractures and matriz blocks behave similar.
A6 requires that fracture capillary pressure increases as fast as capillary pressure of
matrixz blocks. Usually, derivative of capillary pressure Y'(z) (resp. v'(2)) tends to
infinity as z — 0 or 1 (resp. s; or s.). A10 allows parabolic equations considered
are degenerate at end points 0 and 1, a characteristic of a porous medium equation.
Indeed, it also implies R’ € L*°(0,1). A7-8,10 are the restrictions on relative per-
meability and capillary pressure in fractures. Indeed, if dg,d7 (see A5) are large
enough (depending on capillary pressure), A7-8,10 hold. One may also note that
because of A5-10, A, and R’ at the end point 0 have similar properties as A,, and
R’ at the end point 1.

4. Main Result

In this section, we present the limit models of (2.1-2.13) as e — 0. Roughly
speaking, the limit models are fracture flow equations plus interior sources from
matrix blocks. The source terms depend on how fast the matrix permeability tends
to 0 as € — 0. For 0 < w < 1 case, matrix permeability tends to 0 very slow and
saturation variation in fracture system and in matrix blocks is almost simultaneous.
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So the limit model is a single-porosity model with sources from matrix blocks. For
w = 1 case, saturation variation in fracture system and in matrix blocks is not
simultaneous and the limit model is a dual-porosity model. In this case, domain
acts as a porous medium consisting of two superimposed continua, a continuous
fracture system €2 and a discontinuous system of matrix blocks Q,,. Primary flow
occurs in fracture system €2, and each point x € () is associated with a matrix
block Y,,. Flow in matrix blocks plays the role of a global source in the whole
fracture system. The model includes two systems of equations, one for flow in
fracture system and the other for flow in matrix block system. The two systems
are coupled through nonlinear sources. For 1 < w case, matrix permeability tends
to 0 so fast that matrix blocks play no roles in the limit model. The limit model
is a single-porosity model containing only fracture flow equations without matrix
sources.

4.1. For w =1 case

Let Q C R be a fractured medium. Equations for fracture flow are, for z €
Q, t>0,

—-®9;S - V- (KAw(S)V(Pw - Guy)) = Qu, (4'1)
(I>3tS -V (KAO(S)V(PO — Go)) = Qo,
Y(S) = P, — P,.

® is porosity, K is permeability field, S is oil saturation, Y(.5) is capillary pressure
curve, A, (o = w,o) is relative permeability curve of a-phase, P, denotes phase
pressure, GG, is a function depending on density, gravity, and position, and ¢, is the
matrix-fracture source.

Above each point x € € is suspended topologically a matrix block Y,, C R2.
Equations for flow in a matrix block are, for z € Q, y € Y,,,, t > 0,

_d)ats - 81/7953 : (k»‘w(s)ayﬂﬁ?, (pw - Gw)) =0, (44)
POrs — Oy, - (k/\O(S)ay,xg (Po — Go)) =0, (4.5
v(s) = po — Pw- (4.6)

Here functions s, p.,, po are defined in space domain Q,, and 0y z, = (Oy,, Oy, , Ozs )
Each lower case symbol denotes the quantity on Y, corresponding to that denoted
by an upper case symbol in the fracture system equations.

The matrix-fracture sources are given by, for z € 2, t > 0,

-1
Qo = m /y (0a®0;s — Ozy (kA (8)0is(Pa — Go))) dy, (4.7)

m

where 0, = —1, 0, = 1, and |Y},,| is the volume of Y,,,. Boundary conditions are,
fort >0, a = w,o,

KAL(S)V(P, —Gy) -1i=0 for v € I'y, (4.8)
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KAu(8)02y(Po — Ga)las=0,1 = kAo (8)0u5(Pa — Ga)lzs=0. = 0, (4.9)
P,=Pyq for x € Iy, (4.10)

where 7 is the unit vector outward normal to I'y. On interface, pressures are
continuous, that is, for t > 0, z € Q, y € 0Y,,, @ = w, 0,

Da(t, z,y) = Py(t, x). (4.11)

Initial conditions are
S(0,2) = So(z) for z € Q, (4.12)
s(0,z,y) = so(x) forx e, yeYn. (4.13)

Theorem 4.1 Under A1—10, a subsequence of solutions of the microscopic models
(2.1-2.13) converges in two-scale sense to a solution of (4.1-4.13) (see next section
for the definition of convergence in two-scale sense).

4.2. For 0 < w <1 case

Equations are, for z € Q, t > 0,

—00;5 = V- (KA (S)V(Py = Gu)) = qu, (4.14)
QoS — V- (KA (S)V(Py — Go)) = o, (4.15)
T(S) =P, — Py, =v(s). (4.16)

o, K, S, T(5), v(s), A, Pa, Ga, and ¢, (¢ = w,0) are the same quantities as
those in w = 1. The matrix-fracture sources are given by, for x € Q, t > 0,

—1
Ga = Yol /Ym (00®0t8 — Ozy (kAo (8)02;(Pa — Ga))) dy, (4.17)

where o, = —1, 0, = 1, and |Y},| is the volume of Y,,. Boundary conditions are,
fort >0, a =w,o,

KAL(S)V(P,—G,)-1=0 for z € I'y, (4.18)
KAy(S)0yy(Py — Ga)lus=0. =0, (4.19)
Py =Pyq for z € s, (4.20)

where 71 is the unit vector outward normal to I';. Initial condition is
S(0,z) = Sp(x) for z € Q. (4.21)

Theorem 4.2 Under A1—10, a subsequence of solutions of the microscopic models
(2.1-2.13) converges in two-scale sense to a solution of (4.14—4.21) (see next section
for the definition of convergence in two-scale sense).
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4.3. For w > 1 case

Equations are, for z € Q, t > 0,

— 08,8 — V - (KAw(S)V(Py — Ga)) =0, (4.22)
89,5 — V- (KA,(S)V(P, — Gy)) = 0, (4.23)
Y(S) = P, — Py. (4.24)

o, K, S, T(5), v(s), Aa, Pa, Ga, and ¢, (¢ = w,0) are the same quantities as
those in w = 1. Boundary conditions are, for t > 0, a = w, o,

KAL(S)V(P,—G,)-1=0 for z € I'y, (4.25)
KAy(S)0yy(Py — Ga)luws=0.u = 0, (4.26)
Py =Pyq for 2 € Ty, (4.27)

where 71 is the unit vector outward normal to I';. Initial condition is
S(0,z) = So(x) for x € Q. (4.28)

Theorem 4.3 Under A1—10, a subsequence of solutions of the microscopic models
(2.1-2.13) converges in two-scale sense to a solution of (4.22-4.28) (see next section
for the definition of convergence in two-scale sense).

5. Some Known Results

Lemma 5.1 [1] Let 1 <r < co and A1 hold. There is a constant d13(Yy,r) and a
linear continuous extension operator Il : W”(Q}) NL*(Q%) — WL (Q)n L (Q)
such that if ¢ € W”(Q}) N L“(Q}) and d14 < ¢ < djs, then

Mep = in Q% almost everywhere,
Meellwrr @) < dusllellwrr @),
dig < Ilep < dys.

W

Definition 5.1 For a givene > 0 and 1 < r < 0o, we define a dilation operator
mapping a measurable function ¢ € L™(Q5T) to a measurable function p € L™(QT)
by7 fOT. (tvfz;xS»y) € Qz;w

— 5 — (p(t7£€(j) + ey, 1‘3) Zf (ée(j) + ey, ‘T3) € Qiny
Pt ws,y) = {0 elsewhere,

where (€(Z) = ej if & € e(Y +j), j € Z2, denoting the lattice translation point of
e-cell domain containing .

Definition 5.2 A sequence of functions o€ in L"(Q1),1 < r < oo, is said to two-
scale converge to ¢ in L"(QT; L7 (V) if, for any function ¢ € Cg°(Q7; Cpe.(Y)),
we have

lim soe(t,x)w(t,w,ir/é)dxdt=/ o(t,z,y)Y(t, z, y)dydxdt,
€— T oT
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denoted by ¢° N @ e L"(Q7; Ly, (Y)). Besides lime_q ||| .- o7y = ll¢llLr(or),
¢ is said to two-scale converge to ¢ in L"(Q7T; Y)) strongly, and denoted by

©° 2 e L"(QT; Ly, .(Y)) strongly.

per

per(

6. Proof of Main Result

A1-10 are assumed from now on. Let us derive a weak formulation of (2.1-2.6).
Multiplying (2.1) and (2.4) by n as well as (2.2) and (2.5) by (, integrating over
QT and employing boundary conditions (2.7) and (2.9), we obtain

_/’ 9,5+ | KN (S)V(PE — G<,)Vn
Q;‘T Qe,T

—/ OO+ / ETZENG () V (0, — GY) Vi =0, (6.1)

/’ DS CH+ [ KA(S)V(PE — GoVC
f,T

Qe
+ ¢ 0s°C +/ ET*P N\, (59)V (pS — GS)V( = 0, (6.2)
o w
for smooth functions 7, € L?(0,T;U). Next we define global pressure [11] as
Fz%(ﬁ+f*+& D () — A (0 E))de)
po= 3 (kw4 7 (G0 (©) - e 0(€)de)

P, is defined as P€ in (6.3); except replacing Py, Py, Y(S) by Py, Py, Pb ¢ respec-
tively. Then VP¢ = 4w (S )VPS + 42 (S€)VPS and Vp© = 2 (s€)Vps, + 32 (s€) Vp§
by (2.3) and (2.6). (6.2) can be rewrltten as

/ <I>58t554+/ K(Ao(S)V(PC — GS) + VR(S)) V¢
i 2y

+ / P8, 5°C + / KT (Ao(s)V(p — GS) + VM(s))VC = 0. (6.4)
ol Qs

See §3 for R, M. Summing (6.1) and (6.2), we obtain, for n € L?(0, T;U),
[ ST - 65) - A5G, - 6) Vi
o< T
[ FTEOGOV0r - G5 - AT (G~ GV =0, (65)
Qu’

For ¢ € L?(0,T;U) N HY(QT),¢(T) = 0,

/e ) D9, SC + P(S° — S5)0¢ = — /Q . @ 0:s°C + ¢ (5¢ — 5§)0:(C. (6.6)
£ "
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(6.1-6.6), (2.3), (2.6), (2.8), (2.11) form a weak formulation of (2.1-2.13).

Next we consider a regularized problem. Let v be a small number satisfying
0<v< %. Extend A, (o = w,0) constantly and continuously to R and define
AoviAv, Aoy, Ay as

Aa7v(z = A, (05(%», Ay = Aw,v + AO,Va
{ A o Aoz,v(z) = Aoz,v(j(z)) (67)

By A2-3, there exist smooth functions S¢ ,, Sp,v, 55 such that

S6vs b, T (80y) € (d5/2,1=d5/2), 5§ lr, = Sovlr,(t =0), (6.8)
{ S6.v>Sbvs 86y — S5, S, 85 in L2(0,T; HY(Q)),

Y (So) = O0i(Poo — Pyy) in LY(QT), as v — 0. (6.9)

The regularized problem is: Find {Sf]XQ; + sf,XQ;L,PjXQ; + pg Xqc } satisfying

D0, Sy Xag, + ¢ 05\, Xa, € dual L*(0,T;U), (6.10)
v < SyXos + T (sy)Xag, <1, (6.11)
R(SyXas + T (59)Xas,) = R(S}), PeXas +piXas, — Py € L*(0,T5U),  (6.12)

J

LBOSCH [ K (R (SOVIPS - G+ VRIS))VC
; o

+/ ¢ 0psyC + / EIZZ (Mo (55)V (DS — G5) + VM(sS,))VE =0, (6.13)
" "

/ K (AV(SS)V(PS — G5) — Ay (S5)V(GS, — G)) Vi
Q;rT

+/ K27 (A (s)V (05 — G5) = M (85) V(G — G5)) Vi =0, (6.14)
(O
S‘E,XQ; (0,z) + Si,Xan (07 CL‘) = SS,VXQ} + SS,VXQ;” (6.15)

for any ¢,n € L%(0,T;U). It is easy to see that (6.13) is a nondegenerate (depending
on v) parabolic equation, and (6.13-6.14) imply, if S5, , =1 — Sg,

0= / BED,S5 ¢ + K (M (1 — S5 )V(PE — G5) — VR(L - 55 ) V¢
oo T ’ ’ ’
f

“,

By [4, 5, 6, 9, 12, 20, 22, 29], it is known

Lemma 6.1 Under (6.8-6.9), there exist functions Sy, Py in Q% and s{, pS, in O,
satisfying (6.10-6.15) for each v,e as well as there exist functions S€, P, PS in
Q% and s, p,p;, in A, for a = w,o satisfying (6.1-6.6), (2.3), and (2.6-2.11).

S¢ = S5 Xas + J(s§)Xq: is in L*(0,T; HY(Q)) and is Hélder continuous in QT,

05y € ETE (A (1 - 55, )V (0 — G5,) — VM(L— 85, ,)) VC(6.16)

e,
m
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and, as v — 0,

SE— S = SEXQ;_ + J(5%)Xae, pointwise,
R(83), PeXos +pyXas, — R(S9), P Xa; +pXa;, in L*(0,T; H'(2)).

Moreover, 0 < S€ <1, s; < s¢ < s, and

> (IVAS) VP m + 122 VAl VS oo )

a=w,o

HVP + IVRIS) + VAT 2 ey

T2V + [TEVM)] + TPV A [ paqger, < 6
A(Y(S9))  if z € Qf,
A(v(s?))  ifz e Q.

Lemma 6.2 For any (8,7 satisfying 2 < g < 6 —2 € N, %3 <4, and T <T, the
following inequality holds:

and c is a constant independent of €.

where A¢ = {

3 < B=Bo
Sup’{xEQ:Se(t)gu OTl—MSSS(t)H < colcoT|

t<rt n (ﬁ - ﬂO)(ﬁ*ﬁo)fﬁ ’ (6.17)

where | = %, ma fs =1, and cy is a constant independent of T, 3, €, 1.
— 00
Proof: Let us define £, ICW@ as

_ 1 ifp<z<2y,
Lulz) = {O elsewhere,
Ku(z) = fj(T@u)) L, (THATY(E)))de for z € [0, A(c0)),

Ku() = Lipria () o (T (ATN€))de for = € [0, A(e0).
By 24 < 92 and A2-35, we take ( = K,(A°) € L2(0,T;U) in (6.4) and n =
K,.(A%) € L*(0,T;U) in (6.5) to obtain

/ D, (A S+ | KA (S)L,(S)VY(S)VA
Q

e, e,
I Qf

+ / G, (A)Dys© + / KT2% A, (u) £, (1) Vo (s°) VA
Qq Qg7

< c1< KA, (S€)L,, (59|05 A° +/ kEAO(uE)Eu(uE)|8x3A6>, (6.18)
057 Q5"

€,
m

where u® = J(s¢) and constant ¢; is independent of ¢, 1. Suppose

/K:M(.AE)(‘I)EatSeXQ?T + d)EBtSEXQ%T) Z 0, (619)
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(6.18-6.19) imply
KRo(SVEuS AT + [ BN(u) ) 01y A
Q;’T Q57

< cQ< K€A§/2EM(SE)> ( KGAO(SE)@(SS)@IBT(SG)%AC)
Q;,T QE,T

+cQ( / kag/ch(uf)>

where constant ¢y is independent of €, u. A3 and (6.18-6.20) imply

1
2

1
2

(/m ker(ue)ﬁu(ue)azgv(se)t?nN) . (6.20)

Nl=

/ Ko (A) (@90, X m + 601" ) < e / AR2L (89, (6.21)

.

Let us define

(5 5,1 = {@6 oy KuACCOdE i 0,
O [ oy K (A(0(©)))dE im0,
(6.21) implies
QZ(Se s p) <y | A2L,(S9). (6.22)
QT Q7

(6.22) and A6-7 yield that, if 0 < t; <ty < T,

//825 Ssu<04// €, 8% 2u), (6.23)
t1 t1

where ¢4 is independent of ¢, t2, i, €. Define

fe(T,/J,)E Sup/ Z(5¢, s ).

t<t
A5 and (6.23) imply that, for 0 <t <ty < T,
fe(tQa,u) - fe(tla,u) < 65(t2 - tl)fe(t%?,u’)?

where c5 is independent of t¢1,ts, 4, €. By induction and A3, one obtains, for j €
N, jh < T,

ds

o ds c
F(jh, 2ﬁ) (B — Bo + 1) Yesh|P=Po Fe(jn o) (6.24)
If j = % and 7 = jh in (6.24), then
€ d5 |C5T|ﬂ_5o € d5
7y = gy g (6:29)
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where f3 — 1 as 3 — oco. Define B(t) = {x € Q: S(t,x) < ;’—g . (6.25) implies

cglesT|PPo ds

o ds ’
SUP/XB(t) < e Fe(T, 2—,3) < WF (7, %)7

t<rt

where constant cg is independent of 7,3, €, . So proof of first part of (6.17) is
completed. The other part can be proved in a similar way, so we skip it. [ ]

Lemma 6.3 Ifr € (1,2), [|PSllromwrr (o)) + 128 VPG|
w, o0 and ¢ is a constant independent of €. Moreover, if w < 1, then ||p;||L,r(Q£,T) <ec.
Proof: We define, for 2 < Gy € N,

{Bl% ={(t,x) € Q7"+ P <95,

By={(t,x) € Q" : 38y < S < $} if2+B <PeEN.

Lr(0sT) < ¢, where a =

A5, Lemmas 6.1-6.2, and Hélder inequality imply

€T / € €T — e\ (|T/2
||VP0| Lr(Q;vT) S H AO(S ) VPOHLZ(Q?T)HAO 1(5 )HL/r/(2—r)(Q?T)
., 00 2;7”
< 01(/ § Ay (S9)| 5 Z XBﬁ) < ¢y (indep. of €). (6.26)
o B=1+f0

Similar argument will give ||VP5]||LT(Q;,T) T 2amwo IZEVPLl r ey < ¢ By
boundary condition A2, ||P[l. qer) < ¢, @ = w,0. By Lemma 5.1, (2.8), and
f
w <1, [|p§, - HeP(;”Lr(Q;;LT) < [|€0s, (PG, — HePé)HLr(Q;LT) < c So ||p(€x||LT(Q:;LT) is
bounded.
Lemma 6.4 Forr € [1,00) and sufficiently small ¢,
||528_(SS6 8_6Ae||L7‘((§’T)XQ;) + ||(528_68e a_(sAGHLT(((S’T)XQ;L) < C(Sl/r7 (6.27)

where c is independent of €,5. See §4 for notation 07°.
Proof: Note ((t,z) = fmm((ttgs’T)é 070 (A — A(Pyc))(r,x)dr € L*(0,T;U) by

max

A2-3 and Lemma 6.1. Take ¢ above in (6.2) to get, by Fubini’s theorem, A2, and
Lemma 6.1,

T T
/ / 670709 OO A (T, ) + / ¢°6%0 050 A (T, )
8% §Jas,
— [ easiocs [ s
Q;,T Q;,LT
T T
+ / / D%07°8 00 A(Py..) + / $6%07°5°07° A(Py ) < 0,
6JQ5 8 JQ8,

where ¢ is independent of €,d. So we prove (6.27) for r = 1 case. (6.27) for r > 1
case follows directly because A€, S¢ are bounded and (6.27) for » = 1 holds. |
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Lemma 6.5 A subsequence of I1.(A

€ Q;) converges to A* in L2(QT) and pointwise.

Proof: This is due to A6,10, Lemmas 5.1, 6.1-6.4, and compactness principle. [l

Lemma 6.6 s¢,p¢,pS (o = w,0) satisfy, for almost all x € Qe,

$Ors — Oy - (kIQ‘“‘Q(@y 2 M(5) + < )0y (p° — GE))) =0, (6.28)
Dy + (KI27 2 (A7 — D Ao )) (6.29)
— 04S¢ — Oy g - (KIZ7 Ay (59 Dy (pw - G) (6.30)
$05° — Dyay - (KIZ7 2N (5%)0y 0, (P — GE)) = (6.31)

in L2(0,T; H-Y(Y,H)).
Proof: Let ¢ € L2(0,T; C5°(Y,H)). For z € Q,y € R2, we define

é(t,l',y) = {é(t@’xi}’) for ye EYm+€€(‘%),
0 elsewhere.

Then we plug ((t,z) = Xs(ymﬂ)(ic)é(t,x,:i) for j € Z? into (6.4). Since supp ( C
(0,T) x e(Yin + j) x [0, H],

T ,H
/ / / 6°0,5°C + kT2 (Ao (s)V (p° — G5) + VM(5)) V¢ = 0.
(Yo +3)

Since & € (Y, + j), £°(Z) = €j. Changing variable y = i_e:(i) gives

T
/ GOTEC 4 KI22(Dy 0y M(F) + Ao(F)0, 00 (F — T2))DyuasC = 0, (6.32)
0 YWI;I

for almost all # € €(Y,, +j),7 € Z2. Actually, by Definition 5.1, (6.32) holds for
Z € QF ie., (6.28). (6.29-6.31) can be proved in a similar way. [ |

Remark 6.2 By Lemmas 5.1, 6.5, if we define S¢ = Y~ 1(A~H (I (A°
= {Tl(Al(A*)) if A* < A(00),

1 if A* = A(c0),
Lemma 6.7 There is a r € (1,2) and a subsequence of {S°¢, s, S§, s§, ¢, k¢, PS,
pS,, o = w, o} such that, as e — 0,

a:))) and

then 0 < 8¢, 5 < 1.

Xo: PS> Xy, (y) Palt, x) where Py € L'(0,T; W7 (), Pa = Py o in T,
Xo: VPE 2 Xy, (y)(V P + 0y P (t,2,y)) where Py € LT(QT; L1, (V4)),
Xa: 5§ 2 8y € LAY L2,,.(Yy)),

per
S¢ — S strongly in L*(QT) and pointwise,
2
Xos S = Xy, (y)S(t,x) strongly,

Xae 5§ 2 s € L2(; L2, (Yy)) strongly,

per

PS5 — po  weakly in L™(QT; W (Y,,)).




14  Tall Block Models

Proof: By Lemma 5.1 and Lemma 6.3, II. PS¢ is bounded in L"(0,7; W1 (2)). So
a subsequence of II.PS converges weakly to limit P, € L"(0,7;Wh"(Q)). Since
I[P, = P, inT'y, P, = P4 in I's. Rest of proof are due to A2-4,6,10, Lemmas
6.1, 6.3, 6.5, and [3]. |

Lemma 6.8 s¢ converges to s in L?(QL) if 0 < w < 1.

Proof of this lemma is lengthy, and will be postponed untill the last five sections.
Lemma 6.9 If w = 1, then p, — py, = v(8), P, — Py, = Y(95), and po(t,z,y) =
P,(t,x) for x € Q,y € Yy, o« = w,0. If w < 1, then v(s) = P, — P, = Y(S) and
palt,z,y) = Py(t,x) forx € Quy €Y,,, a =w,o.

Proof: First we consider w = 1 case. Note 0 < S < 1, s; < s < s, by Egoroft’s
theorem [25] and Lemmas 6.1-6.2, 6.7-6.8. Since pS — pS, = v(s€), we get p, — Py =
v(s) by Lemmas 6.7-6.8. Similarly, one can derive P,— P, = T(S). By Lemmas 5.1,
6.3 and (2.8), (II.PS)|a:. —pg € L"(QT; Wy (Yy)) for 1 < 7 < 2. So, a subsequence
of (IL.PS)|q: — pg, converges weakly to Xy, (y)Pa(t,z) — po € L"(Q7; Wy (Vo))
by Lemma 6.7. So, pa(t,z,y) = P,(t,x) for y € 9Y,,. Results for ww < 1 case can
be obtained by similar argument as above, so we skip it. [ |

Now we consider the limit model of (2.1-2.13) as € — 0. Plug into (6.1) and (6.6)
a test function n = ((t,z) + en(t,z, L) where ¢ € C5°(Q7), 7 € C5°(QT;CLe.(Y))
to obtain

0= / B S(,C + edyi)) + KA (S)V(PS — GS)(VE + edoi) + 0,1)
Qé,T
f

o,
o,

By A2 and Lemma 6.7, KA, (S¢) converges to K*A,,(S) in L"(QT),r < oo strongly.
Passing to two-scale limit, we get, by A2-4, Lemmas 6.3-6.9, Theorem 2.28 of [2],
Theorem 1.8 of [3], and [8, 10],

0750+ €0u) + KTET N () V (DS, — G5,) (VE A+ € + Oy)

€,
m

<55(C + ) (0) + / 6°55(C + i) (0).

€ €
f m

/ 3*S9,C + K*Ap(S)(V Py + 8y Puy1 — VGoy)(VE + 8y7)
ef

= [ ool Foni- [ osio - [ ol

Qs Om
where
kA (8)03s(Py — Gy) if0<w <1,
Foo =9 kAi(8)0py (P — Go)  if w=1, (6.33)
An L2 function if w > 1.

Apply Green’s theorem in ¢ variable to get

- / 3*0,8 ¢ — K*Ay(S)(V Py + 0y Pu1 — VGoy)(VE + 0,1)
of
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= [ 0 ¢ Fronit / B*(S(0) = So)C(0) + [ 6(s(0) — 50)C(0).

or Qs Qm

So we have, in Q7
(S(0) — So) / B dy + / 6(5(0) — s0)dy = 0, (6.34)
Y, Yo
and the choice of /) = 0 gives, in Q7

/ S dyd S +V [ K*Au(S)(VPy + 8y Pus — VGu)
Yy Yy

Yo

The choice of f = 0 gives, by A2-3 and Lemma 6.7,

92Py1 =0 in Qf
¥ ! )
{ (0:Py + 0yPu1) - vy =0 on §Yp, (6.36)

where v, is the unit vector outward normal to 0Y,,. Let €; be the unit vector in
jth direction. We denote by Z the tensor whose (7, j) component is 0y, /0y;, where
@; is a periodic solution in Y of the auxiliary problem

{Aygoj =0 in Yy,

—

Oypj - Vy = —€5 -1y on OYp,.

P, 1 of (6.36) is given by the product Py 1 = Zj ©j(y)0z,; Pw. So (6.35) becomes

-1
D0,S 4+ V- (KA, (S)V(Py, — Gy)) = m / (PO + Opy Fr)dy, (6.37)
ml JYm
where ¢ = ﬁ fo ®*dy and K is a diagonal matrix satisfying
K~ Yy | K™
Ky =Kp=—— [ (I+E@W)dy, Ks3="—F—.
Yonl Jy, Yo

Proceeding as the proof of (6.37), we obtain, by (6.2),
1
008 +V - (KA(S)V(P = Go) = g [ (003 =0, 7). (639)
m Yo

where

Fo =9 kXo(8)02,(po — Go)  if w =1, (6.39)

{ EXo(8)025(Py — Go) if0<w <1,
An L? function if w>1.
Matrix sources for 0 < w < 1 case is clear from (6.33), (6.39), and Lemma 6.9.

Next we consider the matrix source terms for @ > 1 cases.
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6.1. For w =1 case

By (6.30) of Lemma 6.6, we have, for any n € L2(QT; H}(Y,,)),
[ oot | 50,0, - G0y =0
o o
As € — 0, by Lemmas 6.7-6.8, one obtains
$Ors m+ / kAo (8)0y 2y (Do — Go)0y,zsn = 0. (6.40)
Qon or
In a similar way, we obtain, by (6.31),

/ P0s n — / kA (8)0y zs (D — Guw) 0y zsm = 0. (6.41)
or. or.
By (6.37-6.41) and Lemmas 6.7-6.9, it is easy to show Theorem 4.1.

6.2. For w > 1 case
By (6.30) of Lemma 6.6, we have, for any n € L2(QT; H}(Y,,)),
[ oo [ AT A0, Co)On =0,
on’ e
As € — 0, by Lemmas 6.7-6.8, one obtains
$Ors m + / Fr0zm = 0.
on o

So we get ¢p0is — 0y, Fx = 0. In a similar way, we obtain ¢dis + 0z, F,, = 0.
Therefore we prove Theorem 4.3.
Rest of this work is to prove Lemma 6.8.

7. Convergence of s¢

Remark 7.3 Define
Ge = {11_1(.,41_1(1'[6(./46

o)) i TLA® < A(cc),

Sp Zf HGAG = A(OO),
o [ ATA) A <o)
s if A* = A(c0).

See Lemma 6.5 for A*. By Lemma 6.7, A1,3, Theorem 2.28 of [2], and [3, 8, 10],
it is easy to see that

MG 20,7171 (2)) are bounded independently of e,
M(Gela: ) — M(G)  strongly in L*(Q},), (7.1)
M(Gelas ) — M(s°) € L2(QT; Hi (Vo).




Tall Block Models 17

Assume that s, p% i = 1,2 are two solutions of (6.28-6.29), and ¢, n are smooth
functions satisfying

C(T) =0, Clay, x[0,1] = Nlov,, x[0,H] = OrsClasef0,H} = OrsMzsefo,my = 0. (7.2)

Let x € Q0 N Q2. By subtracting one solution from the other and integration by
parts, we obtain

/YH’T (STI - 872) (¢at< + Flay,zg(kI?w_Qay,wz,C) - any,:L’3C - ‘7:387;,11?3 77)

m

+ / T = 52) (0w KZZ7 2 AGT) Oy 00 + Ao (57)0y,00 ) = Fa+ Fs, (7.3)
vH

m

where
MED)-M(G2) ey 4 e
flzu—&-{ﬁ if s 7 52, (7.4)
0 otherwise,
EOo (G =2 G2NTZT 20,0, 02 =G) oo 4 =5
2 = 5€1 —sg€2 e lf s # 5 2’ (75)
0 otherwise,
Ea(51)=Xa (5%2))I27 720, o, (p°2 — G2 N —
Fy= { Mo o R et i 5, (7.6)
0 otherwise,
Fozp [, T 50,0, (T220,2,0) .7

m

Fs = /y,ggvT €70, ((M(Fm) - M(%D kayc)

+ /Y o =29, ((IT,, P=

-y / X (57) 0,y (GT — G2) g
y,i5T

ac{w,o}

[ TG0, (@F -G~ [ G )00, (7.8)
v, Y

le — HE2P€2

ai2) (BAGT)0,n + k)\o(sTl)ByQ))

Define Z;lvl = {C : C € Hl(Y’ITI]:I’T) N Loo(ovTv Hl(Y7nH))7C‘8K,L><[O,H] = wsqw?,:O,H =

¢(0) = 0}. We consider the following auxiliary problem for fixed p:

Lemma 7.1 Let Fp, F3 € L>=(V,2'T) and 0 < dig < F1 <dig < o0. For (fi1,f2) €

LA(YETY x L2(YET), there is a unique (¢,n) € Uy x L2(0,T; HY(Y,H)) such that
_¢6t< + flay,a:g (kIgw_zay,IBC) - -7:2ay,z3< - -7:36y,m377 = f17 (79)
Oy,ws (KZZZ 2 (Ay,25M + Aoy 2,C)) = fo. (7.10)

Moreover,
Sup | 2710y 0, ()| 2 (vary + N 0y a1l + 14210y o (BT27 20y 0, Ol | oy 1.7
i gt Y, T3 L2(Y,H) € y,x37] 18 |Yy,z3 € Y, T3 L2(vIT)

< (duo, (el + 13D /F 2 ey ) | LALFY + 152l gagysr)- (7.11)
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Proof: This is proved by following the argument of Lemma 5.1 [29]. |

Finally we give the proof of Lemma 6.8.
Proof: For z € QNO%2, we take f1 = M(s) —M(s%) in (7.9) and fo = pr —p
in (7.10) to obtain solution (¢*, n*) for each u by (7.4-7.6), Remark 7.3, and Lemma
7.1. After substitution ¢ — T — ¢ for the solution (¢*,n*), we plug it into (7.3) to
obtain

/HT(S?—st)(M(sTI)—M@Tz)H/HT BT -5 = Fat . (7.12)
o |

Yo

By Lemmas 6.1, 7.1 and [13, 15, 26, 27], we see 1) F4 is bounded by c¢,/z, where
¢ is a constant independent of u, €1, €a; and 2) For fixed p, F5 converges to 0 as
€1, €2 tend to 0. So it is not difficult to show that M(s€2) is a Cauchy sequence in
L?(QT), which implies s is a Cauchy sequence in L?(QT ) as well. [ |
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