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Two-phase, incompressible, immiscible flow in fractured media with tall matrix blocks
is concerned. Suppose ε denotes horizontal size ratio of matrix blocks to whole medium,
and suppose the horizontal widths of the fracture planes and matrix blocks are in same
order. As ε goes to 0, microscopic model for the two-phase flow problem converges to
1) a dual-porosity model if permeability ratio of matrix blocks to fracture planes is of
order ε2; 2) a single-porosity model for fracture flow if the ratio is smaller than order ε2;
3) another type of single-porosity model if the ratio is greater than order ε2.
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1. Introduction

Homogenization for two-phase, incompressible, immiscible flow in fractured media

with tall matrix blocks is concerned. Within a fractured medium there is an in-

terconnected system of fracture planes dividing the porous rock into a collection

of matrix blocks. The fracture planes, while very thin, form paths of high perme-

ability. Most of the fluids reside in matrix blocks, where they move very slow. Let

ε be the horizontal size ratio of tall matrix blocks to the whole medium, and let

the horizontal widths of the fracture planes and matrix blocks be in same order.

In case permeability ratio of matrix blocks to fracture planes is of order ε2, micro-

scopic models for the two-phase flow problem converge to a dual-porosity model

as ε tends to 0. For the macroscopic model, a fractured medium is regarded as a

porous medium consisting of two superimposed continua, a continuous fracture sys-

tem and a discontinuous system of matrix blocks. Matrix blocks play the role of a

global source distributed over the entire medium. The immiscible two-phase flow is

formulated by conservation of mass principles for each continum plus sources from

tall matrix blocks. This problem was also considered by formal asymptotic expan-

sion in [8]. If the ratio is smaller than order ε2, the microscopic models approach

a single-porosity model for fracture flow. If the ratio is greater than order ε2, then

microscopic models tend to another type of single-porosity model. Our intention is

to prove the convergence of the microscopic models.
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2 Tall Block Models

Rest of the paper is organized as follows: In next section §2, we state microscopic

model for two-phase flow in fractured media. Notation and assumption will be given

in §3. Then in §4, we present our main results. Some known results needed for our

main results will be recalled in §5. Proof of main result is in §6. In §6, we need

to use the convergence of oil saturation in matrix blocks. The proof is lengthy and

tedious, so we present it in last section §7.

2. Microscopic Model for Tall Matrix Blocks

Let Y ≡ [0, 1]2 be a cell consisting of a matrix block domain Ym completely

surrounded by a connected fracture domain Yf . Xm(y) is the characteristic function

of Ym, extended Y -periodically to all of <2. Ω̃ ⊂ <2 contains two subdomains, Ω̃εf
and Ω̃εm. Ω̃εm ⊂ {x̃ ∈ Ω̃|Xm(x̃/ε) = 1}, Ω̃εf = Ω̃ \ Ω̃εm. Let Γ̃ε ≡ ∂Ω̃εf ∩ ∂Ω̃εm ∩ Ω̃.

Boundary of Ω̃ includes two parts Γ̃1 and Γ̃2 satisfying Γ̃1∪Γ̃2 = ∂Ω̃ and Γ̃◦1∩Γ̃◦2 = ∅.
Porous medium considered is a cylindrical aquifer Ω ≡ Ω̃ × [0, H] ⊂ <3 and is

assumed to be a two-connected domain with a periodic structure. It contains two

subdomains, Ωε
f ≡ Ω̃εf × [0, H] and Ωεm ≡ Ω̃εm × [0, H], representing the system of

fracture planes and matrix blocks respectively. Let Γε ≡ Γ̃ε × [0, H] be that part

of the interface of Ωε
m with Ωεf that is interior to Ω. Both Γ1 ≡ Γ̃1 × [0, H] and

Γ2 ≡ Γ̃2 × [0, H] are part of lateral boundary of Ω.

In fracture subdomain Ωε
f , porosity is denoted by Φε, absolute permeability by

Kε, saturation of oil phase by Sε, capillary pressure by Υ(Sε), relative permeability

by Λα(Sε), phase pressure by P εα, and a density-gravity term by Gεα for α = w, o.

φε, kε, sε, υ(sε), λα(sε), pεα, g
ε
α for α = w, o, in subdomain Ωε

m represent same quan-

tities as those denoted by upper case symbol in fracture subdomain. Conservation

of mass in each phase are written as, in Ωε
f , t > 0,

−Φε∂tS
ε −∇ · (KεΛw(Sε)∇(P εw −Gεw)) = 0, (2.1)

Φε∂tS
ε −∇ · (KεΛo(S

ε)∇(P εo −Gεo)) = 0, (2.2)

Υ(Sε) = P εo − P εw, (2.3)

in Ωεm, t > 0,

−φε∂tsε −∇ ·
(
kεI2$

ε λw(sε)∇(pεw −Gεw)
)

= 0, (2.4)

φε∂ts
ε −∇ ·

(
kεI2$

ε λo(s
ε)∇(pεo −Gεo)

)
= 0, (2.5)

υ(sε) = pεo − pεw, (2.6)

where Id
ε is a diagonal matrix defined by Id

ε ≡




εd 0 0
0 εd 0
0 0 1


. Phase fluxes and

pressures are required to be continuous on interface Γε, t > 0, α = w, o,

KεΛα(Sε)∇(P εα −Gεα) · ~νε = kεI2$
ε λα(sε)∇(pεα −Gεα) · ~νε, (2.7)

P εα = pεα, (2.8)
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where ~νε is the unit vector normal to Γε. Boundary conditions are, for α = w, o,

KεΛα(Sε)∇(P εα −Gεα) · ~n = 0 on Γ1, (2.9)

KεΛα(Sε)∂x3
(P εα −Gεα)|x3=0,H = kελα(sε)∂x3

(pεα −Gεα)|x3=0,H = 0, (2.10)

P εα = Pb,α on Γ2, (2.11)

where ~n is the unit vector outer normal to Γ1. Initial conditions are

Sε(0, x) = Sε0(x) in Ωεf , (2.12)

sε(0, x) = sε0(x) in Ωεm. (2.13)

3. Notation and Assumption

For any x ∈ <3, x = (x̃, x3) where x̃ ∈ <2. Ω̃(2ε) ≡ {x̃ ∈ Ω̃ : dist(x̃, ∂Ω̃) > 2ε},
Ω̃εm ≡ {x̃ : x̃ ∈ ε(Ym + j) ⊂ Ω̃(2ε) for j ∈ Z2}, Ω̃εf ≡ Ω̃ \ Ω̃εm, and Ω̃ε ≡ {z :

z ∈ ε(Y + j), ε(Ym + j) ⊂ Ω̃(2ε) for j ∈ Z2}. Ωε ≡ Ω̃ε × [0, H], Ωεi ≡ Ω̃εi × [0, H],

Y Hm ≡ Ym× [0, H], Q ≡ Ω×Y , Qεm ≡ Ωε×Ym, Qi ≡ Ω×Yi, i = f,m. Bt ≡ (0, t)×B
for B = Y Hm ,Γε,Q,Qεm,Ω,Ωεi ,Qi i = f,m.

<+
0 ≡ <+ ∪ {0}. Time difference is defined to be ∂hψ(t) ≡ ψ(t+h)−ψ(t)

h . For a

set B, XB is a characteristic function of B. ψ(t, x, y) ∈ Lr(ΩT ;Lrper(Y )), 1 < r <∞,

coincides with a function in Lr(QT ) extended by Y -periodicity in y to the whole

of <2. For B = Yf , Ym, we define Lr(ΩT ;Lrper(B)) ≡ {ψ ∈ Lr(ΩT ;Lrper(Y )) :

ψ(t, x, y) = 0 if y ∈ Y \ B}. W i,r
0 (Ω) ≡ {ψ ∈ W i,r(Ω) : ψ|Γ2

= 0} if i ∈ N and

r > 1, U ≡ W1,2
0 (Ω), U2 ≡ U × U , dual X ≡ dual space of X, sl (resp. 1 − sr) is

residual matrix oil (resp. water) saturation. Lq,r(ΩT ) ≡ Lr(0, T ;Lq(Ω)).

If Υ : [0, 1) → <+
0 (resp. υ : [sl, sr) → <+

0 ) is onto and strictly increasing,

Υ−1 (resp. υ−1) denotes the inverse function of Υ (resp. υ). Then we define

J : [sl, sr)→ [0, 1) by J (z) ≡ Υ−1(υ(z)), and denote by J −1 the inverse function

of J .

Pb,c ≡ Pb,o − Pb,w, Sb ≡ Υ−1(Pb,c), Λ ≡ Λw + Λo, λ ≡ λw + λo,





R(z) ≡
∫ z

0
ΛwΛo

Λ
dΥ
dS (ξ)dξ for z ∈ [0, 1),

A(z) ≡
∫ z

0

√
ΛwΛo

Λ (Υ−1(ξ))dξ for z ∈ [0,∞),

M(z) ≡
∫ z
sl
λwλo
λ

dυ
ds (ξ)dξ for z ∈ [sl, sr).

(3.1)

ϑ ∈ (0, 1/8) is a number such that R′ is increasing (resp. decreasing) in (0, ϑ) (resp.

(1− ϑ, 1)).

Next let us assume the following conditions: For α = w, o,

A1. Γ2 6= ∅, Ym ⊂ <2 is a bounded smooth domain, and Ω ⊂ <3 is open, bounded,

and connected with Lipschitz boundary,

A2. Kε, Gεα(x3) ∈ W 1,∞(Ω), ∂tPb,α ∈ L2(0, T ;H1(Ω)), Pb,α ∈ C(0, T ;C1,d1(Ω)),

Sε0, s
ε
0 ∈ H1(Ω) ∩ C0,d2(Ω) for d1,d2 ∈ (0, 1),
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A3. Kε, kε,Λ, λ ∈ [d3,d4], Sb, S
ε
0,J (sε0) ∈ (d5, 1− d5) and d5 ∈ (0, 1),

A4. φε = φ(xε ), kε = k(xε ), where φ, k are smooth Y -periodic functions,

A5. Λw, λw (resp. Λo, λo) : [0, 1] → [0, 1] are continuous and decreasing (resp.

increasing), Λw(1− z) ∝ zd6 ,Λo(z) ∝ zd7 for z ∈ (0, ϑ), Λα
Λ (J (z)) = λα

λ (z),

A6. Υ : [0, 1)→ <+
0 (υ : [sl, sr)→ <+

0 ) is onto, increasing, and a locally Lipschitz

continuous function, and inf
z∈[0,1)

dΥ
dS (z) > 0,

dΥ
dS (J (z))
dυ
ds (z)

,Φε, φε ∈ [d8,d9] for z ∈
[sl, sr],

d9

d8
∼ 1,

A7. Λ
3/2
o (z) ≤

∫ 2z

z
(A(Υ(2z))−A(Υ(ξ)))dξ for z ∈ (0, ϑ) and

Λ
3/2
w (1− z) ≤

∫ 1−z
1−2z

(A(Υ(ξ))−A(Υ(1− 2z)))dξ for z ∈ (0, ϑ),

A8. |Λα(z1)− Λα(z2)| ≤ d10

√
(R(z1)−R(z2))(z1 − z2) for any z1, z2 ∈ [0, 1],

A9. max
z∈[0,1]

|Λ(z)− 1|+ max
z∈[sl,sr ]

|λ(z)− 1| ≤ d11 (d11 only depends on Ω,Kε, kε),

A10. ΛoΛw(z) ≤ d12z|1− z|
√
R′(z), R′(z) ∝ zm|1− z|m1 for z ∈ (0, ϑ)∪ (1− ϑ, 1)

and m,m1 > 1,

where m,m1, di, i = 1, · · · , 12 are positive constants.

Remark 3.1 From A1, Ωεf is an open, bounded, and connected domain with Lip-

schitz boundary. In A2, the density-gravity terms Gεw, G
ε
o are functions depending

on x3 variable. Initial and boundary saturations are away from two end points 0

and 1 (see A3). A5 implies that relative permeability Λw (resp. λw) in the neigh-

bor of end point 1 has similar properties as Λo (resp. λo) in the neighbor of end

point 0. Relative phase mobilities in fractures and matrix blocks behave similar.

A6 requires that fracture capillary pressure increases as fast as capillary pressure of

matrix blocks. Usually, derivative of capillary pressure Υ′(z) (resp. υ′(z)) tends to

infinity as z → 0 or 1 (resp. sl or sr). A10 allows parabolic equations considered

are degenerate at end points 0 and 1, a characteristic of a porous medium equation.

Indeed, it also implies R′ ∈ L∞(0, 1). A7-8,10 are the restrictions on relative per-

meability and capillary pressure in fractures. Indeed, if d6,d7 (see A5) are large

enough (depending on capillary pressure), A7-8,10 hold. One may also note that

because of A5-10, Λo and R′ at the end point 0 have similar properties as Λw and

R′ at the end point 1.

4. Main Result

In this section, we present the limit models of (2.1–2.13) as ε → 0. Roughly

speaking, the limit models are fracture flow equations plus interior sources from

matrix blocks. The source terms depend on how fast the matrix permeability tends

to 0 as ε → 0. For 0 < $ < 1 case, matrix permeability tends to 0 very slow and

saturation variation in fracture system and in matrix blocks is almost simultaneous.
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So the limit model is a single-porosity model with sources from matrix blocks. For

$ = 1 case, saturation variation in fracture system and in matrix blocks is not

simultaneous and the limit model is a dual-porosity model. In this case, domain

acts as a porous medium consisting of two superimposed continua, a continuous

fracture system Ω and a discontinuous system of matrix blocks Qm. Primary flow

occurs in fracture system Ω, and each point x ∈ Ω is associated with a matrix

block Ym. Flow in matrix blocks plays the role of a global source in the whole

fracture system. The model includes two systems of equations, one for flow in

fracture system and the other for flow in matrix block system. The two systems

are coupled through nonlinear sources. For 1 < $ case, matrix permeability tends

to 0 so fast that matrix blocks play no roles in the limit model. The limit model

is a single-porosity model containing only fracture flow equations without matrix

sources.

4.1. For $ = 1 case

Let Ω ⊂ <3 be a fractured medium. Equations for fracture flow are, for x ∈
Ω, t > 0,

−Φ∂tS −∇ · (KΛw(S)∇(Pw −Gw)) = qw, (4.1)

Φ∂tS −∇ · (KΛo(S)∇(Po −Go)) = qo, (4.2)

Υ(S) = Po − Pw. (4.3)

Φ is porosity, K is permeability field, S is oil saturation, Υ(S) is capillary pressure

curve, Λα (α = w, o) is relative permeability curve of α-phase, Pα denotes phase

pressure, Gα is a function depending on density, gravity, and position, and qα is the

matrix-fracture source.

Above each point x ∈ Ω is suspended topologically a matrix block Ym ⊂ <2.

Equations for flow in a matrix block are, for x ∈ Ω, y ∈ Ym, t > 0,

−φ∂ts− ∂y,x3
· (kλw(s)∂y,x3

(pw −Gw)) = 0, (4.4)

φ∂ts− ∂y,x3
· (kλo(s)∂y,x3

(po −Go)) = 0, (4.5)

υ(s) = po − pw. (4.6)

Here functions s, pw, p0 are defined in space domain Qm and ∂y,x3
= (∂y1

, ∂y2
, ∂x3

).

Each lower case symbol denotes the quantity on Ym corresponding to that denoted

by an upper case symbol in the fracture system equations.

The matrix-fracture sources are given by, for x ∈ Ω, t > 0,

qα =
−1

|Ym|

∫

Ym

(σαφ∂ts− ∂x3
(kλα(s)∂x3

(pα −Gα))) dy, (4.7)

where σw = −1, σo = 1, and |Ym| is the volume of Ym. Boundary conditions are,

for t > 0, α = w, o,

KΛα(S)∇(Pα −Gα) · ~n = 0 for x ∈ Γ1, (4.8)
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KΛα(S)∂x3
(Pα −Gα)|x3=0,H = kλα(s)∂x3

(pα −Gα)|x3=0,H = 0, (4.9)

Pα = Pb,α for x ∈ Γ2, (4.10)

where ~n is the unit vector outward normal to Γ1. On interface, pressures are

continuous, that is, for t > 0, x ∈ Ω, y ∈ ∂Ym, α = w, o,

pα(t, x, y) = Pα(t, x). (4.11)

Initial conditions are

S(0, x) = S0(x) for x ∈ Ω, (4.12)

s(0, x, y) = s0(x) for x ∈ Ω, y ∈ Ym. (4.13)

Theorem 4.1 Under A1−10, a subsequence of solutions of the microscopic models

(2.1–2.13) converges in two-scale sense to a solution of (4.1–4.13) (see next section

for the definition of convergence in two-scale sense).

4.2. For 0 < $ < 1 case

Equations are, for x ∈ Ω, t > 0,

−Φ∂tS −∇ · (KΛw(S)∇(Pw −Gw)) = qw, (4.14)

Φ∂tS −∇ · (KΛo(S)∇(Po −Go)) = qo, (4.15)

Υ(S) = Po − Pw = υ(s). (4.16)

Φ, K, S, Υ(S), υ(s), Λα, Pα, Gα, and qα (α = w, o) are the same quantities as

those in $ = 1. The matrix-fracture sources are given by, for x ∈ Ω, t > 0,

qα =
−1

|Ym|

∫

Ym

(σαφ∂ts− ∂x3
(kλα(s)∂x3

(Pα −Gα))) dy, (4.17)

where σw = −1, σo = 1, and |Ym| is the volume of Ym. Boundary conditions are,

for t > 0, α = w, o,

KΛα(S)∇(Pα −Gα) · ~n = 0 for x ∈ Γ1, (4.18)

KΛα(S)∂x3
(Pα −Gα)|x3=0,H = 0, (4.19)

Pα = Pb,α for x ∈ Γ2, (4.20)

where ~n is the unit vector outward normal to Γ1. Initial condition is

S(0, x) = S0(x) for x ∈ Ω. (4.21)

Theorem 4.2 Under A1−10, a subsequence of solutions of the microscopic models

(2.1–2.13) converges in two-scale sense to a solution of (4.14–4.21) (see next section

for the definition of convergence in two-scale sense).
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4.3. For $ > 1 case

Equations are, for x ∈ Ω, t > 0,

−Φ∂tS −∇ · (KΛw(S)∇(Pw −Gw)) = 0, (4.22)

Φ∂tS −∇ · (KΛo(S)∇(Po −Go)) = 0, (4.23)

Υ(S) = Po − Pw. (4.24)

Φ, K, S, Υ(S), υ(s), Λα, Pα, Gα, and qα (α = w, o) are the same quantities as

those in $ = 1. Boundary conditions are, for t > 0, α = w, o,

KΛα(S)∇(Pα −Gα) · ~n = 0 for x ∈ Γ1, (4.25)

KΛα(S)∂x3
(Pα −Gα)|x3=0,H = 0, (4.26)

Pα = Pb,α for x ∈ Γ2, (4.27)

where ~n is the unit vector outward normal to Γ1. Initial condition is

S(0, x) = S0(x) for x ∈ Ω. (4.28)

Theorem 4.3 Under A1−10, a subsequence of solutions of the microscopic models

(2.1–2.13) converges in two-scale sense to a solution of (4.22–4.28) (see next section

for the definition of convergence in two-scale sense).

5. Some Known Results

Lemma 5.1 [1] Let 1 ≤ r <∞ and A1 hold. There is a constant d13(Yf , r) and a

linear continuous extension operator Πε : W 1,r(Ωεf )∩L∞(Ωεf )→W 1,r(Ω)∩L∞(Ω)

such that if ϕ ∈W 1,r(Ωεf ) ∩ L∞(Ωεf ) and d14 ≤ ϕ ≤ d15, then





Πεϕ = ϕ in Ωεf almost everywhere,
‖Πεϕ‖W 1,r(Ω) ≤ d13‖ϕ‖W 1,r(Ωε

f
),

d14 ≤ Πεϕ ≤ d15.

Definition 5.1 For a given ε > 0 and 1 ≤ r <∞, we define a dilation operator “ ”

mapping a measurable function ϕ ∈ Lr(Ωε,Tm ) to a measurable function ϕ ∈ Lr(QTm)

by, for (t, x̃, x3, y) ∈ QTm,

ϕ(t, x̃, x3, y) ≡
{
ϕ(t, `ε(x̃) + εy, x3) if (`ε(x̃) + εy, x3) ∈ Ωεm,
0 elsewhere,

where `ε(x̃) ≡ εj if x̃ ∈ ε(Y + j), j ∈ Z2, denoting the lattice translation point of

ε-cell domain containing x̃.

Definition 5.2 A sequence of functions ϕε in Lr(ΩT ), 1 < r < ∞, is said to two-

scale converge to ϕ in Lr(ΩT ;Lrper(Y )) if, for any function ψ ∈ C∞0 (ΩT ;C∞per(Y )),

we have

lim
ε→0

∫

ΩT
ϕε(t, x)ψ(t, x, x̃/ε)dxdt =

∫

QT
ϕ(t, x, y)ψ(t, x, y)dydxdt,



8 Tall Block Models

denoted by ϕε
2
⇀ ϕ ∈ Lr(ΩT ;Lrper(Y )). Besides limε→0 ‖ϕε‖Lr(ΩT ) = ‖ϕ‖Lr(QT ),

ϕε is said to two-scale converge to ϕ in Lr(ΩT ;Lrper(Y )) strongly, and denoted by

ϕε
2→ ϕ ∈ Lr(ΩT ;Lrper(Y )) strongly.

6. Proof of Main Result

A1-10 are assumed from now on. Let us derive a weak formulation of (2.1–2.6).

Multiplying (2.1) and (2.4) by η as well as (2.2) and (2.5) by ζ, integrating over

ΩT , and employing boundary conditions (2.7) and (2.9), we obtain

−
∫

Ωε,T
f

Φε∂tS
εη +

∫

Ωε,T
f

KεΛw(Sε)∇(P εw −Gεw)∇η

−
∫

Ωε,Tm

φε∂ts
εη +

∫

Ωε,Tm

kεI2$
ε λw(sε)∇(pεw −Gεw)∇η = 0, (6.1)

∫

Ωε,T
f

Φε∂tS
εζ +

∫

Ωε,T
f

KεΛo(S
ε)∇(P εo −Gεo)∇ζ

+

∫

Ωε,Tm

φε∂ts
εζ +

∫

Ωε,Tm

kεI2$
ε λo(s

ε)∇(pεo −Gεo)∇ζ = 0, (6.2)

for smooth functions η, ζ ∈ L2(0, T ;U). Next we define global pressure [11] as




P ε ≡ 1

2

(
P εo + P εw +

∫ Υ(Sε)

0

(
Λo
Λ (Υ−1(ξ))− Λw

Λ (Υ−1(ξ))
)
dξ
)
,

pε ≡ 1
2

(
pεo + pεw +

∫ υ(sε)

0

(
λo
λ (υ−1(ξ))− λw

λ (υ−1(ξ))
)
dξ
)
,

(6.3)

Pb is defined as P ε in (6.3)1 except replacing P εo , P
ε
w,Υ(Sε) by P εb,o, P

ε
b,w, Pb,c respec-

tively. Then ∇P ε = Λw
Λ (Sε)∇P εw + Λo

Λ (Sε)∇P εo and ∇pε = λw
λ (sε)∇pεw + λo

λ (sε)∇pεo
by (2.3) and (2.6). (6.2) can be rewritten as

∫

Ωε,T
f

Φε∂tS
εζ +

∫

Ωε,T
f

Kε
(
Λo(S

ε)∇(P ε −Gεo) +∇R(Sε)
)
∇ζ

+

∫

Ωε,Tm

φε∂ts
εζ +

∫

Ωε,Tm

kεI2$
ε

(
λo(s

ε)∇(pε −Gεo) +∇M(sε)
)
∇ζ = 0. (6.4)

See §3 for R,M. Summing (6.1) and (6.2), we obtain, for η ∈ L2(0, T ;U),

∫

Ωε,T
f

Kε
(
Λ(Sε)∇(P ε −Gεo)− Λw(Sε)∇(Gεw −Gεo)

)
∇η

+

∫

Ωε,Tm

kεI2$
ε

(
λ(sε)∇(pε −Gεo)− λw(sε)∇(Gεw −Gεo)

)
∇η = 0. (6.5)

For ζ ∈ L2(0, T ;U) ∩H1(ΩT ), ζ(T ) = 0,

∫

Ωε,T
f

Φε∂tS
εζ + Φε(Sε − Sε0)∂tζ = −

∫

Ωε,Tm

φε∂ts
εζ + φε(sε − sε0)∂tζ. (6.6)



Tall Block Models 9

(6.1–6.6), (2.3), (2.6), (2.8), (2.11) form a weak formulation of (2.1–2.13).

Next we consider a regularized problem. Let v be a small number satisfying

0 < v < d5

4 . Extend Λα (α = w, o) constantly and continuously to < and define

Λα,v,Λv, λα,v, λv as

{
Λα,v(z) ≡ Λα

(
0.5( z−v

0.5−v )
)
, Λv ≡ Λw,v + Λo,v,

λv(z) ≡ Λv(J (z)), λα,v(z) = Λα,v(J (z)).
(6.7)

By A2-3, there exist smooth functions Sε0,v, Sb,v, s
ε
0,v such that

Sε0,v, Sb,v,J (sε0,v) ∈ (d5/2, 1− d5/2), Sε0,v|Γ2
= Sb,v|Γ2

(t = 0), (6.8)
{
Sε0,v, Sb,v, s

ε
0,v → Sε0, Sb, s

ε
0 in L2(0, T ;H1(Ω)),

∂tΥ(Sb,v)→ ∂t(Pb,o − Pb,w) in L1(ΩT ),
as v→ 0. (6.9)

The regularized problem is: Find {SεvXΩε
f

+ sεvXΩεm , P
ε
vXΩε

f
+ pεvXΩεm} satisfying

Φε∂tS
ε
vXΩε

f
+ φε∂ts

ε
vXΩεm ∈ dual L2(0, T ;U), (6.10)

v ≤ SεvXΩε
f

+ J (sεv)XΩεm ≤ 1− v, (6.11)

R(SεvXΩε
f

+ J (sεv)XΩεm)−R(Sεb), P
ε
vXΩε

f
+ pεvXΩεm − Pb ∈ L2(0, T ;U), (6.12)

∫

Ωε,T
f

Φε∂tS
ε
vζ +

∫

Ωε,T
f

Kε
(
Λo,v(Sεv)∇(P εv −Gεo) +∇R(Sεv)

)
∇ζ

+

∫

Ωε,Tm

φε∂ts
ε
vζ +

∫

Ωε,Tm

kεI2$
ε

(
λo,v(sεv)∇(pεv −Gεo) +∇M(sεv)

)
∇ζ = 0, (6.13)

∫

Ωε,T
f

Kε
(
Λv(Sεv)∇(P εv −Gεo)− Λw,v(Sεv)∇(Gεw −Gεo)

)
∇η

+

∫

Ωε,Tm

kεI2$
ε

(
λv(sεv)∇(pεv −Gεo)− λw,v(sεv)∇(Gεw −Gεo)

)
∇η = 0, (6.14)

SεvXΩε
f
(0, x) + sεvXΩεm(0, x) = Sε0,vXΩε

f
+ sε0,vXΩεm , (6.15)

for any ζ, η ∈ L2(0, T ;U). It is easy to see that (6.13) is a nondegenerate (depending

on v) parabolic equation, and (6.13–6.14) imply, if Sεw,v ≡ 1− Sεv,

0 =

∫

Ωε,T
f

Φε∂tS
ε
w,vζ +Kε

(
Λw,v(1− Sεw,v)∇(P εv −Gεw)−∇R(1− Sεw,v)

)
∇ζ

+

∫

Ωε,Tm

φε∂ts
ε
w,vζ + kεI2$

ε

(
λw,v(1− sεw,v)∇(pεv −Gεw)−∇M(1− sεw,v)

)
∇ζ.(6.16)

By [4, 5, 6, 9, 12, 20, 22, 29], it is known

Lemma 6.1 Under (6.8–6.9), there exist functions Sεv, P
ε
v in Ωεf and sεv, p

ε
v in Ωεm

satisfying (6.10–6.15) for each v, ε as well as there exist functions Sε, P ε, P εα in

Ωεf and sε, pε, pεα in Ωεm for α = w, o satisfying (6.1–6.6), (2.3), and (2.6–2.11).

Šεv ≡ SεvXΩε
f

+ J (sεv)XΩεm is in L2(0, T ;H1(Ω)) and is Hölder continuous in Ω
T

,
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and, as v→ 0,

{
Šεv → Šε ≡ SεXΩε

f
+ J (sε)XΩεm pointwise,

R(Šεv), P εvXΩε
f

+ pεvXΩεm → R(Šε), P εXΩε
f

+ pεXΩεm in L2(0, T ;H1(Ω)).

Moreover, 0 < Sε < 1, sl < sε < sr, and

∑

α=w,o

(
‖
√

Λα(Sε)∇P εα‖L2(Ωε,T
f

) + ‖I$ε
√
λα(sε)∇pεα‖L2(Ωε,Tm )

)

+‖ |∇P ε|+ |∇R(Sε)|+ |∇Aε| ‖L2(Ωε,T
f

)

+‖ |I$ε ∇pε|+ |I$ε ∇M(sε)|+ |I$ε ∇Aε| ‖L2(Ωε,Tm ) ≤ c,

where Aε ≡
{
A(Υ(Sε)) if x ∈ Ωεf ,
A(υ(sε)) if x ∈ Ωεm.

and c is a constant independent of ε.

Lemma 6.2 For any β, τ satisfying 2 ≤ β0 ≤ β − 2 ∈ N, d5

β0
≤ ϑ, and τ ≤ T , the

following inequality holds:

sup
t≤τ

∣∣{x ∈ Ω : Šε(t) ≤ µ or 1− µ ≤ Šε(t)}
∣∣ ≤ c0|c0τ |β−β0

(β − β0)(β−β0)fβ
, (6.17)

where µ ≡ d5

2β
, lim
β→∞

fβ = 1, and c0 is a constant independent of τ, β, ε, µ.

Proof: Let us define Lµ,Kµ, K̂µ as





Lµ(z) ≡
{

1 if µ ≤ z ≤ 2µ,
0 elsewhere,

Kµ(z) ≡
∫ z
A(Υ(2µ))

Lµ(Υ−1(A−1(ξ)))dξ for z ∈ [0,A(∞)),

K̂µ(z) ≡
∫ z
A(Υ(2µ))

(Lµ Λo
Λ ) ◦ (Υ−1(A−1(ξ)))dξ for z ∈ [0,A(∞)).

By 2µ ≤ d5

2 and A2-3,5, we take ζ = Kµ(Aε) ∈ L2(0, T ;U) in (6.4) and η =

K̂µ(Aε) ∈ L2(0, T ;U) in (6.5) to obtain

∫

Ωε,τ
f

ΦεKµ(Aε)∂tSε +

∫

Ωε,τ
f

KεΛo(S
ε)Lµ(Sε)∇Υ(Sε)∇Aε

+

∫

Ωε,τm

φεKµ(Aε)∂tsε +

∫

Ωε,τm

kεI2$
ε Λo(u

ε)Lµ(uε)∇υ(sε)∇Aε

≤ c1
(∫

Ωε,τ
f

KεΛo(S
ε)Lµ(Sε)|∂x3

Aε|+
∫

Ωε,τm

kεΛo(u
ε)Lµ(uε)|∂x3

Aε|
)
, (6.18)

where uε ≡ J (sε) and constant c1 is independent of ε, µ. Suppose

∫
Kµ(Aε)

(
Φε∂tS

εXΩε,τ
f

+ φε∂ts
εXΩε,τm

)
≥ 0, (6.19)
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(6.18–6.19) imply

∫

Ωε,τ
f

KεΛo(S
ε)Lµ(Sε)|∂x3

Aε|+
∫

Ωε,τm

kεΛo(u
ε)Lµ(uε)|∂x3

Aε|

≤ c2
(∫

Ωε,τ
f

KεΛ3/2
o Lµ(Sε)

) 1
2
(∫

Ωε,τ
f

KεΛo(S
ε)Lµ(Sε)∂x3

Υ(Sε)∂x3
Aε
) 1

2

+c2

(∫

Ωε,τm

kεΛ3/2
o Lµ(uε)

) 1
2
(∫

Ωε,τm

kεΛo(u
ε)Lµ(uε)∂x3

υ(sε)∂x3
Aε
) 1

2

, (6.20)

where constant c2 is independent of ε, µ. A3 and (6.18–6.20) imply

∫
Kµ(Aε)

(
Φε∂tS

εXΩε,τ
f

+ φε∂ts
εXΩε,τm

)
≤ c3

∫

Ωτ
Λ3/2
o Lµ(Šε). (6.21)

Let us define

Z(Sε, sε, µ) ≡
{

Φε
∫ Sε

2µ
Kµ(A(Υ(ξ)))dξ in Ωε

f ,

φε
∫ sε
J−1(2µ)

Kµ(A(υ(ξ)))dξ in Ωε
m.

(6.21) implies ∫

Ωτ
∂tZ(Sε, sε, µ) ≤ c4

∫

Ωτ
Λ3/2
o Lµ(Šε). (6.22)

(6.22) and A6-7 yield that, if 0 ≤ t1 ≤ t2 ≤ T ,

∫ t2

t1

∫

Ω

∂tZ(Sε, sε, µ) ≤ c4
∫ t2

t1

∫

Ω

Z(Sε, sε, 2µ), (6.23)

where c4 is independent of t1, t2, µ, ε. Define

F ε(τ, µ) ≡ 1

Λo(µ)3/2
sup
t≤τ

∫

Ω

Z(Sε, sε, µ).

A5 and (6.23) imply that, for 0 ≤ t1 ≤ t2 ≤ T ,

F ε(t2, µ)−F ε(t1, µ) ≤ c5(t2 − t1)F ε(t2, 2µ),

where c5 is independent of t1, t2, µ, ε. By induction and A3, one obtains, for j ∈
N, jh ≤ T ,

F ε(jh, d5

2β
) ≤ (β − β0 + 1)j−1|c5h|β−β0F ε(jh, d5

2β0
). (6.24)

If j = β−β0

log(β−β0) and τ = jh in (6.24), then

F ε(τ, d5

2β
) ≤ |c5τ |β−β0

(β − β0)(β−β0)fβ
F ε(τ, d5

2β0
), (6.25)
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where fβ → 1 as β →∞. Define B(t) ≡ {x ∈ Ω : Šε(t, x) ≤ d5

2β
}. (6.25) implies

sup
t≤τ

∫
XB(t) ≤ c6F ε(τ,

d5

2β
) ≤ c6|c5τ |β−β0

(β − β0)(β−β0)fβ
F ε(τ, d5

2β0
),

where constant c6 is independent of τ, β, ε, µ. So proof of first part of (6.17) is

completed. The other part can be proved in a similar way, so we skip it.

Lemma 6.3 If r ∈ (1, 2), ‖P εα‖Lr(0,T ;W 1,r(Ωε
f
)) + ‖I$ε ∇pεα‖Lr(Ωε,Tm ) ≤ c, where α =

w, o and c is a constant independent of ε. Moreover, if $ ≤ 1, then ‖pεα‖Lr(Ωε,Tm ) ≤ c.
Proof: We define, for 2 ≤ β0 ∈ N,

{
B1+β0

≡ {(t, x) ∈ Ωε,Tf : d5

22+β0
≤ Sε},

Bβ ≡ {(t, x) ∈ Ωε,Tf : d5

2β+1 ≤ Sε < d5

2β
} if 2 + β0 ≤ β ∈ N.

A5, Lemmas 6.1-6.2, and Hölder inequality imply

‖∇P εo‖rLr(Ωε,T
f

)
≤ ‖
√

Λo(Sε) ∇P εo‖rL2(Ωε,T
f

)
‖Λ−1

o (Sε)‖r/2
Lr/(2−r)(Ωε,T

f
)

≤ c1
(∫

Ωε,T
f

|Λo(Sε)|
−r
2−r

∞∑

β=1+β0

XBβ
) 2−r

2

≤ c2 (indep. of ε). (6.26)

Similar argument will give ‖∇P εw‖Lr(Ωε,T
f

) +
∑
α=w,o ‖I$ε ∇pεα‖Lr(Ωε,Tm ) ≤ c. By

boundary condition A2, ‖P εα‖Lr(Ωε,T
f

) ≤ c, α = w, o. By Lemma 5.1, (2.8), and

$ ≤ 1, ‖pεα − ΠεP
ε
α‖Lr(Ωε,Tm ) ≤ ‖ε∂x1

(pεα − ΠεP
ε
α)‖Lr(Ωε,Tm ) ≤ c. So ‖pεα‖Lr(Ωε,Tm ) is

bounded.

Lemma 6.4 For r ∈ [1,∞) and sufficiently small δ,

‖δ2∂−δSε ∂−δAε‖Lr((δ,T )×Ωε
f
) + ‖δ2∂−δsε ∂−δAε‖Lr((δ,T )×Ωεm) ≤ cδ1/r, (6.27)

where c is independent of ε, δ. See §4 for notation ∂−δ.

Proof: Note ζ(t, x) ≡
∫min(t+δ,T )

max(t,δ)
δ ∂−δ

(
Aε − A(Pb,c)

)
(τ, x)dτ ∈ L2(0, T ;U) by

A2-3 and Lemma 6.1. Take ζ above in (6.2) to get, by Fubini’s theorem, A2, and

Lemma 6.1,

∫ T

δ

∫

Ωε
f

Φεδ2∂−δSε ∂−δAε(τ, x) +

∫ T

δ

∫

Ωεm

φεδ2∂−δsε∂−δAε(τ, x)

=

∫

Ωε,T
f

Φε∂tS
ε(t, x)ζ +

∫

Ωε,Tm

φε∂ts
ε(t, x)ζ

+

∫ T

δ

∫

Ωε
f

Φεδ2∂−δSε ∂−δA(Pb,c) +

∫ T

δ

∫

Ωεm

φεδ2∂−δsε∂−δA(Pb,c) ≤ cδ,

where c is independent of ε, δ. So we prove (6.27) for r = 1 case. (6.27) for r > 1

case follows directly because Aε, Šε are bounded and (6.27) for r = 1 holds.
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Lemma 6.5 A subsequence of Πε(Aε|Ωε
f
) converges to A∗ in L2(ΩT ) and pointwise.

Proof: This is due to A6,10, Lemmas 5.1, 6.1-6.4, and compactness principle.

Lemma 6.6 sε, pε, pεα (α = w, o) satisfy, for almost all x ∈ Ω̃ε,

φ∂tsε − ∂y,x3
·
(
kI2$−2

ε

(
∂y,x3

M(sε) + λo(sε)∂y,x3
(pε −Gεo)

))
= 0, (6.28)

∂y,x3
·
(
kI2$−2

ε

(
λ(sε)∂y,x3

pε −
∑

λα(sε)∂y,x3
Gεα
))

= 0, (6.29)

−φ∂tsε − ∂y,x3
·
(
kI2$−2

ε λw(sε)∂y,x3
(pεw −Gεw)

)
= 0, (6.30)

φ∂tsε − ∂y,x3
·
(
kI2$−2

ε λo(sε)∂y,x3
(pεo −Gεo)

)
= 0, (6.31)

in L2(0, T ;H−1(Y Hm )).

Proof: Let ζ̂ ∈ L2(0, T ;C∞0 (Y Hm )). For x ∈ Ω, y ∈ <2, we define

ζ̌(t, x, y) ≡
{
ζ̂(t, y−`

ε(x̃)
ε , x3) for y ∈ εYm + `ε(x̃),

0 elsewhere.

Then we plug ζ(t, x) ≡ Xε(Ym+j)(x̃)ζ̌(t, x, x̃) for j ∈ Z2 into (6.4). Since supp ζ ⊂
(0, T )× ε(Ym + j)× [0, H],

∫ T

0

∫ H

0

∫

ε(Ym+j)

φε∂ts
εζ + kεI2$

ε

(
λo(s

ε)∇(pε −Gεo) +∇M(sε)
)
∇ζ = 0.

Since x̃ ∈ ε(Ym + j), `ε(x̃) = εj. Changing variable y = x̃−`ε(x̃)
ε gives

∫ T

0

∫

Y Hm

φ∂tsεζ̂ + kI2$−2
ε

(
∂y,x3

M(sε) + λo(sε)∂y,x3
(pε −Gεo)

)
∂y,x3

ζ̂ = 0, (6.32)

for almost all x̃ ∈ ε(Ym + j), j ∈ Z2. Actually, by Definition 5.1, (6.32) holds for

x̃ ∈ Ω̃ε, i.e., (6.28). (6.29–6.31) can be proved in a similar way.

Remark 6.2 By Lemmas 5.1, 6.5, if we define Sε ≡ Υ−1(A−1(Πε(Aε|Ωε
f
))) and

S ≡
{

Υ−1(A−1(A∗)) if A∗ < A(∞),
1 if A∗ = A(∞),

then 0 ≤ Sε, S ≤ 1.

Lemma 6.7 There is a r ∈ (1, 2) and a subsequence of {Sε, sε, Sε0, sε0, φε, kε, P εα,

pεα, α = w, o} such that, as ε→ 0,





XΩε
f
P εα

2
⇀ XYf (y)Pα(t, x) where Pα ∈ Lr(0, T ;W 1,r(Ω)), Pα = Pb,α in Γ2,

XΩε
f
∇P εα

2
⇀ XYf (y)(∇Pα + ∂yPα,1(t, x, y)) where Pα,1 ∈ Lr(ΩT ;Lrper(Yf )),

XΩε
f
Sε0

2
⇀ S0 ∈ L2(Ω;L2

per(Yf )),

Sε → S strongly in L2(ΩT ) and pointwise,

XΩε
f
Sε

2→ XYf (y)S(t, x) strongly,

XΩεms
ε
0

2→ s0 ∈ L2(Ω;L2
per(Ym)) strongly,

pεα ⇀ pα weakly in Lr(ΩT ;W 1,r(Ym)).
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Proof: By Lemma 5.1 and Lemma 6.3, ΠεP
ε
α is bounded in Lr(0, T ;W 1,r(Ω)). So

a subsequence of ΠεP
ε
α converges weakly to limit Pα ∈ Lr(0, T ;W 1,r(Ω)). Since

ΠεP
ε
α = Pb,α in Γ2, Pα = Pb,α in Γ2. Rest of proof are due to A2-4,6,10, Lemmas

6.1, 6.3, 6.5, and [3].

Lemma 6.8 sε converges to s in L2(QTm) if 0 < $ ≤ 1.

Proof of this lemma is lengthy, and will be postponed untill the last five sections.

Lemma 6.9 If $ = 1, then po − pw = υ(s), Po − Pw = Υ(S), and pα(t, x, y) =

Pα(t, x) for x ∈ Ω, y ∈ ∂Ym, α = w, o. If $ < 1, then υ(s) = Po − Pw = Υ(S) and

pα(t, x, y) = Pα(t, x) for x ∈ Ω, y ∈ Ym, α = w, o.

Proof: First we consider $ = 1 case. Note 0 ≤ S < 1, sl ≤ s < sr by Egoroff’s

theorem [25] and Lemmas 6.1-6.2, 6.7-6.8. Since pεo − pεw = υ(sε), we get po − pw =

υ(s) by Lemmas 6.7-6.8. Similarly, one can derive Po−Pw = Υ(S). By Lemmas 5.1,

6.3 and (2.8), (ΠεP εα)|Ωεm−pεα ∈ Lr(ΩT ;W 1,r
0 (Ym)) for 1 < r < 2. So, a subsequence

of (ΠεP εα)|Ωεm − pεα converges weakly to XYm(y)Pα(t, x) − pα ∈ Lr(ΩT ;W 1,r
0 (Ym))

by Lemma 6.7. So, pα(t, x, y) = Pα(t, x) for y ∈ ∂Ym. Results for $ < 1 case can

be obtained by similar argument as above, so we skip it.

Now we consider the limit model of (2.1–2.13) as ε→ 0. Plug into (6.1) and (6.6)

a test function η = ζ̂(t, x) + εη̂(t, x, x̃ε ) where ζ̂ ∈ C∞0 (ΩT ), η̂ ∈ C∞0 (ΩT ;C∞per(Y ))

to obtain

0 =

∫

Ωε,T
f

ΦεSε(∂tζ̂ + ε∂tη̂) +KεΛw(Sε)∇(P εw −Gεw)(∇ζ̂ + ε∂xη̂ + ∂yη̂)

+

∫

Ωε,Tm

φεsε(∂tζ̂ + ε∂tη̂) + kεI2$
ε λw(sε)∇(pεw −Gεw)(∇ζ̂ + ε∂xη̂ + ∂yη̂)

+

∫

Ωε
f

ΦεSε0(ζ̂ + εη̂)(0) +

∫

Ωεm

φεsε0(ζ̂ + εη̂)(0).

By A2 and Lemma 6.7, KεΛw(Sε) converges toK∗Λw(S) in Lr(ΩT ), r <∞ strongly.

Passing to two-scale limit, we get, by A2-4, Lemmas 6.3-6.9, Theorem 2.28 of [2],

Theorem 1.8 of [3], and [8, 10],
∫

QT
f

Φ∗S∂tζ̂ +K∗Λw(S)(∇Pw + ∂yPw,1 −∇Gw)(∇ζ̂ + ∂yη̂)

= −
∫

QTm
φs∂tζ̂ + F∗w∂x3

ζ̂ −
∫

Qf
Φ∗S0ζ̂(0)−

∫

Qm
φs0ζ̂(0),

where

F∗w ≡
{
kλw(s)∂x3

(Pw −Gw) if 0 < $ < 1,
kλw(s)∂x3

(pw −Gw) if $ = 1,
An L2 function if $ > 1.

(6.33)

Apply Green’s theorem in t variable to get

−
∫

QT
f

Φ∗∂tS ζ̂ −K∗Λw(S)(∇Pw + ∂yPw,1 −∇Gw)(∇ζ̂ + ∂yη̂)
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=

∫

QTm
φ∂ts ζ̂ − F∗w∂x3

ζ̂ +

∫

Qf
Φ∗(S(0)− S0)ζ̂(0) +

∫

Qm
φ(s(0)− s0)ζ̂(0).

So we have, in ΩT ,

(S(0)− S0)

∫

Yf

Φ∗dy +

∫

Ym

φ(s(0)− s0)dy = 0, (6.34)

and the choice of η̂ = 0 gives, in ΩT ,

∫

Yf

Φ∗dy∂tS +∇
∫

Yf

K∗Λw(S)(∇Pw + ∂yPw,1 −∇Gw)

= −
∫

Ym

(φ∂ts+ ∂x3
F∗w) dy. (6.35)

The choice of ζ̂ = 0 gives, by A2-3 and Lemma 6.7,

{
∂2
yPw,1 = 0 in Qf ,

(∂x̃Pw + ∂yPw,1) · ~νy = 0 on ∂Ym,
(6.36)

where ~νy is the unit vector outward normal to ∂Ym. Let ~ej be the unit vector in

jth direction. We denote by Ξ the tensor whose (i, j) component is ∂ϕj/∂yi, where

ϕj is a periodic solution in Y of the auxiliary problem

{
∆yϕj = 0 in Yf ,
∂yϕj · ~νy = −~ej · ~νy on ∂Ym.

Pw,1 of (6.36) is given by the product Pw,1 =
∑
j ϕj(y)∂xjPw. So (6.35) becomes

Φ∂tS +∇ · (KΛw(S)∇(Pw −Gw)) =
−1

|Ym|

∫

Ym

(φ∂ts+ ∂x3
F∗w)dy, (6.37)

where Φ ≡ 1
|Ym|

∫
Yf

Φ∗dy and K is a diagonal matrix satisfying

K11 = K22 =
K∗

|Ym|

∫

Yf

(I + Ξ(y))dy, K33 =
|Yf |K∗
|Ym|

.

Proceeding as the proof of (6.37), we obtain, by (6.2),

−Φ∂tS +∇ · (KΛo(S)∇(Po −Go)) =
1

|Ym|

∫

Ym

(φ∂ts− ∂x3
F∗o )dy, (6.38)

where

F∗o ≡
{
kλo(s)∂x3

(Po −Go) if 0 < $ < 1,
kλo(s)∂x3

(po −Go) if $ = 1,
An L2 function if $ > 1.

(6.39)

Matrix sources for 0 < $ < 1 case is clear from (6.33), (6.39), and Lemma 6.9.

Next we consider the matrix source terms for $ ≥ 1 cases.
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6.1. For $ = 1 case

By (6.30) of Lemma 6.6, we have, for any η ∈ L2(ΩT ;H1
0 (Ym)),

∫

Qε,Tm
φ∂tsεη +

∫

Qε,Tm
kλo(sε)∂y,x3

(pεo −Gεo)∂y,x3
η = 0.

As ε→ 0, by Lemmas 6.7-6.8, one obtains
∫

QTm
φ∂ts η +

∫

QTm
kλo(s)∂y,x3

(po −Go)∂y,x3
η = 0. (6.40)

In a similar way, we obtain, by (6.31),

∫

QTm
φ∂ts η −

∫

QTm
kλw(s)∂y,x3

(pw −Gw)∂y,x3
η = 0. (6.41)

By (6.37–6.41) and Lemmas 6.7-6.9, it is easy to show Theorem 4.1.

6.2. For $ > 1 case

By (6.30) of Lemma 6.6, we have, for any η ∈ L2(ΩT ;H1
0 (Ym)),

∫

Qε,Tm
φ∂tsεη +

∫

Qε,Tm
kI2$−2

ε λo(sε)∂y,x3
(pεo −Gεo)∂y,x3

η = 0.

As ε→ 0, by Lemmas 6.7-6.8, one obtains
∫

QTm
φ∂ts η +

∫

QTm
F∗o ∂x3

η = 0.

So we get φ∂ts − ∂x3
F∗o = 0. In a similar way, we obtain φ∂ts + ∂x3

F∗w = 0.

Therefore we prove Theorem 4.3.

Rest of this work is to prove Lemma 6.8.

7. Convergence of sε

Remark 7.3 Define





Gε ≡
{
υ−1(A−1(Πε(Aε|Ωε

f
))) if ΠεAε < A(∞),

sr if ΠεAε = A(∞),

G ≡
{
υ−1(A−1(A∗)) if A∗ < A(∞),
sr if A∗ = A(∞).

See Lemma 6.5 for A∗. By Lemma 6.7, A1,3, Theorem 2.28 of [2], and [3, 8, 10],

it is easy to see that





‖M(Gε)‖L2(0,T ;H1(Ω)) are bounded independently of ε,

M(Gε|Ωεm)→M(G) strongly in L2(QTm),

M(Gε|Ωεm)−M(sε) ∈ L2(ΩT ;H1
0 (Ym)).

(7.1)
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Assume that sεi , pεi , i = 1, 2 are two solutions of (6.28–6.29), and ζ, η are smooth

functions satisfying

ζ(T ) = 0, ζ|∂Ym×[0,H] = η|∂Ym×[0,H] = ∂x3
ζ|x3∈{0,H} = ∂x3

η|x3∈{0,H} = 0. (7.2)

Let x ∈ Ωε1 ∩ Ωε2 . By subtracting one solution from the other and integration by

parts, we obtain
∫

Y H,Tm

(sε1 − sε2)
(
φ∂tζ + F1∂y,x3

(kI2$−2
ε ∂y,x3

ζ)−F2∂y,x3
ζ −F3∂y,x3

η
)

+

∫

Y H,Tm

(pε1 − pε2)
(
∂y,x3

kI2$−2
ε (λ(sε1)∂y,x3

η + λo(sε1)∂y,x3
ζ)
)

= F4 + F5, (7.3)

where

F1 ≡ µ+

{ M(sε1 )−M(sε2 )

sε1−sε2 if sε1 6= sε2 ,

0 otherwise,
(7.4)

F2 ≡
{

k(λo(sε1 )−λo(sε2 ))I2$−2
ε ∂y,x3

(pε2−Gε2o )

sε1−sε2 if sε1 6= sε2 ,

0 otherwise,
(7.5)

F3 ≡
{∑

α
k(λα(sε1 )−λα(sε2 ))I2$−2

ε ∂y,x3
(pε2−Gε2α )

sε1−sε2 if sε1 6= sε2 ,

0 otherwise,
(7.6)

F4 ≡ µ
∫

Y H,Tm

(sε1 − sε2)∂y,x3
(kI2$−2

ε ∂y,x3
ζ), (7.7)

F5 ≡
∫

Y H,Tm

ε2$−2∂y

((
M(Gε1 |Ωε1m )−M(Gε2 |Ωε2m )

)
k∂yζ

)

+

∫

Y H,Tm

ε2$−2∂y

(
(Πε1P

ε1 |Ωε1m −Πε2P
ε2 |Ωε2m )

(
kλ(sε1)∂yη + kλo(sε1)∂yζ

))

−
∑

α∈{w,o}

∫

Y H,Tm

kλα(sε1)∂x3
(Gε1α −Gε2α )∂x3

η

−
∫

Y H,Tm

kλo(sε1)∂x3
(Gε1o −Gε2o )∂x3

ζ −
∫

Y Hm

(sε10 − sε20 )φζ(0). (7.8)

Define Ũ1 ≡ {ζ : ζ ∈ H1(Y H,Tm ) ∩ L∞(0, T ;H1(Y Hm )), ζ|∂Ym×[0,H] = ∂x3
ζ|x3=0,H =

ζ(0) = 0}. We consider the following auxiliary problem for fixed µ:

Lemma 7.1 Let F2,F3 ∈ L∞(Y H,Tm ) and 0 < d18 < F1 < d19 <∞. For (f1, f2) ∈
L2(Y H,Tm )× L2(Y H,Tm ), there is a unique (ζ, η) ∈ Ũ1 × L2(0, T ;H1(Y Hm )) such that

−φ∂tζ + F1∂y,x3
(kI2$−2

ε ∂y,x3
ζ)−F2∂y,x3

ζ −F3∂y,x3
η = f1, (7.9)

∂y,x3

(
kI2$−2

ε (λ∂y,x3
η + λo∂y,x3

ζ)
)

= f2. (7.10)

Moreover,

sup
τ≤T
‖I$−1
ε ∂y,x3

ζ(τ)‖L2(Y Hm ) + ‖|I$−1
ε ∂y,x3

η|+ d
1/2
18 |∂y,x3

(kI2$−2
ε ∂y,x3

ζ)|‖L2(Y H,Tm )

≤ c
(
d19, ‖(|F2|+ |F3|)/F1/2

1 ‖L∞(Y H,Tm )

)
‖ |f1|/F1/2

1 + |f2| ‖L2(Y H,Tm ). (7.11)
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Proof: This is proved by following the argument of Lemma 5.1 [29].

Finally we give the proof of Lemma 6.8.

Proof: For x ∈ Ωε1 ∩Ωε2 , we take f1 =M(sε1)−M(sε2) in (7.9) and f2 = pε1−pε2
in (7.10) to obtain solution (ζµ, ηµ) for each µ by (7.4–7.6), Remark 7.3, and Lemma

7.1. After substitution t → T − t for the solution (ζµ, ηµ), we plug it into (7.3) to

obtain
∫

Y H,Tm

(sε1 − sε2)(M(sε1)−M(sε2)) +

∫

Y H,Tm

|pε1 − pε2 |2 = F4 + F5. (7.12)

By Lemmas 6.1, 7.1 and [13, 15, 26, 27], we see 1) F4 is bounded by c
√
µ, where

c is a constant independent of µ, ε1, ε2; and 2) For fixed µ, F5 converges to 0 as

ε1, ε2 tend to 0. So it is not difficult to show that M(sε2) is a Cauchy sequence in

L2(QTm), which implies sε2 is a Cauchy sequence in L2(QTm) as well.
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30. L. M. Yeh, Hölder Continuity for Two-phase Flow in Porous Media, Preprint.
31. L. M. Yeh, A Moderated-Sized Block Model for Two-Phase Flow in Fractured Porous

Media, Preprint.


