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Abstract
Real-time Origin-destination (O-D) information is important in many transportation
related domains, especially in Intelligent Transportation System (ITS). The
conventional ways to obtain O-D data is costly and real-time information is not
achievable. To obtain real-time O-D information in a reasonable way, state space
model with Gibbs sampler and Kalman filter is then introduced by researchers. The
Gibbs sampler method to estimate O-D requires a huge computation time, thus
computing power must be increased to match the goal of real-time information. This
paper implements parallel computation on a Linux cluster for the origin algorithm and
given a sample of real road network. The parallel implementation introduced in this
paper lead to a satisfying result.
Keywords — dynamic origin-destination, state space model, Gibbs sampler, traffic,
PC cluster



Introduction
Origin-destination (O-D) data is very important in many transportation related

domains(Bernstein, 1996, 1997, 2001; Chang, 1994, 1995, 1999, 2004, 2005; Jou,
2001,2002), such as transportation planning, urban and regional planning, traffic
assignment and so on. In Intelligent Transportation Systems (ITS), real-time O-D
information(Jou, 2003,2004) also plays an important role in Advanced Traffic
Management System (ATMS), and Advanced Traveler Information System (ATIS) to
provide real-time traffic management and information. With real-time information,
many high value ITS applications such as emergency vehicle routing in time
shortest-path, just-in-time delivery would be feasible. The traditional way to gather
O-D information includes license plate recognizing, automatic vehicle identification
and so on. In reality, O-D information collection is very difficult and costly. The
accuracy in comparison of license plate is low, and also the real-time information is
not attainable with roadside survey. Due to the high cost of O-D data collection in
highway systems, researchers have been seeking estimation methods to derive
valuable O-D flow information from less expensive traffic data, mainly, link traffic
counts of surveillance systems. Jou introduce state space model into dynamic O-D
estimation, which estimate O-D matrices and transition matrix simultaneously without
any prior information of state variables, while other studies assume that the transition
matrix is known or at least approximately known, which is unrealistic for a real world
network (Jou, 2003). Gibbs sampler is introduced in the solution algorithm to
overcome the shortcoming of known transition matrix. Gibbs sampler is a particular
type of Markov Chain Monte Carlo (MCMC) algorithm, the consumption of
computation power is huge. In ITS, many applications require real-time information,
in order to achieve the goal of real-time information, parallel computing techniques is
introduce to improve the performance of computation. The remainder of this paper is
organized as follows. The dynamic origin-destination estimation by state space model
is introduced in section 2. Section 3 addresses the parallel method to the origin
solution algorithm and its results. Finally, conclusions are outlined in section 4.

Dynamic Origin-Destination Estimation
State space model is introduced to estimate O-D flow from link traffic counts.

The standard state space model is coupled with two parts: transition equations and
observation equations. First, the state equation which assumed that the O-D flows at
time t can be related to the O-D flows at time t-1 by the following autoregressive
form,

ntuFxx ttt ,...,3,2,1,1   (1)
where tx is the state vector which is unobservable, F is a random transition matrix,



 ,0~ pt Nu is independently and identically distributed noise term, where pN

denotes the p-dimensional normal distribution,  is the corresponding covariance
matrix. x the state variable, is defined to be the path flow belonging to an O-D pair.

Next, the observation equation,
ntvHxy ttt ,...3,2,1,  (2)

where ty is the 1q observation vector which means there are q detectors on the
road network. The number of O-D pairs is denoted by p. H is a pq zero-one
matrix, which denotes routing matrix for a network. tv is also a noise term that

 ,0~ qt Nv . Both x and F are unobservable, thus Kalman filter is not suitable to

directly estimate and forecast the state vector. Hence, Gibbs sampler is used to tackle
the problem of simultaneous estimation of F and tx by latest available information.

There are two major elements to be incorporated in the solution method, i.e.
filtering states by observations and sampling scheme of F and state variables. Since
the observations ty are not used in the conditional distribution, the Kalman filter and

the Gibbs sampler must be combined. The Gibbs sampler is a technique for generating
random variables from a distribution indirectly, without having to calculate the density.
It is a Markovian updating scheme that proceeds as follows. Given an arbitrary
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as i . In fact a slightly stronger result is proven. Rather than requiring that each
variable be visited in repetitions of the natural order, convergence still follows any
visiting scheme, provided that each variable is visited infinitely often.

Result 2 Rate
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Result 3 Ergodic theorem
For any measurable function T of kZZZZ ,...,,, 321 whose expectation exits,
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The above Gibbs sampling scheme on a random transition matrix and state
variable forms the center part of the algorithm. In the process of generate state
variables, Kalman filtering mechanism is added. The solution algorithm is shown as
follows,
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 Step 4 (Iteration)
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The Implementation of Parallel Computation and its Results
To achieve real-time information requirement, computing power is critical. In

order to achieve this goal, parallel computing is then introduced. The solution
algorithm can be divided into several independent computation parts by dividing it at
step 5. Given n computation nodes and k times of iterations, each node will take care

of
n
k

iterations. Each process store its own )(
)(

n
mX and )(

)(̂
n

mF , when the number

of iterations is reached, all of them is then gathered together to estimate X and F. In
this situation, communication between computing nodes is minimum, and computing
power can be easily increased without communication bandwidth limitation. Figure 1
describes the parallel architecture. In the pre-processor section, parameters used in our
algorithm are initialized, so does the necessary input data. When assign jobs, these
input data are sent to computing nodes in the cluster through TCP/IP base intranet
with Message Passing Interface (MPI) Library. The computational procedure for the
parallel process consists of:

Step 1. Load input data and parameters. Initialize MPI environment.
Step 2. Count the computing nodes exits in the cluster environment. Decide

the count of samples should be generated by each computing nodes.
Send data to each computing nodes.

Step 3. Each computing nodes generate its own )(mX and )(mF by given
input data for given times. And then send the result to server.

Step 4. After all the data been sent to server, the server estimate X̂ and F̂
by )(mX and )(mF samples from each computing nodes.

Step 5. Stop MPI environment. Output data.



Figure 1. The flow chart of parallel algorithm

The result shown below is a real network in Hsinchu Science Park in Taiwan
with 8 observation sites and 48 links. The observation of traffic count updates every
minute, 30 time intervals of observation data is used to estimate the O-D flow. The
number of Gibbs sampler iteration m is fixed to 500, and the number of samples to
estimate X and Fis floating. The result is presented in Table 1, the unit of time is
second.

Parallel Computation Time (seconds)

Samples

Number of processors k = 100 k = 50 k = 25

2 1137.86 573.49 312.34

4 576.43 287.54 157.526

8 289.76 152.09 81.762

16 152.7383 84.516 44.454

32 92.26 49.26 20.35
Table 1. Parallel Computation Time comparison

The parallel environment of this research consists of 16 computing nodes; each
contains 2 Intel XEON 3.2GHz processors and 1 GB memory. Nodes are connected
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with a 1Gbits 3Com gigabits Ethernet switch for MPI protocol and a 100 Mbits PCI
fast Ethernet switch for Network File System (NFS) and Network Information System
(NIS). Figure 2 shows the speedups and efficiencies, where the speedups is the ratio
of the code execution time on a single processor to that on multiple processors and
efficiency is defined as the speedup divided by the number of processors(Gropp, 1999;
El-Rewini, 1998), of the parallel computing for 100 samples on the 32 CPU
Linux-cluster with MPI library. As shown in Figure 2, a quite good value of the
speedup and efficiency of the parallel scheme is achieved. That means we can
decrease the computation time easily to achieve the goal of real-time information.
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Figure 2. Speedups and efficiencies for the parallel computing of k = 100

Conclusions
This paper provides a parallel implementation on a PC-based Linux cluster with

MPI library to estimating origin-destination matrices for general road network by
using the state space model with Gibbs sampler and Kalman filter. With the
experiment of real network data, the parallel implementation presented in this paper is
efficient and can increase the computing power easily to match the goal of real-time
information.
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