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中文摘要 
 

在品管上，一般而言，製程或產品之品質特性都是一個變數。然而對某些製程而言，

品質特性是由反應變數和解釋變數間之關係來界定。因此一個品質特性乃以一個函數、

或是一個曲線之資料型式來呈現，稱之為profile (縱斷面或剖面)。本計畫主旨在於研究

探討如何有效地監控製程profiles。在本報告中，對品質特性為一個函數或一條曲線的製

程，我們提出一些新的控制圖來做監控；而除了平滑的假設外，在此不限定曲線的形式。

我們提出了三個新的監控方法：(1)用無母數迴歸方法“B-spline”對曲線做配適，再利用

T2控制圖對製程做監控；(2)用典型的控制圖EWMA、EWMSD或R控制圖對樣本曲線和

參考曲線間的殘差做監控；(3)用事先對樣本曲線和參考曲線間的差別所制定的測度

(metrics)對品質特性曲線做監控。我們利用模擬，以平均連串長度(ARL)來比較所有方

法。結果顯示，我們所提出的新方法表現都相當良好，尤以EWMA型之控制圖一般而言

表現最優。 
 

關鍵詞：EWMA管制圖、多變量T2控制圖、EWMSD管制圖、平均連串長度、平滑方法、

Spline 迴歸、B-Spline、SPC 
 
 
 

英文摘要 

 
In this project, we propose and study some control charts for monitoring processes in 

which the quality of a product item is characterized by a profile or a function. No assumptions 
are made on the functional form of the profiles except that profiles are smooth curves. Three 
approaches of monitoring schemes are considered: (i) use “B-splines” to fit each of the 
sample process profiles and design a T2 chart accordingly to monitor process profiles; (ii) use 
typical control charts－the EWMA, EWMSD, and R chart－to monitor the “residuals” of 
each sample profile from the in-control reference profile; and (iii) monitor some metrics 
defined for measuring the deviation of each sample profile from the in-control reference 
profile. Performances of the proposed schemes are evaluated and compared in terms of the 
average run length via simulation studies. All proposed approaches appear to perform 
reasonably well with the EWMA-type control charts outperforming others in general. 
 
Keywords: EWMA Control Chart, Multivariate T2 Control Chart, EWMSD Control Chart, 
Average Run Length, Smoothing Techniques, Spline Regression, B-Spline, Statistical Process 
Control 
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報告內容 

 
一、前言 

Statistical process control (SPC) has been successfully proven useful for quality and 
productivity improvement in many domains, especially in industries. For most of SPC 
applications, the quality of a process or product is measured by one or multiple quality 
characteristics. However, some processes are better characterized by profiles or functions. 
Kang and Albin (2000) described an example of aspartame (an artificial sweetener), in which 
the quality is characterized by the amount that dissolves per liter of water at different 
temperatures. However, the real example considered in Kang and Albin (2000) is a 
semiconductor manufacturing application involving the calibration of a mass flow controller 
in which the performance of the process is characterized by a linear function. For other 
examples, see Kim et al. (2003) and the papers cited therein. 

Some profile monitoring methods have been proposed for this type of processes in the 
literature. Kang and Albin (2000) and Kim et al. (2003) proposed several methods for 
monitoring the process in which the quality is characterized by a linear profile. 

Note that these two papers address only liner profiles. For methods to adapt to more 
applications such as the aspartame example in Kang and Albin (2000), it is desirable to relax 
the restriction of linearity. To model profiles with no restriction on the functional form, it is 
natural to consider the nonparametric regression approach in which the unknown function is 
only assumed to be smooth. 

 
二、研究目的 

The main purpose of this project is to propose and study some new monitoring schemes 
for profiles of more flexible shapes so that the schemes can be applied to more general and 
practical situations. In this project, we apply spline regression for profile modeling and then 
develop monitoring schemes accordingly. 

 

三、文獻探討 

Kang and Albin (2000) presented two approaches to monitoring linear profiles. The first 
approach uses a multivariate T2 control chart to monitor the profile parameters, slope and 
intercept, simultaneously. The second approach treats the “residuals” of a sample profile－
defined as the deviations from the reference profile at some set values (X-values)－as a 
rational subgroup and uses a combined EWMA/R (exponentially weighted moving 
average/range) chart for profile monitoring. Kim et al. (2003) presented another approach: for 
each profile, code the X-values of a profile by centering so that the estimators of the 
Y-intercept and the slope of the regression line are independent; then construct two two-sided 
EWMA charts to monitor the Y-intercept and slope separately and a one-sided EWMA chart 
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to monitor the process variation. They combined these three charts and called this scheme 
EWMA3.  

Walker and Wright (2002) proposed additive models to assess the sources of variation of 
density profiles of particleboards. Jin and Shi (2001) used wavelets to monitor and diagnose 
process faults. Gardner et al. (1997) use some spatial signature metrics defined for measuring 
the deviation of the observed profile from the reference profile to diagnose the equipment 
faults. They reported that these metric-related charts are very powerful in detecting standard 
deviation shifts. In industrial applications other than process monitoring, Miller (2002) and 
Nair et al. (2002) analyzed designed experiments with responses being linear functions. 

As to the profile monitoring, many nonparametric regression estimation methods are 
available, including, for example, the popular kernel estimation, smoothing splines, local 
polynomial regression, and spline regression. For nonparametric regression, readers are 
referred to, for example, the books by Wahba (1990), Hardle (1990, 1991), Hastie and 
Tibshirani (1990), Green and Silverman (1994), Simonoff (1996), Eubank (1999), and papers 
cited therein.  

In this project, for the profile modeling, we adopt spline regression as the 
curve-fitting/smoothing technique for its simplicity and readiness of a direct extension from 
the simple linear regression used by Kang and Albin (2000) and Kim et al. (2003) in 
constructing the T2 chart and their residuals charts.  

 
四、研究方法 

Three different approaches are proposed and studied in this study. The first approach is a 
T2-chart extension of Kang and Albin (2000). The second approach is a monitoring scheme 
based on the “residuals” of sample profiles, similar to the combined EWMA/R scheme by 
Kang and Albin (2000) and the combined EWMA3 scheme by Kim et al. (2003). We use 
separately the EWMA chart for detecting the mean shift, R chart or exponentially weighted 
moving standard deviation (EWMSD) chart for variation changes. The third approach is to 
use some metrics defined for measuring the deviation of the observed profile from the 
reference profile to detect process changes. In this project, for the profile modeling, we adopt 
spline regression as the curve-fitting/smoothing technique for its simplicity and readiness for 
a direct extension from the simple linear regression used by Kang and Albin (2000) and Kim 
et al. (2003) in constructing the T2 chart and their residuals charts.  

Simulation studies are conducted to investigate the effectiveness of the proposed 
methods and also to compare their performances in terms of the average run length (ARL). 
Profiles mimicking the aspartame profiles mentioned before are used as an illustrative 
example. 

 
五、結果與討論 

In order to extend linear profiles to smooth profiles of any shapes, a smoothing 



technique is needed for de-noising sample profiles. We adopt the B-spline regression method 
for its popularity and simplicity in this project. Simply put, the B-spline regression is just a 
multiple linear regression with B-spline bases. See de Boor (1978) for the definition of the 
B-spline basis.  

Denote ,l kB  the lth B-spline basis of order , k 1,2,...,l b= . ,l kB  can be defined 

iteratively by 
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Note that ,l kB  is nonzero only on the interval   ( , ).l l kt t +

For B-spline regression, we consider the following linear model: 

  (1) ,1
( ) , 1,..., .b

i l l k i il
y c B x iε

=
= + =∑ n

iwhere ε ’s are i.i.d. normal variates with mean zero and common variance . 2 0σ >

Given a set of data {( , ), 1,..., }i ix y i n= , the spline regression method finds the best spline 

approximation via the following least squares regression: 
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where . The least squares estimator of  is 1( ,..., ) 'bc c=c c
 -1ˆ ( ' '=c B B ) B y , (3) 
where , , and B is the 1( ,..., ) 'ny y=y 1ˆ ˆ ˆ( ,..., ) 'bc c=c n b×  design matrix with the (i , l)th 

element , ( ),l k iB x  , . Then, under model (1),  has a multivariate normal 

distribution with mean vector  and variance-covariance matrix  

1,...,l b= 1,...,i = n ĉ

c 2 1( ' ) .σ −=Σ B B

    In Phase II of process monitoring, it is usually assumed that the in-control reference 
profile is known (or has been estimated from a set of historical data and treated as known). 
Denote it by ( )f x . We now establish a B-spline representation (or approximation) of the 
reference profile. First obtain { ( ), 1,..., }if x i n= , the values of the reference profile at the n 
set X-values { , 1,..., }ix i = n . Let c  be the least squares solution of (2) with  replaced 

by

iy

( )if x . More specifically, , where -1( ' '=c B B ) B f 1( ( ),..., ( )) 'nf x f x=f . We then treat 

this vector c as the “true” in-control B-spline coefficient vector. For each newly observed 
sample profile {( , ), 1,..., },i ix y i n=  compute its B-spline coefficient vector  by Equation 

(3). Since 

ĉ
2σ  is also assumed “known” in Phase II, the T2 statistic of the sample is given by 

. When the process is in control,  is distributed as the Chi-square 2 1ˆ ˆ( ) ' (T −= − −c c Σ c c) 2T
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distribution with  degrees of freedom. Thus, the upper control limit in Phase II is b 2
,b αχ .  

 In Phase I, assume that a set of historical data containing k sample profiles 

{( , ), 1,..., , 1,..., }i ijx y i n j k= = is available. Let 1( ,..., ) ', 1,..., .j j njy y j k= =y For 1,..., ,j k=  

perform the least squares regression on the jth sample profile to obtain   and ˆ jc

2
ˆ /( )j j jMSE n b= − −y Bc , where ‧  denotes the Euclidean norm of . Then the R n 1n×  

vector f representing the reference curve can be estimated by ˆ = �y Bc  with 
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The T2 statistic of the jth sample profile is then modified by 
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where  is an unbiased estimator of . It can be easily shown that  

has F distribution with degrees of freedom  and 

2ˆ ( ' )σ −=S B B Σ 2
0 /jT b

b ( ) .n b k−  Thus, the upper control limit of 

the T2 chart in Phase I is ,( ) ,b n b kbF α− . 

The second approach we consider in this project is to use the EWMA and the R (or 
EWMSD) chart to monitor the “residual” average and the range (or standard deviation), 
respectively. The regression “residuals” of the jth sample profile are defined as 

( ) , 1, 2,..., .ij ij ie y f x i n= − =  

Then the EWMA and the R charts for Phase II can be constructed by the same way as that of 
Kang and Albin (2000). Similarly, to construct the EWMA and R charts for Phase I, just 
replace the σ  in the control limits by its estimate MSE  given in (4).  

We can also use exponentially weighted moving standard deviation (EWMSD) control 
chart to monitor process variation. The exponentially weighted moving averaging feature 
makes this chart very sensitive in detecting shifts in σ , especially when shifts are relatively 
small. Define the sample standard deviation of the residuals of the jth sample profile as 

ˆ/ /j j j js e n b n b= − = − −y y ,

j

 

where , . -1ˆ ' 'j j=y B (B B) B y 1,2,...j =

The EWMSD statistic is given by  

1(1 )j jv s vθ θ −= + − , 
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where θ  ( 0 1θ< ≤ ) is a smoothing constant and the initial value  is the in-control value 

of 

0v

5c σ , where =5c
bnbn

bn
−−Γ

+−Γ 2
)2/)((

)2/)1(( . In Phase II, σ  is assumed known. The 

control limits for the EWMSD chart are 2
5 5' (1 )

2
c L cθσ σ

θ
± −

−
'L and  is again a 

constant chosen to give a pre-specified in-control ARL. In Phase I, the control limits are 
modified by substituting σ  with MSE .  

The third approach is to use some metrics to monitor the process. For our 
profile-monitoring problem, we select the following two metrics to study: 
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where g is the fitted B-spline of a newly observed profile and f is the reference profile. The 
charts constructed based on these two metrics will be called M1 and M2 charts, respectively. 
To construct the control charts, we need to find the critical value of the null distribution of 
each metric.  

Since the distributions of these metrics are difficult to obtain, we use a set of historical 
data of k sample profiles to characterize the in-control process during Phase I. We fit a 
B-spline to each of the k sample profiles. Obtain the average of the k regression estimates of 
the B-spline coefficient vector, , and 1( ,..., ) 'bc c=� � �c MSE  by (4). Let the estimated reference 

profile be  and ,
1

( )�
b

l l k
l

c B x
=
∑ 2ˆ MSEσ = . Simulate M sets of n observations from the 

following model: 

  (5) ,1
( ) , 1,..., ,�b

i l l k i il
y c B x iε

=
= + =∑ n

where 2ˆ are i.i.d. (0, )i Nε σ . For each metric, compute the metric value for each of the M 

simulated profiles and let the 100(1 )α− th percentile of these M metric values be the critical 

value. The process is claimed out of control when the metric of the newly observed profile is 
greater than the critical value. We choose M = 50,000 in our study. 

We evaluate the performances of these approaches in terms of ARL via simulation 
studies. Assume the underlying reference profile is known in Phase II. Denote the in-control 
ARL value by ARL0. All charts are designed to have the same ARL0 = 200, which 
corresponds to 0.005α = . The smoothing constant θ  may affect the ARL performances of 
the EWMA and EWMSD charts. Details can be seen in Lucas and Saccucci (1990). For 
simplicity, in this study, the smoothing constant is set to 0.2.  

We consider the following model for the in-control process profiles: 

 , (6) 
2

0 ( 1)
0 0 , [0,4N xY I M e xε− −= + + ∈ ],
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where 2  (0, )Nε σ∼ . In our simulation study, 1σ =  and the in-control reference profile is 

. Four different types of shifts are considered in the simulation study: 

I-shift, M-shift, N-shift, and error-variance-increase.  

2( 1)( ) 1 15 xf x e− −= +

For smoothing data, we use the equidistant sequence (-1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 
2, 2.4, 2.8, 3.2, 3.6, 4, 4.4, 4.8, 5.2) as the knots with order k = 4 so that the number of 
B-spline bases is b = 13. We choose equidistant ix -values of 0, 0.08,…, 3.92 for n = 50 in 

our simulation. Approximate the in-control exponential profile by spline regression with these 
13 B-spline bases.  

It is well known that boundary effects are a potential problem in smoothing methods. 
Loosely speaking, boundary effects mean that the fittings at the neighboring area of the 
boundaries usually are not as good as the fittings at the interior points. We use a simple 
simulation study to illustrate the boundary effect that we encounter in our study. Let 

50, 13,  4,  and 1.n b k σ= = = = Generate 50,000 in-control profiles from model (6) with 
 Compute the B-spline coefficients ’s for each profile. For 

 average the 50,000 replications of  and denote the average by 

0 0 01, 15,  and 1.I M N= = = l̂c

1,..., ,l = b l̂c l̂c . The 

simulation is repeated three times and the results show that the two largest deviations occur at 
the last (i.e., 13th) and the first coefficient in all three simulations. This apparently 
demonstrates the boundary effects in our context. Unfortunately this causes a big problem: the 
poor estimation at the boundaries leads to a potentially larger T2 statistic for each of the 
generated profiles and thus results in a smaller ARL0  than expected. In order to achieve 
ARL0 = 200, we thus choose to omit the first and the last coefficients in constructing the T2 

statistic. Consequently, the control limit of the T2 chart is adjusted to . 2
11,0.005χ

We now evaluate the performances of the charts proposed in this project. For mean shifts, 
such as I, M, or N-shifts, we evaluate and compare the T2 , EWMA, M1, and M2 charts. For 
shifts in the error variance, we compare the T2 , R, M1, M2, and EWMSD charts. These ARL 
values are calculated based on 100,000 replications of simulated run lengths. Results show 
that the EWMA chart outperforms the others for all shifts in process “mean”, while the 
EWMSD chart outperforms the others for shifts in process “variation”. This also demonstrates 
that the EWMA-type charts are indeed more sensitive than others, especially for smaller 
shifts.  

To investigate the effect of the number of set points n and the number of B-spline bases 
b, a simulation study with n = 20, 30, 40, 50 and b = 5, 9, 13 is conducted. We observe that 
the detecting power of all the charts increases as the number of set points n increases, which is 
expected. It is interesting to note that the detecting power of the T2 chart increases as 
parameter b decreases. However, it is found that the B-spline estimate does not approximate 
the reference profile well enough with b = 5. Thus, b = 5 may not be a good choice for the 

 6



profile function under study. For practical applications, we simply suggest selecting an 
appropriate b from a set of candidates by visual evaluation of the fittings of the in-control 
reference profile. Choose a small b with a reasonable fit.  

To see if the nice flexibility property enjoyed by our methods would need to pay some 
price for it, we compare our methods with the methods proposed by Kang and Albin (2000) 
and Kim et al. (2003) when monitoring linear profiles. The linear profile model used by Kang 

and Albin (2000) is 3 2ij i ijy x ε= + + , where are i.i.d. (0,1)ij Nε  with fixed ix -values of 2, 4, 6, 

and 8. Our ARL comparisons show that, even for linear profiles, our nonparametric residuals 
charts are more effective than the methods of Kang and Albin (2000) and Kim et al. (2003) in 
detecting shifts for most of cases and stay fairly competitive for the rest of cases. And most 
importantly, our methods are more general in applications than theirs. The main reason for 
this is that our nonparametric regression model can model linear profiles quite well with only 
a slight tradeoff of efficiency when compared to parametric regression methods. 

This study extends the framework of statistical process control to more general 
applications. However, for many applications, some models other than the model studied in 
this project may be more appropriate. For example, in-control profiles need not have the same 
mean function. Loosely speaking, some variations are allowed as part of the common-cause 
variation. How to develop suitable profile monitoring schemes for such processes is currently 
under study.  

The profile monitoring is a useful SPC technique and a promising area of research. More 
statistical methods, models, and ideas are needed. Curve data analysis techniques given in 
Ramsay and Silverman (1997) may be useful here.   
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計劃成果自評 

 
本計劃之執行相當順利，結果亦相當豐碩，三位碩士班學生和兩位博士班學生在工

業統計上得到相當不錯的訓練。研究內容與原計畫相符程度極高，亦已達成預期目標。

研究成果預計將有一篇論文可以在國際知名期刊發表，目前已撰寫完成即將投稿。本研

究所提出之 profile 控制圖在學術上和應用上均有貢獻。 

 


