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In this project, we propose and study some control charts for monitoring processes in
which the quality of a product item is characterized by a profile or a function. No assumptions
are made on the functional form of the profiles except that profiles are smooth curves. Three
approaches of monitoring schemes are considered: (i) use “B-splines” to fit each of the
sample process profiles and design a T2 chart accordingly to monitor process profiles; (ii) use
typical control charts—the EWMA, EWMSD, and R chart—to monitor the “residuals” of
each sample profile from the in-control reference profile; and (iii) monitor some metrics
defined for measuring the deviation of each sample profile from the in-control reference
profile. Performances of the proposed schemes are evaluated and compared in terms of the
average run length via simulation studies. All proposed approaches appear to perform
reasonably well with the EWMA-type control charts outperforming others in general.

Keywords: EWMA Control Chart, Multivariate T? Control Chart, EWMSD Control Chart,
Average Run Length, Smoothing Techniques, Spline Regression, B-Spline, Statistical Process
Control
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Statistical process control (SPC) has been successfully proven useful for quality and
productivity improvement in many domains, especially in industries. For most of SPC
applications, the quality of a process or product is measured by one or multiple quality
characteristics. However, some processes are better characterized by profiles or functions.
Kang and Albin (2000) described an example of aspartame (an artificial sweetener), in which
the quality is characterized by the amount that dissolves per liter of water at different
temperatures. However, the real example considered in Kang and Albin (2000) is a
semiconductor manufacturing application involving the calibration of a mass flow controller
in which the performance of the process is characterized by a linear function. For other
examples, see Kim et al. (2003) and the papers cited therein.

Some profile monitoring methods have been proposed for this type of processes in the
literature. Kang and Albin (2000) and Kim et al. (2003) proposed several methods for
monitoring the process in which the quality is characterized by a linear profile.

Note that these two papers address only liner profiles. For methods to adapt to more
applications such as the aspartame example in Kang and Albin (2000), it is desirable to relax
the restriction of linearity. To model profiles with no restriction on the functional form, it is
natural to consider the nonparametric regression approach in which the unknown function is
only assumed to be smooth.
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The main purpose of this project is to propose and study some new monitoring schemes
for profiles of more flexible shapes so that the schemes can be applied to more general and
practical situations. In this project, we apply spline regression for profile modeling and then
develop monitoring schemes accordingly.
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Kang and Albin (2000) presented two approaches to monitoring linear profiles. The first

approach uses a multivariate T* control chart to monitor the profile parameters, slope and
intercept, simultaneously. The second approach treats the “residuals” of a sample profile—

defined as the deviations from the reference profile at some set values (X-values)—as a
rational subgroup and uses a combined EWMA/R (exponentially weighted moving
average/range) chart for profile monitoring. Kim et al. (2003) presented another approach: for
each profile, code the X-values of a profile by centering so that the estimators of the
Y-intercept and the slope of the regression line are independent; then construct two two-sided
EWMA charts to monitor the Y-intercept and slope separately and a one-sided EWMA chart
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to monitor the process variation. They combined these three charts and called this scheme
EWMA:;.

Walker and Wright (2002) proposed additive models to assess the sources of variation of
density profiles of particleboards. Jin and Shi (2001) used wavelets to monitor and diagnose
process faults. Gardner et al. (1997) use some spatial signature metrics defined for measuring
the deviation of the observed profile from the reference profile to diagnose the equipment
faults. They reported that these metric-related charts are very powerful in detecting standard
deviation shifts. In industrial applications other than process monitoring, Miller (2002) and
Nair et al. (2002) analyzed designed experiments with responses being linear functions.

As to the profile monitoring, many nonparametric regression estimation methods are
available, including, for example, the popular kernel estimation, smoothing splines, local
polynomial regression, and spline regression. For nonparametric regression, readers are
referred to, for example, the books by Wahba (1990), Hardle (1990, 1991), Hastie and
Tibshirani (1990), Green and Silverman (1994), Simonoff (1996), Eubank (1999), and papers
cited therein.

In this project, for the profile modeling, we adopt spline regression as the
curve-fitting/smoothing technique for its simplicity and readiness of a direct extension from
the simple linear regression used by Kang and Albin (2000) and Kim et al. (2003) in
constructing the T? chart and their residuals charts.

PR A

Three different approaches are proposed and studied in this study. The first approach is a
T2-chart extension of Kang and Albin (2000). The second approach is a monitoring scheme
based on the “residuals” of sample profiles, similar to the combined EWMA/R scheme by
Kang and Albin (2000) and the combined EWMA3; scheme by Kim et al. (2003). We use
separately the EWMA chart for detecting the mean shift, R chart or exponentially weighted
moving standard deviation (EWMSD) chart for variation changes. The third approach is to
use some metrics defined for measuring the deviation of the observed profile from the
reference profile to detect process changes. In this project, for the profile modeling, we adopt
spline regression as the curve-fitting/smoothing technique for its simplicity and readiness for
a direct extension from the simple linear regression used by Kang and Albin (2000) and Kim
et al. (2003) in constructing the T? chart and their residuals charts.

Simulation studies are conducted to investigate the effectiveness of the proposed
methods and also to compare their performances in terms of the average run length (ARL).
Profiles mimicking the aspartame profiles mentioned before are used as an illustrative
example.
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In order to extend linear profiles to smooth profiles of any shapes, a smoothing



technique is needed for de-noising sample profiles. We adopt the B-spline regression method
for its popularity and simplicity in this project. Simply put, the B-spline regression is just a
multiple linear regression with B-spline bases. See de Boor (1978) for the definition of the
B-spline basis.

Denote B,, the I B-spline basis of order k, 1=12,.,b. B, can be defined

iteratively by
B|,1(t) = {

1 for t, <t<t,,
0 for t<t or t>t ,;

t-t b =t

Fork>2, B, (t)=

Bl,k—l(t) +

l+k-1 "~ Y tl+k T YHa

Bl+l,k—1(t)'
Note that B,, is nonzero only on the interval (t,t,,,).
For B-spline regression, we consider the following linear model:

Y= ¢B(x)+&, i=L..n. €

where ¢, ’s are i.i.d. normal variates with mean zero and common variance o >0.

Given a set of data {(x, y;),i1 =1,...,n}, the spline regression method finds the best spline

approximation via the following least squares regression:

n b
mcin Z{yi _ch B, (X; ¥, 2)
i=1 1=1
where ¢=(c,...,C,)". The least squares estimator of ¢ is
¢=(B'B)'B'y, @)

where y=(y,,... v,)", ¢=(¢,...6)", and B is the nxb design matrix with the (i , I)"
element B, (x), 1=1..b, i=1..,n.Then, under model (1), ¢ has amultivariate normal

distribution with mean vector ¢ and variance-covariance matrix X =c°(B'B)™.

In Phase Il of process monitoring, it is usually assumed that the in-control reference

profile is known (or has been estimated from a set of historical data and treated as known).
Denote it by f(x). We now establish a B-spline representation (or approximation) of the
reference profile. First obtain {f(x;),1=1,...,n}, the values of the reference profile at the n

set X-values {x;,i=1,...,n}. Let ¢ be the least squares solution of (2) with y. replaced
by f(x). More specifically, ¢=(B'B)'B'f, where f=(f(x),.., f(x))'. We then treat

this vector ¢ as the “true” in-control B-spline coefficient vector. For each newly observed
sample profile {(x,y,),i=1,...,n}, compute its B-spline coefficient vector ¢ by Equation

(3). Since o? s also assumed “known” in Phase 11, the T statistic of the sample is given by
T?=(c—c)'T(c—c). When the process is in control, T? is distributed as the Chi-square



distribution with b degrees of freedom. Thus, the upper control limit in Phase Il is sz,a-

In Phase I, assume that a set of historical data containing k sample profiles

{(%,y;):1=1..,n,j=1..k}is available. Let y;=(y,; ..., ¥y;)"i=L...k For j=1..Kk,
perform the least squares regression on the j" sample profile to obtain éj and

MSE; =|y; - B¢, *I(n—b) , where |+| denotes the Euclidean norm of R". Then the nx1

vector f representing the reference curve can be estimated by y =B¢ with

¢=>" &/k and 6°=MSE=Y"" MSE,/k 4)

j=1"J

The T? statistic of the j™ sample profile is then modified by
kK . R
2 ~\1Q-1 ~
Oj:k_l(cj_c)s (¢;-¢©),
where S=6°(B'B)™ is an unbiased estimator of X. It can be easily shown that T /b

has F distribution with degrees of freedom b and (n—b)k. Thus, the upper control limit of

the T2 chart in Phase | is bF

b,(n-b)k,e *

The second approach we consider in this project is to use the EWMA and the R (or
EWMSD) chart to monitor the “residual” average and the range (or standard deviation),
respectively. The regression “residuals” of the j"" sample profile are defined as

€ =V~ f(Xi), i=12,..,n.

Then the EWMA and the R charts for Phase 1l can be constructed by the same way as that of
Kang and Albin (2000). Similarly, to construct the EWMA and R charts for Phase I, just
replace the o in the control limits by its estimate v/MSE givenin (4).

We can also use exponentially weighted moving standard deviation (EWMSD) control
chart to monitor process variation. The exponentially weighted moving averaging feature
makes this chart very sensitive in detecting shifts in o, especially when shifts are relatively
small. Define the sample standard deviation of the residuals of the j" sample profile as

s, =e|/vn=b=[y, =] /¥n-b,

~

where y, =B(B'B)'B'y;, j=12,...

The EWMSD statistic is given by
v, =0s;+(1-0)v,,,



where 6 (0<@<1) is a smoothing constant and the initial value v, is the in-control value

T((n-b+1)/2) [ 2
((n-b)/2) \n-b

control limits for the EWMSD chart are c.otlL'c /%(1—05) and L' is again a

constant chosen to give a pre-specified in-control ARL. In Phase I, the control limits are
modified by substituting o with MSE .

The third approach is to use some metrics to monitor the process. For our
profile-monitoring problem, we select the following two metrics to study:

of c,o, where c, = . In Phase Il, o is assumed known. The

M1=%2| g(x)—f(x)| (averaged-absolute-value-deviation metric),
i=1

M2= %Z{g(xi)— f(x)¥ (averaged-squared-error metric),
i=1

where g is the fitted B-spline of a newly observed profile and f is the reference profile. The
charts constructed based on these two metrics will be called M1 and M2 charts, respectively.
To construct the control charts, we need to find the critical value of the null distribution of
each metric.

Since the distributions of these metrics are difficult to obtain, we use a set of historical
data of k sample profiles to characterize the in-control process during Phase I. We fit a

B-spline to each of the k sample profiles. Obtain the average of the k regression estimates of
the B-spline coefficient vector, ¢=(¢,...,¢,)',and MSE by (4). Let the estimated reference

b
profile be ZC,B”((X) and 6°=MSE . Simulate M sets of n observations from the
1=1

following model:

Y= 6B, (x)+&, i=L..n, ©)

where & arei.i.d. N(0,5°). For each metric, compute the metric value for each of the M

simulated profiles and let the 100(1— )™ percentile of these M metric values be the critical

value. The process is claimed out of control when the metric of the newly observed profile is
greater than the critical value. We choose M = 50,000 in our study.

We evaluate the performances of these approaches in terms of ARL via simulation
studies. Assume the underlying reference profile is known in Phase Il. Denote the in-control
ARL value by ARL,. All charts are designed to have the same ARL, = 200, which
corresponds to « =0.005. The smoothing constant & may affect the ARL performances of
the EWMA and EWMSD charts. Details can be seen in Lucas and Saccucci (1990). For
simplicity, in this study, the smoothing constant is set to 0.2.

We consider the following model for the in-control process profiles:

Y =1, +Me ™ L g xe0,4],, (6)
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where ¢ ~ N(0,5°). In our simulation study, o =1 and the in-control reference profile is
f(x)=1+15e" ", Four different types of shifts are considered in the simulation study:

I-shift, M-shift, N-shift, and error-variance-increase.

For smoothing data, we use the equidistant sequence (-1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6,
2, 2.4, 2.8, 3.2, 3.6, 4, 4.4, 4.8, 5.2) as the knots with order k = 4 so that the number of
B-spline bases is b = 13. We choose equidistant X -values of 0, 0.08,..., 3.92 for n = 50 in
our simulation. Approximate the in-control exponential profile by spline regression with these
13 B-spline bases.

It is well known that boundary effects are a potential problem in smoothing methods.
Loosely speaking, boundary effects mean that the fittings at the neighboring area of the
boundaries usually are not as good as the fittings at the interior points. We use a simple

simulation study to illustrate the boundary effect that we encounter in our study. Let
n=>50,b=13, k=4, and o =1. Generate 50,000 in-control profiles from model (6) with
l, =1, M, =15, and N, =1. Compute the B-spline coefficients ¢ ’s for each profile. For

I =1..,b, average the 50,000 replications of ¢ and denote the average by 5, The

simulation is repeated three times and the results show that the two largest deviations occur at
the last (i.e., 13™) and the first coefficient in all three simulations. This apparently
demonstrates the boundary effects in our context. Unfortunately this causes a big problem: the
poor estimation at the boundaries leads to a potentially larger T statistic for each of the
generated profiles and thus results in a smaller ARL, than expected. In order to achieve
ARL, = 200, we thus choose to omit the first and the last coefficients in constructing the T2

statistic. Consequently, the control limit of the T2 chart is adjusted to X000 -

We now evaluate the performances of the charts proposed in this project. For mean shifts,
such as I, M, or N-shifts, we evaluate and compare the T>, EWMA, M1, and M2 charts. For
shifts in the error variance, we compare the T, R, M1, M2, and EWMSD charts. These ARL
values are calculated based on 100,000 replications of simulated run lengths. Results show
that the EWMA chart outperforms the others for all shifts in process “mean”, while the
EWMSD chart outperforms the others for shifts in process “variation”. This also demonstrates
that the EWMA-type charts are indeed more sensitive than others, especially for smaller
shifts.

To investigate the effect of the number of set points n and the number of B-spline bases
b, a simulation study with n = 20, 30, 40, 50 and b = 5, 9, 13 is conducted. We observe that
the detecting power of all the charts increases as the number of set points n increases, which is
expected. It is interesting to note that the detecting power of the T2 chart increases as
parameter b decreases. However, it is found that the B-spline estimate does not approximate
the reference profile well enough with b = 5. Thus, b = 5 may not be a good choice for the



profile function under study. For practical applications, we simply suggest selecting an
appropriate b from a set of candidates by visual evaluation of the fittings of the in-control
reference profile. Choose a small b with a reasonable fit.

To see if the nice flexibility property enjoyed by our methods would need to pay some
price for it, we compare our methods with the methods proposed by Kang and Albin (2000)
and Kim et al. (2003) when monitoring linear profiles. The linear profile model used by Kang

and Albin (2000) is y; =3+2x, +¢&; , whereg; are i.i.d. N(0,1) with fixed x; -values of 2, 4, 6,

j!

and 8. Our ARL comparisons show that, even for linear profiles, our nonparametric residuals
charts are more effective than the methods of Kang and Albin (2000) and Kim et al. (2003) in
detecting shifts for most of cases and stay fairly competitive for the rest of cases. And most
importantly, our methods are more general in applications than theirs. The main reason for
this is that our nonparametric regression model can model linear profiles quite well with only
a slight tradeoff of efficiency when compared to parametric regression methods.

This study extends the framework of statistical process control to more general
applications. However, for many applications, some models other than the model studied in
this project may be more appropriate. For example, in-control profiles need not have the same
mean function. Loosely speaking, some variations are allowed as part of the common-cause
variation. How to develop suitable profile monitoring schemes for such processes is currently
under study.

The profile monitoring is a useful SPC technique and a promising area of research. More
statistical methods, models, and ideas are needed. Curve data analysis techniques given in
Ramsay and Silverman (1997) may be useful here.
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