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一、中文摘要 

 

針對高效能的微陣列技術中的隨機

性，我們需要應用統計方法來發展微陣列

資料的的型態發掘，用以提供生物學及醫

學研究的深入洞悉。我們這三年的長期計

劃將發展一系列新的統計工具，來分析微

陣列產生的基因表現資料。在進行微陣列

資料探勘與知識發掘工作中，我們將面臨

下列的主要議題。 

第一步是選取特徵表示，用來定義基

因微陣列資料的主要特徵型態。對於具有

時間性的資料，多重解析法，例如小波，

可以用來作特徵表示。對於不具時間性的

資料，則可運用不同的距離測度和離散法

來作特徵表示。接著，非線性維度減化的

技巧可以進一步應用來調整距離測度和尋

找資料適合的維度。這些技巧可以整合群

集分析的方法，包含多元尺度法，階層式

群聚法等等，作資料的探索分析。 

下一步是進行監督式分類。由於現在

的微陣列資料只有數百個陣列，但卻有超

過數千個基因表現概廓，因此有需要篩檢

或濾除出管家基因或無資訊基因。為了解

決這些分類問題的困難，我們可以整合先

驗訊息和其它相關的資訊到進階的分類法

中，來分類樣本和基因的功能。交叉認証

法可以用來評量這些方法的預測誤差。 

最後，在這後基因體世代中，我們還

需要發展新的統計工具，從微陣列資料中

推論基因的反應路徑。針對微陣列資料的

特性，我們將提出新的統計觀點。這些新

的方法將會與現有的方法相比較，找出優

缺點。我們也將同時應用國際和國內研究

團隊所產生的互補 DNA 晶片和寡核甘酸晶

片資料，進行我們的統計研究。 

 

關鍵詞：資料探勘，知識發掘，特徵表示，

多重解析分析，小波，群集分析，非線性

維度減化，分類法，先驗訊息，預測誤差，

交叉認証，反應路徑分析。 

 

Abstract 

 
Due to the inherent randomness in the 

high throughput technique of microarray, 
pattern discovery by statistical methods are 
important to provide insights for biological 
and medical studies.  This three-year project 
is hence aimed at exploring a series of new 
statistical tools for analyzing gene expression 
data generated by microarray.  We will 
focus on the following major issues involved 
in the tasks of data mining and knowledge 
discovery for microarray data.   

The first is regarding the feature 
representation to define main patterns for 
microarray data.  For data with time courses, 
multiresolution analysis, like wavelets, will 
be investigated.  For data without time 
course, different distance measures and 
discretization methods will be studied.  
Then, nonlinear dimension reduction 
techniques can be further applied to adjust 
the distance measures and search for intrinsic 
dimension.  These techniques can be 
integrated with cluster analysis for 
exploratory data analysis, including 
multidimensional scaling, hierarchical 
clustering, and so forth.   

 



 II

The next issue is about supervised 
classification.  Because current microarray 
data only have hundred arrays with 
expression profiles of more than thousands 
genes, it is important to filter or screen 
housekeeping or noninformative genes.  In 
order to solve the ill-posedness of these 
classification problems, prior knowledge and 
other related information will be 
incorporated with advanced classification 
methods to classify samples and the function 
of genes.  Prediction errors by 
cross-validation will be studied to evaluate 
the performance.  

Finally, it is intended to develop new 
statistical tools for inferring the pathways 
from microarray data in this post-genome era.  
New perspectives that emphasis the 
particular properties of microarray data will 
be addressed.  Comparisons of all these new 
methods with existing methods will be 
performed as well.  Both cDNA and 
oligonucleotide chips produced in 
international and local research groups will 
be studied for these methods. 

 
Keywords: Data Mining, Knowledge 
Discovery, Feature Representation, 
Multiresolution Analysis, Wavelets, Cluster 
Analysis, Nonlinear Dimension Reduction, 
Classification, Prior Knowledge, Prediction 
Error, Cross-Validation, and Pathway 
Analysis. 
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二、緣由與目的 

 

 The massive amonut of microarray data 
bring the big challenge of developing 
advanced data mining tools by statistical and 
computational methods, which motivate our 
great research interests in this three-year 
project.  In particular, these data are high 
dimensional because the sample number is far 
smaller than the gene number, which causes 
the curse of dimensionality and stimulates the 
development of new data analysis methods 
(Donoho 2000).  Therefore, this long-term 
project is aimed to develop new techniques to 
analyze microarray data generated by 
international and local research laboratories 
with state-of-art analysis tools and databases 
in the world for statistically pattern 
discovery.   
 Focusing on specific scientific problems, 
new data mining and knowledge discovery 
techniques will be developed and investigated.  
For example, filtering, screening, and 
exploratory data analysis of microarray data 
will be investigated.  Dimension reduction 
and visualization techniques will be invented 
to extract the genuine feature in these data.  
Integration of related databases and 
biological knowledge would be performed to 
verify and confirm new findings.  
Systematical methods for unsupervised 
clustering and supervised classification will 
be developed. 
 

三、結果與討論 

   

本三年期計畫到目前為止己完成9篇

論文如下。 

 

1. “Rapid divergence in expression between 
duplicate genes inferred from microarray 
data,” Trends in Genetics, 18, 12, 609-613, 
2002. 
 
2. “On Visualization, Screening, and 
Classification of Cell Cycle-Regulated Genes 
in Yeast,” The 14th International Conference 
on Genome Informatics (GIW2003), 344-345, 
2003. 
 
3. “Statistical Analysis of the Gene 

Expression for Non-synchronized Cell 
Cycles of Human Glioma Cells after Gamma 
Irradiation by cDNA Microarray,” Technical 
Report. 
 
4. "Evolution of the yeast protein interaction 
network," PNAS (Proceedings of the 
National Academy of Sciences of the United 
States of America), 100, 22, 12820-12824, 
2003. 
 
5. "Gene Expression Analysis Refining 
System (GEARS) via Statistical Approach: A 
Preliminary Report," The 14th International 
Conference on Genome Informatics 
(GIW2003), 316-317, 2003. 
 
 

6. "Supervised Motion Segmentation by 
Spatial-Frequential Analysis and Dynamic 
Sliced Inverse Regression," Statistica Sinica, 
14, 413-430, 2004. 
 
7. “Patterns of Segmental Duplications in the 
Human Genome,” Mol. Biol. Evol., 22, 1, 
135-141, 2005. 
 
8. “Explore Biological Pathways from Noisy 
Array Data by Directed Acyclic Boolean 
Networks,” Journal of Computational 
Biology, 12, 2, 170-185, 2005. 
 
9. “Gridding Spot Centers of Smoothly 
Distorted Microarray Images,” IEEE 
Transactions on Image Processing, accepted. 
 
 
四、計畫成果自評 

 

由上述的報告中，可以發現我們的研

究內容與原計畫相符，達成預期的目標。

我們將進一步將完成的技術報告投稿到學

術期刊發表，並進一步將這些技術應用到

實際的微陣列資料，提供更正確和有效的

統計分析。因此，本計畫的研究除了在學

術上分析方法的突破，也同時具備應用的

價值。 
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For more than 30 years, expression

divergence has been considered as a major

reason for retaining duplicated genes in a

genome, but how often and how fast

duplicate genes diverge in expression has

not been studied at the genomic level.

Using yeast microarray data, we show that

expression divergence between duplicate

genes is significantly correlated with their

synonymous divergence (K
S
) and also with

their nonsynonymous divergence (K
A
) 

if K
A

≤≤  0.3. Thus, expression divergence

increases with evolutionary time, and 

K
A

is initially coupled with expression

divergence. More interestingly, a large

proportion of duplicate genes have

diverged quickly in expression and the vast

majority of gene pairs eventually become

divergent in expression. Indeed, more than

40% of gene pairs show expression

divergence even when K
S

is ≤≤ 0.10, and 

this proportion becomes >>80% for K
S

>>  1.5.

Only a small fraction of ancient gene pairs

do not show expression divergence.

Published online: 01 November 2002

Expression divergence between duplicate
genes has long been a subject of great
interest to geneticists and evolutionists
[1–4]. Indeed, Ohno [2] and others [3,4]
had proposed expression divergence as 
the first step towards the retention of
duplicate genes. In the past, however,
studies of expression divergence were
usually conducted for a limited number 
of gene families, providing no general
picture of the rate of expression
divergence between duplicate genes in a
genome. Fortunately, a general picture
can now be seen thanks to the advent of
microarray gene expression technology
(Box 1) and the complete sequences of
many genomes. Indeed, using the
microarray technology, Ferea et al. [5]
showed that rapid change in gene
expression can occur in experimental
lineages of yeast.

These advances notwithstanding,
there remains the difficulty of dating the
divergence time between two duplicate
genes, which is needed for inferring the
rate of expression divergence. In a

pioneering study using microarray data
from Saccharomyces cerevisiae, Wagner [6]
found no significant correlation 
(−0.30, P = 0.18) between expression
divergence and protein sequence
divergence (d) between duplicate genes,
and concluded that expression divergence
and sequence divergence are decoupled.
This result, however, does not imply that
expression divergence and evolutionary
time are decoupled because d might not 
be a good proxy of divergence time.
Because the rate of amino acid
substitution varies tremendously among
proteins [7,8], no single d value can be
applied to date the divergence times of
different protein or gene pairs. By
comparison, the rate of synonymous
substitution is more uniform among 
genes [7,8], and so KS is a better proxy of
divergence time. We shall therefore rely
more on KS than d.

To avoid using correlated data points,
we selected independent pairs of duplicate
genes in the yeast genome (Box 2). 

For each gene family, we started with the
pair with the smallest KS and continued
selecting pairs with increasing KS,
because gene pairs with a small KS are
fewer than those with a large KS and
because a smaller KS can more accurately
reflect the time course of expression
divergence. Moreover, we selected gene
pairs where neither duplicate shows
strong codon usage bias, because this bias
can retard the increase of KS so as to make
KS a poor proxy of divergence time. Then
we analysed the expression divergence for
each gene pair using expression data from
microarray analyses (see Box 2).

Figure 1a shows a significant negative
correlation (−0.47, P < 2 ×10−5) between
�n[(1+R)/(1−R)] and KS. We used the
transformation �n[(1+R)/(1−R)] instead 
of R to change the scale to a more
appropriate one for a linear regression
analysis (Box 2); actually, a similar
correlation (−0.54) is obtained between
R and KS. A stronger correlation than this
is not expected because KS is only a crude

Rapid divergence in expression between duplicate genes

inferred from microarray data

Zhenglong Gu, Dan Nicolae, Henry H-S. Lu and Wen-Hsiung Li

A total of 208 cDNA microarray experiment
data points were compiled for this study. The
dataset represents the gene expression under
various developmental and physiological
conditions in the yeast life history (Table I). 

For some processes, more than one yeast
strain or one time course were studied and 
we randomly selected only one of them for
each process. Log2-transformed ratios of 
gene expression in experimental populations
to reference populations were used in 
the analysis.
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Box 1. Yeast microarray data

Table I. Studied processes and number

of data points in each process

Process Data

points

Ref.

Sporulation   9 [a]
Cell cycle 17 [b]
Zinc regulation   9 [c]
YPD growth 10 [d]
Diamide treatment   8 [d]
Nitrogen deletion 10 [d]
DTT treatment   8 [d]
H2O2 treatment 10 [d]
Menadione treatment   9 [d]
Diauxic shift   7 [e]
Heat shock   7 [d]
Hyper-osmotic shock   7 [d]
Different carbon resources   6 [d]
Amino acid starvation   5 [d]
Other experiments in response 86 [d]
 to environmental changes

STAT
註解
附件一



proxy of divergence time owing to the
considerable variation in synonymous
rate among genes [7,8]. As in [6], only a
weak correlation (−0.30, P = 4.57×10−9) 
is found between �n[(1+R)/(1−R)] and KA
(KA ≤ 0.70); the correlation is significant
because the dataset used is much larger
than that in [6]. The weak correlation is
not surprising because KA is not a good
proxy of divergence time, so that no
correlation between R and KA is expected
when KA becomes large. Indeed, Fig. 1c
shows no correlation (0.02, P = 0.77)
between �n[(1+R)/(1−R)] and KA for
KA > 0.30. However, a significant negative

correlation (−0.52) between the two
quantities is seen for KA ≤ 0.30 (Fig. 1b).
The range of KA ≤ 0.30 is somewhat
arbitrary, but the correlation coefficient
varies only from −0.49 for KA ≤ 0.25 to
–0.48 for KA ≤ 0.35. Thus, expression
divergence and KA are initially coupled 
to some extent. The same conclusions 
hold for Affymetrix microarray data, 
for which cross hybridization between
duplicate genes is a less serious 
problem (see Supplementary Figure at
http://download.bmn.com/supp/tig/
decemberAffymetrix.pdf); the dataset is
smaller than cDNA microarray data, 

so it was not used in the other analyses 
in this study.

In the above analysis, all experiments
were considered together; that is, R was
calculated over all data points. This
pooling of data might obscure the
relationship between expression
divergence and sequence divergence
because a pair of duplicate genes are not
necessarily involved in all of the
physiological processes tested. Note that 
if a gene pair is not involved in a process, 
it is unlikely to evolve expression
divergence in that process. For this reason
we now consider R separately for each of
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Open reading frames in the yeast genome (SGD, http://genome-
www.stanford.edu/Saccharomyces/) were grouped into different gene
families using a rigorous method [a]. Protein sequences of duplicate
genes were aligned using ClustalW [b] and the corresponding coding
regions were then aligned based on the protein alignment. The numbers
of substitutions per synonymous site (KS) and per nonsynonymous (KA)
site between duplicate genes were estimated using PAML [c] with
default parameters. We selected only gene pairs with KS ≤ 1.5 because
when KS becomes larger it is difficult to obtain a reliable estimate, owing
to repeated substitutions at the same site. Similarly, we restricted
KA to ≤ 0.70. The computer program CodonW (ftp://molbiol.ox.ac.uk/
cu/codonW.tar.Z) was used to calculate the effective number of codons
(ENC) for each gene studied.

Duplicate gene pairs were selected as follows: within each gene
family, starting from the pair with the smallest KS of greater than 0.01, 
we selected independent gene pairs; that is, pairs that share no genes in
common with other pairs. To avoid gene pairs with strong codon usage
bias, both genes in a selected pair must have an ENC > 35. Our study [a]
suggests that KS is substantially reduced by codon usage bias when
ENC < 32, but is only mildly affected when ENC > 35. In total,
400 duplicate gene pairs were selected.

Because all of the duplicate gene pairs encoding ribosomal 
proteins have strong codon usage bias, we consider the divergence 
in the flanking sequences instead of KS. For each gene pair, the 200 bp 
of both upstream and downstream flanking regions of both genes 
were extracted from gene annotation data. ClustalW was used to 
do the alignment, followed by minor manual adjustments. Genetic
distances were calculated using Tamura and Nei’s six-parameter
method [d]. The average of the genetic distances in upstream 
and downstream flanking regions is denoted as Dflank

(Supplementary Table 2 at http://download.bmn.com/supp/tig/
decemberTable2.pdf).

The Pearson correlation coefficient (R) of gene expression over all
data points in Table I in Box 1 was calculated for each selected gene pair
if the expression data were available for more than half of the
experiments studied for that pair (396 pairs were calculated,
Supplementary Table 3 at http://download.bmn.com/supp/tig/
decemberTable3.pdf). Linear regression analysis was used to investigate
the relationship between R and KS (KA). Because R is bounded by –1 and
1, the transformation �n((1+R)/(1−R)) was used and the normal linear
regression was then carried out between each pair of KS (KA) and the
transformed R. The statistical package of S+ was used.

Each of the first 9 processes listed in Table I of Box 1, each of 
which has eight or more data points, was also treated separately; 
for each process the Pearson correlation coefficient was calculated 
for each selected gene pair (Supplementary Table 3 at
http://download.bmn.com/supp/tig/decemberTable3.pdf).
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Box 2. Duplicate gene selection and linear regression analysis
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Fig. 1. Relationship between the correlation coefficient (R) of gene expression over all available data points and KS (KA) between duplicate genes. (a) A significant negative
correlation between �n[(1+R)/(1−R)] and KS for gene pairs with KS < 1.5. (b) A significant negative correlation between �n[(1+R)/(1−R)] and KA for gene pairs with KA ≤ 0.3. 
(c) No correlation between �n[(1+R)/(1−R)] and KA for gene pairs with KA > 0.3.



the first nine tests in Box 1, each of which
has eight or more time points.

To define ‘expression divergence’, 
we note that the correlation coefficient
between two duplicate genes is initially 1,
so we consider a value of 0.5 as sufficiently
low. Note that for R = 0.5, R2 is only 0.25,
so that knowing the pattern of expression
of one gene provides little information for
predicting the expression pattern of the
other gene. More importantly, we actually
define ‘expression divergence’by requiring
that the probability of observing the 
two smallest R values among the nine
processes is <0.05, given that the
population (true) correlation coefficient (ρ)
is 0.5; see Box 3 for the test method. This
definition is likely to underestimate the
true degree of divergence because it uses

only the information of two smallest
R values in the observed R values and
because it assumes that the gene pair is
involved in all of the nine processes
studied. Indeed, this definition is
stringent because, in effect, it requires at
least one or two negative R values among
the nine processes (Table 1). For example,
only 38% of the cases with one negative
R show ‘expression divergence’. Moreover,
none of the 54 pairs of duplicated
ribosomal protein genes in the yeast
genome is ‘divergent’under this criterion
(data not shown).

Table 2 shows that over 40% of the
non-ribosomal protein gene pairs studied
show divergent expression even when
KS ≤ 0.10 and the proportion becomes
>80% when KS becomes larger than 1.5.

The proportion of pairs with diverged
expression increases even more rapidly
with KA (Table 2). Clearly, expression
divergence has occurred quickly in many
of the gene pairs studied.

If we relax the definition of ‘divergent
expression’by setting ρ =0.6 instead of 0.5,
the proportion of pairs with divergent
expression increases with KS at an even
faster rate (Table 2). Indeed, more than
50% of the pairs studied show divergent
expression even when KS is ~0.10. The
synonymous rate is not known in yeast but
is probably higher than that in Drosophila,
which has been commonly taken as
15.6 × 10−9 nucleotide substitutions per
site per year [7]. Thus, KS = 0.1 would
correspond to less than 3.2 million years of
divergence time, implying a rapid rate of
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For each process under study, denote the n pairs of observations on the
expression levels of the two duplicate genes compared by Z = {zi: i = 1,
…, n, and zI = (xi,yi)

t}. From the sample, the correlation coefficient (R)
between x and y is calculated. We will assume that these n pairs 
of observations are independently, identically distributed as a 
bivariate normal distribution with a correlation coefficient (ρ) 
in the population. This assumption of normality has been checked 
by the Kolmogorov–Smirnov test on the Q–Q plot for
tanh–1(R) = {�n[(1+R)/(1-R)]}/2 in every process (Supplementary Table 4 
at http://download.bmn.com/supp/tig/decemberTable4.pdf).

With a large sample size n, the distribution of R can be approximated
as follows. We transform R and ρ to tanh–1(R) = {�n[(1+R)/(1-R)]}/2 and
tanh–1(ρ) = {�n[(1+ρ)/(1-ρ)]}/2. Then, the difference tanh–1(R) − tanh–1(ρ) is
approximately a normal variate with the following mean and variance
(Ref. [a] p. 433):

mean = ,

variance = 

Using this normal approximation, we can evaluate various probabilities.
For example, for –1 ≤ c ≤ 1, we can compute

P(c ρ,n} = P{R ≤ c ρ,n} = P{tanh–1(R) ≤ tanh–1(c) ρ,n}

=P{[tanh–1(R) – tanh–1(ρ) – u] / σ ≤ [tanh–1(c) – tanh–1(ρ) – u] / σ ρ,n}

≈P{Z ≤ [tanh–1(c) – tanh–1 (ρ) – u] / σ}

where Z has a standard normal distribution, which can be easily
evaluated.

For a small n, the parametric bootstrap can be used to find out the
distribution of R [b]. The mean and variance in the population are
estimated by the mean and variance in the sample, which are denoted as  

and . 
Given the population correlation coefficient ρ, a bootstrap sample,
Z* = {z*i: i = 1, …, n}, is obtained by simulating a bivariate normal

distribution with and . 
The correlation coefficient from the bootstrap sample Z* is computed
and denoted as R*. Repeating the resampling procedure B times, we
observe R*1, …, R*B. The empirical distribution of R*1, …, R*B is used to
approximate the distribution of R. In particular,

P(c ρ,n) = P(R ≤ c ρ,n) ,

where I{·} is a indicator function whose value is 1 when the event is true
and 0 otherwise. Because the data contain small sample sizes, we will
use this parametric bootstrap to estimate probabilities.

Now suppose that m processes are studied and there are nj pairs of
observations for each process, j = 1, …, m. From the above
approximation, we can evaluate the probability of Pj(c) = P(c ρ,nj}. Then,
we can find out the probability that there are κ R values observed among
the m processes that are ≤ c:

P{no R ≤ c ρ,m} = ,

P{only one R ≤ c ρ,m} =

,

P{at least two R values ≤ c ρ,m} = 1 – P{no R ≤ c ρ,m} – 

P{only one R ≤ c ρ,m} = Eqn [1]

and so forth.
Once we observe the sample correlation coefficients (R values) of

one gene pair in the m processes, we can use this parametric bootstrap
to evaluate the probability of observing the smallest R values given the
population correlation coefficient (ρ). For example, let the smallest two
R values be c1 and c2 with c1 ≥ c2 Then, we can replace c by c1 in Eqn [1].
Of course, by using the complete information of c1 and c2, we can obtain
a more precise probability:

P{at least one R ≤ c1 and one R ≤ c2 ρ,m}

=1 – P{no R ≤ c2  ρ,m} – P{only one R ≤ c2 and all other R values > c1 ρ,m} 

Eqn [2]

Note that Eqn [2] is always smaller than or equal to Eqn [1] with 
c = c1. All the probability computations in this paper were obtained 
using Eqn [2].
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expression divergence between duplicate
genes in yeast. A similar picture is seen 
for KA (Table 2).

There are two factors that tend to
underestimate the rate of expression
divergence. First, the nine processes
studied do not represent all the
physiological processes in yeast, and a
duplicate gene pair could have diverged in
one or more of the processes that have not
been studied, although it has not diverged
in any of the nine processes tested. This
factor is likely to have significantly
reduced our estimate of the rate of
expression divergence. Second, there is
the possibility of cross-hybridization of
cDNA probes when two duplicate genes
are highly similar in their cDNA
sequences. In view of the fact that many 
of the highly similar duplicate pairs
(KS <0.10) have shown one or more small
R values (data not shown), the extent of
cross-hybridization was probably not
serious. However, if it were not negligible,
the initial rate of expression divergence
would have been underestimated.

Alternatively, the noisiness of
microarray data tends to reduce the true

correlation (R) between the expression
levels of duplicate genes and thus tends 
to overestimate the rate of expression
divergence, especially in the early stage 
of divergence between duplicate genes.
Thus, although our definition of
expression divergence seems stringent for
the case of ρ = 0.5, the conclusion should be
taken with caution.

It is worth noting that a divergent
duplicate pair that has a large KS or KA
might already have gained expression
divergence when its KS or KA was still
small. Thus, a divergent pair with a large
KS or KA does not imply a slow rate of
expression divergence. It is also
interesting to note from Table 2 that 
the proportion of divergent duplicate 
gene pairs eventually becomes more 
than 80% as KS increases. As noted, 
we have considered only nine processes. 
If many more processes are considered,
the vast majority of duplicate genes 
will probably eventually become diverged
in expression.

There are, however, duplicate genes
that do not show divergent expression
even when KS is large; for example, genes
encoding proteasome components,
aminopeptidases, aldo/keto reductases
and ribosomal proteins. Ribosomal protein
genes have not been included in Fig. 1 and
Table 1, and have been treated separately
in Table 2, because they have strong codon
usage bias and their KS does not reflect 
the divergence time well. We therefore
consider instead the sequence divergence
(Dflank) in their flanking regions (Box 2).
Note that none of the ribosomal protein
gene pairs shows expression divergence
under the condition of ρ = 0.5 (Table 2).
Even under the condition of ρ = 0.6, their
rate of expression divergence is very slow,
compared with that for genes encoding
non-ribosomal proteins.

We have examined the functions of
quickly diverged gene pairs, that is, 
those pairs that have a KS < 0.3 but show
expression divergence (Supplementary

Table 1 at http://download.bmn.com/
supp/tig/decemberTable1.pdf). The
functions of many of these genes are still
unknown or have not been well studied.
However, we can see that these genes
include many membrane proteins such 
as substrate transporters, and many
enzymes such as aldehyde hydrogenase,
aldo/keto reductase, helicase and
phosphopyruvate hydratase.

In conclusion, because protein distance
(or KA) is not a good measure of divergence
time, it was not surprising that no
coupling of expression divergence and
protein distance was found previously.
However, an initial coupling of expression
divergence and KA does exist (Fig. 1b). 
KS is a better measure of divergence time
than KA, and the significant correlation of
expression divergence with KS suggests
that expression divergence increases with
divergence time. Most interestingly, many
duplicate genes in yeast have diverged
quickly in expression and the vast
majority of duplicate genes will eventually
become diverged in expression. However,
the rate of expression divergence varies
among duplicate genes. The majority of
duplicate genes such as many membrane
proteins and many enzymes have
diverged quickly in expression, whereas
ribosomal proteins, proteasome
components and some other proteins show
a slow rate of expression divergence.
Other duplicate genes show a moderate
rate of expression divergence. Clearly, a
proper analysis of microarray data can
shed much light on the rate and mode of
expression divergence of duplicate genes.
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Table 1. Numbers and proportions of gene pairs with expression divergence

(i.e. P < 0.05) for different numbers of negative R values in the nine processes studied.

Number of R Number of gene Gene pairs with P <<<< 0.05
a

% Gene pairs with P <<<< 0.05
a

values pairs ρρρρ = = = = 0.5 ρρρρ = = = = 0.6 ρρρρ = = = = 0.5 ρρρρ = = = = 0.6

0 43 0 0 0 0
1 66 25 49 38% 74%
2 70 61 70 87% 100%
≥3 217 217 217 100% 100%

aThe ρ value is the criterion for ‘expression divergence’.

Table 2. Proportion of gene pairs with

expression divergence
a
 in different K

S
 and

K
A
 intervals.

ρρρρ K
S
 Intervals

0.01–0.1 0.1–0.3 0.3–1.0 1.0–1.5 >1.5
0.5 0.43 0.55 0.50 0.77 0.81
0.6 0.52 0.55 0.70 0.86 0.89

K
A
 Intervals

0–0.05 0.05–0.1 0.1–0.25 0.25–0.5 >0.5
0.5 0.45 0.53 0.81 0.85 0.76
0.6 0.55 0.71 0.89 0.92 0.85

D
flank

 Intervals (Ribosomal protein

genes)

0–0.1 0.1–0.6 0.6–1.0 1.0–1.5 >1.5
0.5 NAb NA 0 0 NA
0.6 NA NA 0.02 0.25 NA

aThe criterion for expression divergence is that the
probability of observing the two smallest R values in
the nine tests studied is less than 0.05, given the
population correlation coefficient is ρ.
bNA = not applicable.
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Techniques & Applications

The detection of single nucleotide

polymorphisms by PCR is necessary for

many types of genetic analysis, from

mapping genomes to tracking specific

mutations. This technique is most

commonly used when polymorphisms

alter restriction endonuclease 

recognition sites. Here we describe a

web-based program, dCAPS Finder 2.0,

that facilitates the design of mismatched

PCR primers to create or remove a

restriction endonuclease recognition site

relative to the polymorphism being

analyzed.

Published online: 01 November 2002

Molecular genetic research relies heavily
on the ability to detect polymorphisms in
DNA. These molecular markers range
from large deletions and rearrangements
to single nucleotide polymorphisms
(SNPs) [1]. Before the advent of
polymerase chain reaction (PCR)
technology [2], restriction fragment
length polymorphism (RFLP) analysis
required Southern blots of restricted
genomic DNA [3]. PCR technology has led
to a more rapid, less expensive version of
RFLP analysis using cleaved amplified
polymorphic sequence (CAPS) markers [4].
However, both RFLP and CAPS analysis
require that the SNP creates or removes 
a restriction endonuclease recognition
site. Because this is not always the case, 
a variety of techniques have been
developed to genotype SNPs in an
enzyme-independent manner [1]. Many of
these techniques require specialized
detection equipment and/or labeled PCR
primers that cost more than standard

primers. Derived cleaved amplified
polymorphic sequence (dCAPS) analysis,
widely used in the plant molecular
genetics community, uses mismatches in
one of the two PCR primers flanking the
SNP to create or remove a restriction
endonuclease recognition site in one of 
the two haplotypes being assayed [5,6]
(Fig. 1). In this paper, we present a
web-based program, dCAPS Finder 2.0,
that facilitates the design of these 
dCAPS primers.

dCAPS Finder 2.0

The dCAPS marker technique was
originally developed as a method for

changing a SNP into an RFLP (see [5,6]
and references within) (Fig. 1). The
technique can also be used to modify an
existing RFLP such that a less expensive
restriction endonuclease can be used for
SNP analysis. Because dCAPS primers
use the same chemistry as regular PCR
primers, there is also a cost advantage of
this technique over more sophisticated,
enzyme-independent methods of SNP
analysis. The biggest difficulty for
designing dCAPS primers lies in
identifying restriction endonuclease
recognition sites and accompanying
primer mismatches. To facilitate this
technique, a Macintosh-based computer

Web-based primer design for single nucleotide

polymorphism analysis

Michael M. Neff, Edward Turkand Michael Kalishman

6 Wagner, A. (2000) Decoupled evolution of coding
region and mRNA expression patterns after gene
duplication: implications for the
neutralist-selectionist debate. Proc. Natl. Acad.
Sci. U. S. A. 97, 6579–6584

7 Li, W-H. (1997) Molecular Evolution,
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(a)

CRY1: 5′ CGTGAATCTTTTCCTGAAATCTATTGGTCTCAGGGAGTATT3′

3′ GCACTTAGAAAAGGACTTTAGATAACCAGAGTCCCTCATAA5′

cry1-102: 5′ CGTGAATCTTTTCCTGAAATTTATTGGTCTCAGGGAGTATT3′

3′ GCACTTAGAAAAGGACTTTAAATAACCAGAGTCCCTCATAA5′

EcoRI recognition site: 5′GAA   T   TC3′

3′CTT   A   AG5′

(b)

Mis-matched primer: 5′ CGTGAATCTTTTCCTGAA   T   T3′

CRY1 PCR product digested with EcoRI: 
5′ CGTGAATCTTTTCCTG    AA   T   TCTATTGGTCTCAGGGAGTATT3′

3′ GCACTTAGAAAAGGACTT   A   A   GATAACCAGAGTCCCTCATAA5′

cry1-102 PCR product digested with EcoRI: 
5′ CGTGAATCTTTTCCTGAA   T   TTTATTGGTCTCAGGGAGTATT3′

3′ GCACTTAGAAAAGGACTT   A   AAATAACCAGAGTCCCTCATAA5′

Fig. 1. Derived cleaved amplified polymorphic sequence (dCAPS) analysis uses a mismatched PCR primer to create 
a restriction fragment length polymorphism (RFLP) based on the single nucleotide polymorphism (SNP) being
analyzed. (a) The cry1-102 SNP (bold, italic letters) does not create an EcoRI-based RFLP because of one mismatch in
the EcoRI recognition site (bold, underlined letters). (b) A primer containing this mismatch (bold, underlined letter)
allows the amplification of PCR products that generate an EcoRI -based RFLP that is dependent on the cry1-102 SNP.
Red boxes show sequences that are not cleaved by EcoRI. Green boxes represent sequences that are cleaved by EcoRI.
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To study the evolution of the yeast protein interaction network,
we first classified yeast proteins by their evolutionary histories into
isotemporal categories, then analyzed the interaction tendencies
within and between the categories, and finally reconstructed the
main growth path. We found that two proteins tend to interact
with each other if they are in the same or similar categories, but
tended to avoid each other otherwise, and that network evolution
mirrors the universal tree of life. These observations suggest
synergistic selection during network evolution and provide in-
sights into the hierarchical modularity of cellular networks.

B iological networks are the basis of cellular functions (1, 2).
Understanding network evolution may shed light on the

hierarchical modularity, scale-free property, and various uses of
the building blocks of biological networks (3–12). The yeast
protein interaction network is one of the best annotated complex
networks to date (13–17). Previous studies on the evolution of
this network focused either on gene duplication and molecular
evolution at the protein level (9, 10) or on the global statistical
properties (12). Neither approach can delineate the network
evolutionary path, and there is no other comparable protein
interaction data for the system-level comparison approach (5).
Therefore, uncovering the growth patterns and the evolutionary
path of the protein interaction network is a serious challenge (3,
4, 6, 7, 9, 12).

Parts of the present yeast protein interaction network would
have been inherited from the last common ancestor of the three
domains of life: Eubacteria, Archaea, and Eukaryotes. Thus, an
analysis of the evolution of the yeast protein interaction network
may provide new insights into the origin of eukaryotic cells
(18–21), which has been a controversial issue.

A key question in the evolution of biological complexity (6, 7,
9, 12, 21, 22) is, how have integrated biological systems evolved?
Darwinists (21, 23) proposed natural selection as the driving
force of evolution. However, the striking similarities between
biological and nonbiological complexities have led to the argu-
ment that a set of universal (or ahistorical) rules account for the
formation of all complexities (22, 24, 25). The yeast protein
interaction network is an example of a complex biological system
and contributes to the complexity at the cellular level (26). By
analyzing the growth pattern and reconstructing the evolution-
ary path of the yeast protein interaction network, we can address
whether or not network growth is contingent on evolutionary
history, which is the key disagreement between the Darwinian
view and the universality view (22, 23, 27).

In this article, we studied how the yeast protein interaction
network has evolved. We used graph theory to model the yeast
protein interaction network. Each yeast protein is a node in the
graph. Each pairwise interaction is a link between two nodes.
Evolution of the yeast protein interaction network can then be
inferred by analyzing the growth pattern of the graph. We
classified all of the nodes (proteins) into isotemporal categories
based on each protein’s orthologous hits in several groups of
genomes that are informative for yeast’s evolutionary history.
This scheme gives each protein a binary (b) value representing
its evolutionary history. Proteins from the same isotemporal
category share similar evolutionary histories. We then analyzed
the interaction patterns within and between these isotemporal

categories. Finally, we inferred the main path of the network
evolution from six major isotemporal categories.

Materials and Methods
Data Collection. Genomic information of Saccharomyces cerevisiae
was downloaded from the Saccharomyces Genome Database
(ftp:��genome-ftp.stanford.edu�pub�yeast�data�download) on
August 13, 2002. Protein interaction data were obtained from the
Comprehensive Yeast Genome Database at the Munich Infor-
mation Center for Protein Sequences (MIPS) (http:��
mips.gsf.de�proj�yeast�CYGD�db�index.html) (28, 29) on May
28, 2002, and from the reliable subsets of data from high-
throughput screens (30). We excluded self-interactions and those
involving mitochondrion proteins. The combined data set con-
tains 6,633 interaction pairs. Orthologous analyses of the anno-
tated ORFs in the yeast genome were parsed out from the
clusters of orthologous groups (COGs) of proteins (ftp:��
ftp.ncbi.nih.gov�pub�COG) (31, 32) and the published ortholo-
gous analysis from the Bork group at the European Molecular
Biology Laboratory (EMBL) (30). Mitochondrion genes and a
few inconsistent orthologous assignments were removed from
the analysis.

Data Analysis. Protein interaction networks were treated as
undirected graphs in adjacency list format (33). Permutations of
the networks were carried out in the Chiba City Linux cluster in
the Mathematics and Computer Science Division of Argonne
National Laboratory (www.mcs.anl.gov�chiba). Presentation of
the network was performed by the program PAJEK (http:��
vlado.fmf.uni-lj.si�pub�networks�pajek) (34). Distance matrix-
based analyses were conducted in the R environment for statis-
tical computing and graphics (www.r-project.org) (35). The
neighbor-joining (NJ) tree was generated by PAUP* (http:��
paup.csit.fsu.edu) and presented by the program TREEVIEW
(http:��taxonomy.zoology.gla.ac.uk�rod�treeview.html) (36).

Statistical Analysis of Interaction and Traversal Patterns. To evaluate
the interaction tendencies within and between isotemporal
categories, we measured the deviation of each observed inter-
action frequency from its random expectation (37). The ob-
served interaction frequency between categories i and j, F(i,j)

obs, is
compared with the mean interaction frequency, F(i,j)

mean, of a series
of null models in which all proteins have the same connectivities,
but their interaction partners are randomly chosen (37) [termed
the Maslov–Sneppen 2002 (MS02) null models]. To describe the
deviations of the observed interaction frequencies from the
random expectations, we used Z scores, Z(i,j) � [F(i,j)

obs � F(i,j)
mean]�

�(i,j), where �(i,j) is the SD of the interaction frequency between
categories i and j in the MS02 null models.

Similarly, we used the Z scores to measure the deviation of the
average shortest path between two isotemporal categories from
the mean of a series of isomorphic MS02 null models. This

Abbreviations: MS02 null model, Maslov-Sneppen 2002 null model; NJ, neighbor-joining;
b, binary; d, decimal.
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isomorphic MS02 null model retained the same topology with
the original network. Network topology can greatly influence the
average shortest path. The MS02 null model could change the
total number of connected components in the original network
and gave uninterpretable Z scores. The isomorphic null model
was a simple method to exclude the topological influence on
traversal path, and it enabled us to evaluate the association
significance between two isotemporal categories.

Network Null Models. To generate an MS02 null model (37), the
original network was first converted to pairwise-interacting
nodes. These pairwise interacting nodes were then converted
into an array of symbols. Permutation of this array of symbols
was then used to generate a new list of pairwise-interacting nodes
(self-pairing was prohibited during the permutation), which was
then used to generate an MS02 null model in adjacency list
format.

To generate an isomorphic MS02 null model, nodes with the
same connectivity were concatenated into arrays of symbols.
Permutation was then conducted on the arrays of symbols for
each connectivity value. The original and the permutated arrays
of symbols were then used to generate a lookup table in which
each original node corresponded to a new node with the same
connectivity. Based on this lookup table, all of the nodes in the
original network were then replaced by the new nodes, resulting
in a permutated network with the same topology.

Calculation of Average Shortest Path. We slightly modified the
Dijkstra’s algorithm to compute the shortest path (33). For a
protein in isotemporal category i, its shortest path to isotemporal
category j is defined as its traversal distance to the nearest
neighbor in category j. The mean of the shortest paths to
category j of all proteins in category i is taken as the distance
from i to j, denoted as di3j. Distance from j to i, dj3i, is calculated
similarly. The average shortest path between categories i and j is
the average of di3j and dj3i.

Results
Isotemporal Classification of Proteins. To study the growth of the
yeast protein interaction network, we classified all yeast proteins
into isotemporal categories, based on the presence or absence of
their orthologous hits in each of the six groups of the universal
tree of life (38), namely hyperthermophilic eubacteria, other
eubacteria (excluding the hyperthermophiles), euryarchaeota,
crenarchaeota, fungi, and other eukaryotes (excluding fungi)
(Fig. 1). The first four groups are evolutionary pivotal groups
(19). The hyperthermophilic eubacteria and other eubacteria
may reflect one of the earliest splits in the eubacterial domain
(38–41). Likewise, crenarcheota and euryarchaeota represent
an early split in the archaeal domain (19, 38). We separated the
fungal genomes from other eukaryotes because they may reveal
recent evolutionary changes of yeast. For the purpose of or-
thologous analysis, the yeast genome is excluded from the groups
of fungi and other eukaryotes. We parsed out the orthologous
hits from the COGs (31) and another published orthologous
analysis (30). Because the proteins in each category share the
same or similar evolutionary histories, these categories might
have been added to the yeast genome at various temporal
intervals during evolution, and can be considered as isotemporal
categories.

We designed a b coding scheme to represent the isotemporal
categories (Fig. 1). The bits of the b coding scheme correspond
to the six chosen evolutionary groups. For each yeast protein
under study, the presence or absence of at least one orthologous
hit in the genomes of each evolutionary group is represented by
‘‘1’’ or ‘‘0.’’ Mathematically, this six-bit coding scheme gives 64
categories, but the yeast genome contains 42 categories with
nonrandom distributions because of evolutionary constraints

(see Fig. 4, which is published as supporting information on the
PNAS web site, www.pnas.org). For presentation convenience,
we used both b codes and their decimal (d) values. For example,
category b000011 is equivalent to category d3, which contains
proteins whose orthologs are found in the groups of fungi and
other eukaryotes.

Interaction Patterns in the Network. We constructed a credible
protein interaction network by using the manually curated
protein interaction pairs maintained at MIPS (28) and the
reliable subsets of data from high-throughput screens (30). The
generated protein interaction networks are treated as undirected
graphs. We excluded all self-interactions because we analyzed
the network growth from the perspective of node additions. For
simplicity, we also excluded the mitochondrion-coded proteins.
The generated network contains only 39 isotemporal categories,
with a biased coverage favoring the well conserved proteins in
categories b000011 and b111111 (see Fig. 5, which is published
as supporting information on the PNAS web site). This bias may
reflect the assumption that conserved proteins are functionally
more important than nonconserved ones, and the former de-
serve more experimental effort (37). In addition, interactions
between well conserved proteins can be confirmed by their
orthologs in other species (30).

We used Z scores to evaluate the interaction significance
within and between isotemporal categories, based on the MS02
null models (Fig. 2a). Positive Z scores indicate that observed
interactions are more frequent than random expectations; neg-
ative Z scores indicate the opposite. Therefore, large positive Z
scores indicate strong interaction tendencies, whereas large
negative Z scores indicate that proteins in the two categories
tend to avoid each other in the network. Because the protein
interaction network is treated as an undirected graph, the matrix
presentation of the Z scores of all categories is symmetric. The
diagonal distribution of large positive Z scores indicates that
yeast proteins tend to interact with proteins from the same or
closely related isotemporal categories. The observed intracat-
egory association tendencies are consistent with the intuitive
notion that a new function likely requires a group of new
proteins, and that the growth of the protein interaction network
is under functional constraints. For example, category b000011
(d3) contains the eukaryote-conserved nodes with intracategory
interaction tendency, Z(3, 3) � 7.1, indicating that nodes added

Fig. 1. Isotemporal classification of the yeast proteins. Isotemporal catego-
ries are designed through a binary (b) coding scheme. The b code represents
the distribution of each yeast protein’s orthologs in the universal tree of life.
Bit value 1 indicates the presence of at least one orthologous hit for a yeast
protein in a corresponding group of genomes, and bit value 0 indicates the
absence of any orthologous hit. The presented example is 110011 in the b
format and 51 in the d format. Orthologous identifications are based on COGs
at the National Center for Biotechnology Information (31) and the results of
the Bork group at the EMBL (30).
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during the eukaryotic expansion tend to interact among them-
selves. In addition, the preexisting network may also contain
clusters constrained by function, and many of these clusters have
been preserved during the network evolution. For example,
category b111111 (d63) may contain the most ancient nodes, and
Z(63, 63) � 13.6, which indicates that these nodes still tend to
interact among themselves. The result here suggests that evolu-
tion of the yeast protein interaction network has undergone
additions of clusters of nodes, which we term isotemporal
clusters (detailed below).

All observed negative Z scores are intercategorical. One of the
most interesting ones is Z(3, 63) � �9.1, which indicates that the
eukaryote-conserved proteins (b000011) tend to avoid the most
conserved proteins (b111111).

To support the above conclusions, we also calculated the
average shortest paths within and between the isotemporal
categories in the largest connected component of the yeast
protein interaction network. The above analysis considered only
direct association, whereas the average shortest paths can mea-
sure indirect association. We used Z scores to evaluate traversal
patterns within and between isotemporal categories, based on
the isomorphic MS02 null models. Although this isomorphic null
model is statistically overstringent, it is sufficient for evaluating
the traversal profiles of the isotemporal categories. The Z score
matrix shows that the intracategory traversal distances are
usually significantly below random expectations (Fig. 2b). Thus,
this analysis also shows that intracategory association tendencies
are stronger than intercategory association tendencies.

Reconstruction of the Main Network Evolutionary Path. We recon-
structed the main growth path of the network from the inter-
action patterns among the following six major isotemporal
categories: b000000, b000001, b000011, b001111, b110011, and
b111111. In our designed isotemporal categories, there are two
groups of genomes for each domain of life (Eubacteria, Archaea,
and Eukaryotes) (38). Categories b000011, b001111, b110011,
and b111111 contain identical orthologous hits in both groups of
genomes in each domain of life, and they are informative about
the root of the universal tree of life (19, 38). Categories b000001

and b000000 may reveal the recent evolutionary history of the
yeast. Furthermore, these six categories have large sample sizes.

We converted the Z score of intercategory interaction ten-
dency into distance (dz) through a logit-like transformation, dz �
1�(1 � eZ), which transforms the Z scores into the range (0, 1).
Positive Z scores correspond to small dz values because they
indicate that the observed intercategory interactions are above
random expectations. Conversely, negative Z scores correspond
to large dz values. From the dz distance matrix, we inferred an NJ
tree (42) that describes the intercategory interaction tendencies
of the major isotemporal categories (Fig. 3a). This tree is
essentially the blueprint that accounts for the expansion of the
protein interaction network, by means of the addition of groups
of proteins to the network at various periods during evolution.
The main assembling order of the major groups is represented
by the path from the ancient proteins (b111111) to eukaryote-
conserved proteins (b000011) and then to recent proteins
(b000001 and b000000). Assuming that there existed an ancestral
protein interaction network represented by the b111111 nodes,
and assuming that network evolution can be described by node
additions, the path from the ancient proteins to the recent ones
in the NJ tree would thereby describe the major path of the
network growth.

The positioning of b001111 (conserved between Archaea and
Eukaryotes) and b110011 (conserved between Eubacteria and
Eukaryotes) is consistent with the symbiotic hypothesis of the
eukaryotic origin that argues for an archaeal host and a eubac-
terial symbiont (43).

Likewise, through the transformation, d�z � 1�(1� e�Z), of
the Z scores of the average shortest paths, we inferred an NJ tree
with the same branching pattern (Fig. 3b). Therefore, by using
two independent measurements, we observed that network
evolution mirrors the universal tree of life.

Isotemporal Clusters in the Network. By using a single-linkage
clustering method (44), we isolated the isotemporal clusters in
the yeast protein interaction network by merging interacting
proteins from the same isotemporal category into one node (see
Fig. 6, which is published as supporting information on the PNAS

Fig. 2. Interaction patterns. (a) Z scores for all possible interactions of the isotemporal categories in the protein interaction network. For categories i and j, Z(i, j) �
[F(i,j)

obs � F(i,j)
mean]��(i, j), where F(i,j)

obs is the observed number of interactions, F(i,j)
mean and �(i, j) are the average number of interactions and the SD, respectively, in 10,000

MS02 null models (37). A cutoff value of 10 is chosen in this presentation. The data matrix is in Table 2, which is published as supporting information on the PNAS
web site. (b) Z scores for the average shortest paths of the isotemporal categories in the largest component of the analyzed protein interaction network. For
categories i and j, Z(i, j) � [d(i,j)

obs � d(i,j)
mean]��(i, j) where d(i,j)

obs is the observed average shortest path, d(i,j)
meanand �(i, j) are the averaged average shortest path and the SD,

respectively, in 500 isomorphic MS02 null models. A cutoff value of 5 is chosen in this presentation. The data matrix is in Table 3, which is published as supporting
information on the PNAS web site.
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web site). To estimate the clustering significance, we again used
the isomorphic MS02 null model. For most isotemporal catego-
ries with relatively large populations, the numbers of their
isotemporal clusters are significantly lower than the random
expectations (Table 1). This result further supports the role of
synergistic selection during network evolution. It is possible that
new proteins are randomly added to the network. A single new
addition to the network is more likely to be functionally irrele-
vant or deleterious, and tends to be filtered out during evolution,
whereas additions of several interacting new proteins are more
likely to be functional relevant and preserved. The observed
isotemporal clusters and the proposed synergistic selection are
consistent with the observed modularity in biological networks
(7, 45).

Discussion
Although we used the best annotated data available at the time
of this study, the problems of false-positive and false-negative
(14, 30, 46–50) data were not completely avoided. There is also
the biased coverage toward conserved proteins (30). All these
factors, however, likely affect the inter- and intracategory inter-
actions randomly and so may not alter our main conclusions.

Our isotemporal classification of yeast proteins is limited by
the sequence similarity search, the methods chosen to define
orthologous groups, and the number of genomes available. These

limitations, however, would largely affect the bits with 0 in the
b coding scheme and would contribute to the large sample sizes
of b000000 and b000001. Possibly, some b000011 proteins have
been misclassified as b000001, and some b000001 proteins have
been misclassified as b000000. As a result, some true b000011-
b111111 associations may have been misclassified as b000001-
b111111 or b000000-b111111. These misclassifications may af-
fect both b000000 and b000001 to a similar extent and therefore
may not drastically alter the inferred intercategory association
tendencies among these categories. In addition, misclassification
decreases intracategory Z scores, which means that the true
intracategory association is actually more significant than esti-
mated above.

The evolutionary origin of cellular life has been a controversial
issue (18, 20, 51). The endosymbiotic hypothesis (19, 43) pos-
tulates an archaebaterium as the host and a eubacterium as the
symbiont. From our observed significant intracategory associa-
tion for all isotemporal categories of proteins, the significant
separation tendency between b000011 (eucarya-conserved) and
b111111 (ancient) proteins, and the inferred path of the network
evolution, our result is strongly consistent with the endosymbi-
otic hypothesis. In addition, comparison of metabolic networks
is also consistent with this hypothesis (5, 52).

The key disagreement between the Darwinian view and the
universality view on the evolution of biological complexity is the
role of historical contingency (22, 27). Undoubtedly, efforts to
search for universal rules benefit our understanding on biolog-
ical complexity. However, by using the yeast protein interaction
network as an example, we observed a correlation between
network evolution and the universal tree of life. This observation
strongly argues that network evolution is not ahistorical, but is,
in essence, a string of historical events.

Although the turnover rate of the protein interaction network
is suggested to be very fast (9), our results suggest that many
isotemporal clusters can still remain well preserved during
evolution. The formation and conservation of isotemporal clus-
ters during evolution may be the consequence of selection for the
modular organization of the protein interaction network. The
progressive nature of the network evolution and significant
isotemporal clustering may have contributed to the hierarchical
organization of modularity in biological networks in general (7).
Because of the similarities between biological and nonbiological

Fig. 3. The main path of network growth. (a) An NJ tree based on dz � 1�(1 � eZ), where Z is the Z score for interaction tendencies from Fig. 2a. (b) An NJ tree
based on d�z � 1�(1 � e�Z), where Z is the Z score for the average shortest path from Fig. 2b. Both methods give the same branching pattern.

Table 1. Numbers and sizes of major isotemporal clusters

Isotemporal
categories

Cluster numbers
Average

cluster sizes

No. Z score P value Size Z score

000000 357 �6.2 �0.001 1.31 7.1
000001 272 �2.6 0.007 1.42 2.8
000011 264 �1.9 0.018 2.6 2.1
001111 46 �7.4 �0.001 2.13 10.9
110011 66 �4.1 �0.001 1.39 4.7
111111 199 �4.2 �0.001 1.67 4.9

Z scores and P values are calculated based on 1,000 isomorphic MS02 null
models. A three-dimensional presentation of the isotemporal clusters is pro-
vided in Fig 6.
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networks (1–3, 6, 7), isotemporal clustering and synergistic
selection may be relevant in the evolution of many complex
networks.
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Explore Biological Pathways from Noisy Array Data by Directed Acyclic

Boolean Networks
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Abstract

We consider the structure of directed acyclic Boolean (DAB) networks as a tool of exploring bio-
logical pathways. In a DAB network, the basic objects are binary elements and their Boolean duals.
A DAB is characterized by two kinds of pairwise relations: similarity and prerequisite. The latter is
a partial order relation, namely, the on-status of one element is necessary for the on-status of another
element. A DAB network is uniquely determined by the state space of its elements. We arrange sam-
ples from the state space of a DAB network in a binary array and introduce a random mechanism
of measurement error. Our inference strategy consists of two stages. First, we consider each pair of
elements, and try to identify their most likely relation. In the meantime, we assign a score, s-p-score,
to this relation. Second, we rank the s-p-scores obtained from the first stage. We expect that relations
with smaller s-p-scores are more likely to be true, and those with larger s-p-scores are more likely to
be false. The key idea is the definition of s-scores (referring to similarity), p-scores (referring to pre-
requisite), and s-p-scores. Like classical statistical tests, control of false negatives and false positives
are our primary concerns. We illustrate the method by a simulated example, the classical arginine
biosynthetic pathway, and show some exploratory results on a published microarray expression dataset
of yeast Saccharomyces cerevisiae obtained from experiments with activation and genetic perturbation
of the pheromone response MAPK pathway.
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1 Introduction

One great challenge of post-genomic research is to identify complex biological networks and pathways from

genome-wide data such as DNA sequences and expression profiles. This includes metabolic pathways,

protein-protein interaction networks, gene regulatory pathways, etc. Along with biological methods such

as phylogenetic profile and Rosetta Stone, see Eisenberg et al. (2000), McGuire and Church (2000),

computational methods have been developed as powerful data-mining tools in the study of genomics.

Clustering is one such important technique to group genes and samples from microarray data; see Eisen

et al. (1998), Ben-Dor et al. (1999), Alon et al. (1999). A central component of a clustering algorithm is

the definition of similarity scores, either from a biological perspective or from a statistical perspective. We

note that the relation of similarity between two biological elements such as proteins or genes is symmetric

in nature. On the other hand, a biological process may include a cascade of reactions to environmental

factors and regulation of protein syntheses. Thus concepts other than similarity are necessary for a

complete description of pathways.

Data type is another consideration in the modelling of networks. In this article, we consider binary

variables because we can always discretize continuous variables. In the presence of noise, careful discretiza-

tion can even denoise to some degree. One such example can be found in Xing and Karp (2001). The

use of Boolean networks has a long history in literature. Kauffman (1977), Kauffman (1979) considered a

dynamic version of Boolean networks. A review of models of genetic regulatory systems including Boolean

networks can be found in De Jong (2002). Based on the structure of Boolean networks, we introduce a

new model for measurement error and propose a simple technique to infer pairwise relations between

elements from noisy array data.

We note that Bayesian networks is a much more sophisticated and complete model to describe biological

pathways than the method proposed in this article. For example, variables in a Bayesian networks can

2



be either discrete or continuous. Bayesian networks is a structure that contains directed relations among

elements. It has been extensively studied in the last two decades; see Pearl (1988) and Jensen (1996).

Its structure is characterized by two components. The first component is a directed acyclic graph whose

vertices correspond to random variables. The second component describes a conditional distribution for

each variable, given its parents in the graph. Murphy and Mian (1999) and Friedman et al. (2000) applied

Bayesian network models to analyze microarray expression data. The family of Bayesian networks is fairly

large and the number of DAGs is super-exponential. Although some algorithms searching for Bayesian

networks have been developed, see Heckerman et al. (1995), Spirtes et al. (2000a), the learning of Bayesian

networks is a challenging task without a priori knowledge. Besides, to achieve high accuracy of estimation,

sample sizes of several hundred are required even for relatively sparse graphs, see Spirtes et al. (2000b).

The simple model considered in this article takes some aspects of Bayesian networks and serves as a tool

of exploratory data analysis for array data.

Specifically we consider the structure of directed acyclic Boolean (DAB) networks as a tool of exploring

biological pathways. In a DAB networks, the basic objects are binary elements and their Boolean duals.

A DAB is characterized by two kinds of pairwise relations: similarity and prerequisite. The former

represents a pair of elements with identical on-off states. The latter is a partial order relation, namely,

the on-status of one element is prerequisite for the on-status of another element. A DAB networks is

uniquely determined by its state space: all possible on-off states subject to the pairwise relations. We

arrange samples from the state space of a DAB network in a binary array, and then introduce a random

mechanism of measurement error. This results in a noisy array. Our goal is to reconstruct the DAB

networks from the noisy array data.

Our inference strategy consists of two stages. First, we consider each pair of elements, and try to

identify their most likely relation. In the meantime, we assign a score, s-p-score, to this relation. Second,
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we rank the s-p-scores obtained from the first stage. We expect that those relations with smaller s-p-scores

are more likely to be true, and those with larger s-p-scores are more likely to be false. The key idea is the

definition of s-scores (referring to similarity), p-scores (referring to prerequisite), and s-p-scores (by

model selection). Like classical statistical tests, control of false negatives and positives are our primary

concerns.

The s-p-scoring method is one kind of exploratory data analysis, and focuses on pairwise relations.

After the ranking of pairwise relations, experts’ knowledge may be incorporated. Depending on data, we

expect to reconstruct all or partial sub-structures of a network. If we set an upper bound to the number

of E-M iterations involved, the computational complexity of the procedure is O(m2 log m), where m is the

number of elements in a network.

The rest of the paper is organized as follows. In Section 2 we describe the structure of the model.

In Section 3 we explain the s-p-scoring method. In Section 4 we illustrate the method by a simulated

example, the classical arginine biosynthetic pathway, and show some exploratory results on the yeast

Saccharomyces cerevisiae pheromone response MAPK pathway using an expression dataset obtained from

experiments with activation and genetic perturbation. In Section 5 we discuss some relevant issues.

2 The model

The structure of directed acyclic Boolean (DAB) networks Suppose we are concerned with m

elements, G1, G2, · · ·, Gm, each taking two states: on and off. These elements are abstracts of biological

objects such as genes, mRNAs, proteins, environmental conditions, or a mixture of them. If an element

is measured on a continuous scale or has more than two expression levels, then we need to discretize it

and encode it by binary variables. We will come back to this issue later. The theory of directed graphs is

helpful for the description of our model; we refer readers to Brightwell (1997) for relevant results on this

subject. We generate a graph with 2m vertices or nodes, G1, G2, · · ·, Gm, and their Boolean duals Ḡ1,
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Ḡ2, · · ·, Ḡm, representing on-and-off state of the m elements, and this is referred to as the ground-set.

We refer to a node A and its dual Ā as a Boolean pair.

We define a prerequisite relation between a pairs of elements A and B as follows: A is prerequisite for

B if the on-status of A is necessary for the on-status of B, and we denote it by A ≺ B. The prerequisite

relation is a partial order. It is transitive on the ground-set, namely, A ≺ C and C ≺ B implies A ≺ B.

Also it is irreflexive in the sense that we never have A ≺ Ā. In addition, we assume that the dual of each

partial order relation is also true, i.e. B̄ ≺ Ā is true if and only A ≺ B is true. Similarly, we have the

following three pairs of dual relations: Ā ≺ B̄ with B ≺ A; A ≺ B̄ with B ≺ Ā; and Ā ≺ B with B̄ ≺ A.

We graphically represent a partial relation A ≺ B by drawing an arrow from the vertex A to B. It is not

economical to include all the arcs in the directed graph due to the transitive property of partial orders.

An ordered pair (A,B) is called a covering pair if there exists no vertex C such that A ≺ C and C ≺ B.

Thus it suffices to represent all partial orders by arrows between covering pairs, and this is referred to

as the diagram of the directed graph. It is well known that the diagram of a partial order is acyclic. In

addition, no path exists to connect a Boolean pair in the diagram of a DAB because we never have A ≺ Ā.

Another relation between pairs of elements is similarity. Two elements A and B are ‘similar” if they

are on and off simultaneously, and this is denoted by A ∼ B. They are negatively “similar” if they are

on and off in the opposite way, and this is denoted by A ∼ B̄. In the absence of measurement error, it

is a trivial relation. But in practice, the presence of measurement error complicates the situation and it

needs to be inferred from the data.

We use “—” to connect two “similar” elements in the diagram. Figure 1 shows a directed acyclic

Boolean network, which has seven elements with one similar and eleven prerequisite relations. Another

way to identify a DAB is to consider the on-off states of its elements. There are in total 27 = 128 states

for a seven-element DAB. Only thirteen of these states are compatible with the twelve pairwise relations
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in the above example. We enumerate them in Table 1, where “0” and “1” represent “off” and “on”

respectively. It is a subset of the 128 states. In general, a directed acyclic Boolean network consisting

of m elements corresponds to a unique subset of all 2m states. Even though not every subset of the 2m

states corresponds to a directed acyclic Boolean network, the number of DABs, like the number of DAGs,

is super-exponential.

Consider n samples generated from a directed acyclic Boolean network, i.e. we sample with replacement

from the state space compatible with the networks; Table 1 shows the compatible states for the above

example. We arrange the data in a matrix (yij), where i = 1, · · · , n, j = 1, · · · ,m, whose entries take

values of either 0 or 1. Table 1 is the transpose of (yij), and each row corresponds to an element and each

column corresponds to a sample.

Without measurement error, we can reconstruct the directed acyclic Boolean network in Figure 1

from Table 1 by identifying all the pairs with prerequisite or similar relations. This is carried out by

the following procedure. For each pair of elements, say, A and B, we count the four incidences of (A,B)

being (0, 0), (0, 1), (1, 0), and (1, 1) from the corresponding columns of (yij), and arrange them in a 2× 2

table; see the left of Table 2. We mark a cell “+” if the count is positive and mark it “0” otherwise.

Consequently, the six relations are characterized by the count patterns in Table 3.

Next we consider the issue of selection bias. In practice, we sample from all the possible states

compatible with a directed acyclic Boolean network. In the above example, we have only 13 cases. When

m is large, this number could be large, and possibly only a fraction of them are sampled. Then the issue

of estimableness arises. If we cannot have an exhaustive sample, i.e., some compatible states are missed in

observation, then the count strategy described above may lead to false positive pairwise relations, either

prerequisite or similarity. For example, if case 3 in Table 1 is missed from observations, then the count

strategy indicates C ≺ B, which is not consistent with the truth. Nevertheless, this strategy will not lead
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to any false negatives in the absence of measurement error.

Measurement error Next we introduce a mechanism of measurement error to the data sampled from

a directed acyclic Boolean network. This results in a more practical model for many biological data such

as expression levels. We assume that each entry in (yij) is switched to its opposite value according to a

misclassification probability p, independently with one another, i.e.

xij =

{
yij with probability 1− p ,
1− yij with probability p .

This creates the noisy array (xij), which are the observations.

Problem and pairwise structure Our goal is to reconstruct the directed acyclic Boolean network

from the array of binary data (xij). It is clear that the problem is equivalent to identifying all the pairs

of elements with estimable similarity or prerequisite relations.

3 Method

Our inference strategy consists of two stages. First, we consider each pair of elements, and try to find

their most likely relation. In the meantime, we assign a score, s-p-score, to this relation. Second, we rank

the s-p-scores obtained from the first stage. We expect that those relations with smaller s-p-scores are

more likely to be true, and those with larger s-p-scores are more likely to be false.

Probabilistic models for 2 by 2 tables To deal with measurement error, we resort to probabilistic

models. Instead of a full model including every element, we consider pairwise models in the first stage.

The count data in the 2 × 2 table on the left of Table 2 can be thought as being generated from a

multinomial distribution with four cells whose probabilities are q00, q01, q10, q11 respectively, as shown on

the right of Table 2, where q00 + q01 + q10 + q11 = 1. Then the six types of relations between elements A
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and B are reformulated as hypotheses on the probability patterns; see Table 4. Please notice that (q00,

q01, q10, q11) depend on both the structure of the DAB network and the sampling scheme.

Similar to (yij), we extract the data in (xij) for each pair of elements, say A and B, and arrange them

on the left of Table 5. Now the counts n00, n01, n10, n11 are not generated from the multinomial (q00,

q01, q10, q11), but from another multinomial (r00, r01, r10, r11) as shown on the right of Table 5, where

r00 + r01 + r10 + r11 = 1.

Missing data structure With measurement error, a part of m00 may leak to the other three cells. We

denote the re-distributed counts from m00 to the four cells by m00,00, m00,01, m00,10, m00,11. Analogous

notation is defined for m01, m10 and m11. This splitting pattern is shown in Table 6. Correspondingly,

their generating probabilities (q00, q01, q10, q11) are re-distributed as shown in Table 7, where we adopt

the notation qij,kl analogous to mij,kl. The two sets of counts and probabilities are linked as follows.

{
nij =

∑
k,l=0,1 mkl,ij ,

rij =
∑

k,l=0,1 qkl,ij ,
(1)

and {
mkl =

∑
i,j=0,1 mkl,ij ,

qkl =
∑

i,j=0,1 qkl,ij .

MLE and E-M algorithm The log-likelihood of the data is given, up to a constant, by the following

L =
∑

i,j=0,1

nij log rij , (2)

where the probabilities rij ’s are computed according to (1) and Table 7. Later we define s-scores and

p-scores via maximum likelihood estimates (MLE). Except for a constant, the log-likelihood of the full

data {mij,kl} is given by ∑
i,j,k,l=0,1

mij,kl log qij,kl , (3)

where qij,kl are those splitting probabilities in Table 7.
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To estimate the MLE, the celebrated E-M algorithm maximizes the likelihood of full data (3) rather

than that in (2); see Dempster et al. (1977), McLachlan and Krishnan (1997). In the E-step, we impute

the splitting counts by their conditional expectations calculated at the current value of the parameter by

the formula

E(p,q00,q01,q10,q11)(mij,kl|nkl) =
nkl qij,kl∑

i′,j′=0,1 qi′j′,kl
, (4)

where i, j, k, l = 0, 1. Under different hypotheses specified in Table 4, one or two probabilities of q00, q01,

q10 and q11 are zero. In the M-step, we update the value of the parameter by maximizing the conditional

expectation of the log-likelihood for the full data; See Li and Lu (2001) for details.

Pairwise scores We first consider a simpler problem than reconstructing a DAB network: what is the

most likely relation for a pair of elements?

Definition 1 For a pair of elements A and B,

• the s-scores sA∼B and sA∼B̄ are respectively the maximum likelihood estimates of p under the

diagonal model: q01 = q10 = 0 and q00 = q11 = 0;

• the p-scores pA≺B, pĀ≺B̄, pA≺B̄, and pĀ≺B are respectively the maximum likelihood estimates of p

under the triangular model: q01 = 0, q10 = 0, q00 = 0, and q11 = 0; cf. Table 4.

We compute s-scores and p-scores by the E-M algorithm described earlier. The heuristic of the definition

is that we use the MLE p̂ to measure the goodness of fit of each hypothesis: the smaller the score, the

more support to the corresponding hypothesis.

Next we need to choose one score out of the two s-scores and four p-scores for a pair of elements. In

other words, we need to select the hypothesis that is most consistent with the data. This is a problem of

model selection; see Schwarz (1978).

Definition 2 For a pair of elements A and B,
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• Between the two diagonal models, select the one that achieves the smaller s-score;

• Among the four triangular models, select the one that achieves the smallest p-score;

• For the diagonal model corresponding to the smaller s-score and the triangular model corresponding to

the smallest p-score, we compare their corresponding BIC values, namely, the penalized log-likelihoods

as follows:

BIC = − log likelihood +
d log n

2
,

where n is the sample size and d is the number of parameters. This number is two for a diagonal

model and is three for a triangular model. We choose the model with the smaller BIC value as the

most likely relation for the pair A and B, and define their s-p-score to be the score corresponding

to the most likely relation.

Please notice that s-p-score is one of the s-scores and p-scores, BIC values are only used to choose

the hypothesis. It is easy to understand why we select the smallest s-score and p-score. Notice that

each diagonal model is nested in two triangular models. To make the choice between a diagonal and a

triangular model, we need to take into account model complexity. We here adopt the technique of BIC

for model selection.

The basic idea of most powerful statistical tests is to minimize the chance of type II error (false

positive) subject to a constraint on the chance of type I error (false negative); see Lehmann (1986). Even

though the classical theory of hypothesis testing does not directly apply to our situation, its rationale

remains our guide. For each hypothesis in Table 4, we expect that the s-score or p-score has the following

property: it is a good estimate of the parameter p when the hypothesis is true; whereas it is considerably

biased upward when the hypothesis is false.
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Accuracy of estimation and control of false negative We next consider the statistical behavior of

the s-scores and p-scores under the null hypothesis. Without loss of generality, we take the hypothesis:

q01 = 0 for example. Notice that this is a composite hypothesis. In general, the maximum likelihood

estimate in a regular setting is both consistent and efficient, see Bickel and Doksum (1977).

Proposition 1 Suppose that the hypothesis A ≺ B, i.e. q01 = 0 holds. Then except for the singular point

at q00 = q11 = 0, the maximum likelihood estimate of p has the property of asymptotical normality, i.e.

√
n [p̂− p, q̂00 − q00, q̂10 − q10, q̂11 − q11]−→N(0, I−1) ,

where I is the Fisher information matrix,

I = −


E[∂

2logL
∂p2 ] E[∂2logL

∂p∂q00
] E[∂2logL

∂p∂q10
] E[∂2logL

∂p∂q11
]

E[∂
2logL

∂p∂q00
] E[∂2logL

∂q2
00

] E[ ∂2logL
∂q00∂q10

] E[ ∂2logL
∂q00∂q11

]

E[∂
2logL

∂p∂q10
] E[ ∂2logL

∂q00∂q10
] E[∂2logL

∂q2
10

] E[ ∂2logL
∂q10∂q11

]

E[∂
2logL

∂p∂q11
] E[ ∂2logL

∂q00∂q11
] E[ ∂2logL

∂q00∂q10
] E[∂2logL

∂q2
11

]

 .

It will take more than ten pages to write down the expression of I−1. In fact, the computation was carried

out by the symbolic calculation in MAPLE. Here we choose to only give the term corresponding to the

parameter p as follows:

p(1− p)(3p2q00 + 3p2q11 − p2q10 − 3pq00 − 3pq11 + pq10 + q11 + q00)
n(4p2q2

11 + 4p2q2
00 + 8p2q00q11 − 4pq2

11 − 4pq2
00 − 8q00pq11 + 2q00q11 + q2

11 + q2
00)

. (5)

In Figure 2, we plot the element of I−1 corresponding to p as a function of q00 and q01 in which p is fixed

to be 0.05. The only singularity point occurs at q10 = 1 and q00 = q11 = q01 = 0. In this case, one element

is house-keeping (on all the time), and the other one is silent (off all the time). By filtering out silent and

house-keeping elements, we can eliminate this kind of singularity for the sake of inference. Consequently,

we can find a bound on the inverse of the Fisher information matrix, and this means that the p-score will

be around p within an order 1/
√

n radius asymptotically.
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Control of false positive Next we look at how the p-score pA≺B behaves under the alternatives:

q01 > 0 versus the null q01 = 0. We study the asymptotic bias of the MLE.

Proposition 2 Let the parameters in the true model be (p, q00, q01, q10, q11), where q01 > 0. As the

sample size n →∞, the MLE (p̃, q̃00, q̃01, q̃10, q̃11) subject to q̃01 = 0 is given by the value that minimizes

the Kullback-Leibler divergence between the null and alternative:

D[{p, q00, q01, q10, q11}||{p̃, q̃00, q̃01 = 0, q̃10, q̃11)} = D[{rij}||{r̃ij}] =
∑

i,j=0,1

[−rij log r̃ij + rij log rij ],

where {rij} and {r̃ij} are respectively defined by {p, q00, q01, q10, q11} and {p̃, q̃00, q̃01 = 0, q̃10, q̃11} via (1)

and Table 7.

The concept of Kullback-Leibler divergence can be found in Cover and Thomas (1991). The proof lies in

the connection between likelihood and Kullback-Leibler divergence. When n −→ ∞, nij/n −→ rij , and

maximizing the quantity in (2) becomes maximizing the following

∑
i,j=0,1

n rij log r̃ij ,

over {r̃ij}. This is equivalent to minimizing

∑
i,j=0,1

[−rij log r̃ij + rij log rij ] ,

which is D[{rij}||{r̃ij}]. Thus we complete the proof.

We expect that p̃ − p > 0 when q01 > 0. We have confirmed this result numerically. In the range of

0 < p < 0.45, 0 < q01 < 0.5, we set up a mesh and calculate p̃− p = pA≺B − p. Figure 3 shows the result

when p = 0.05 and q01 = 0.1.

Now we explain why we rather take p̂ than the likelihood ratio as the statistics to test the hypothesis.

Proposition 3 Suppose (p̃, q̃00, q̃01 = 0, q̃10, q̃11) and (p, q00, q01 > 0, q10, q11) are respectively the null and

alternative hypotheses. Denote the significance level by α, and the chance of type II error of the optimal

12



test by βn, where n is the sample size. Then

lim
α→0

lim
n→∞

1
n

log βn = −D[(p̃, q̃00, q̃01 = 0, q̃10, q̃11)||(p, q00, q01, q10, q11)] .

This result is a direct application of the Stein’s lemma; see Chap 12 of Cover and Thomas (1991). It says

that the chance of type II error (false positive) is characterized by the Kullback-Leibler divergence between

the two hypotheses. We plot the Kullback-Leibler divergence for the case p = 0.05, q00 = q11 = q10 in

Figure 4. It remains zero till q01 reaches 0.25. This indicates that the likelihood ratio test cannot give

good protection against false positives. In comparison, we plot p̃− p = pA≺B − p against q01 for the case

p = 0.05, q00 = q11 = q10 in Figure 5. It can be seen that the score immediately goes up as q01 moves

away from zero. Thus we rather adopt p-scores to play the role of test statistic.

Reconstruction of directed acyclic Boolean networks The s-p-scores are more meaningful if they

are generated from a directed acyclic Boolean network because we may discover significant pairwise

relations by ranking the scores in the ascending order. We collect those pairwise relations whose s-p-

scores smaller than a threshold and put them in a watch list. Known biological results are helpful for the

determination of threshold. For example, if we know the relation A ≺ B is true, then those s-p-scores

smaller than pA≺B should be in our watch list. Please notice that the more pairwise relations are included

in the watch list, the more likely we observe incompatible ones. In this case, no DAB network exists to

explain all the relations. We here mention one strategy, namely, maximum compatibility criterion:

choose the maximum threshold value so that the selected pairwise relations contain no conflict. Next we

illustrate the method by some examples.

4 Examples

Simulated example For the DAB example consisting of seven elements in Figure 1, we simulate a

data set of 76 samples with misclassification probability p = 0.05. The data can be arranged in an array
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similar to that obtained from microarray. Namely, each row in this array corresponds to an element, and

each column corresponds to a sample. We compute the 21 s-p-scores and sort them in Table 8. For each

pair of elements, we show the counts of ni,j in the last four columns, two s-scores, and four p-scores in

the middle. The sorted s-p-scores and their corresponding hypotheses are shown in the first two columns.

The true relations and false relations (in parentheses) cross each other by only one case.

Arginine biosynthetic pathway Boolean logic is a useful tool for the study of pathways. We here re-

visit the analysis of the experiment concerning the biochemical pathway for the synthesis of the amino acid

arginine in Neurospora crassa. It is a standard example to illustrate the one gene-one enzyme hypothesis,

see Russell (1995). The pathway is shown in Figure 6. Using genetic crosses and complementation tests,

we know the process involves four genes, which are designated argE+, argF+, argG+, and argH+ in a

wild-type cell. The experiments generated growth pattern of the mutant strains on media supplemented

with presumed arginine precursors. These intermediates are Ornithine, Citrulline, and Argininosuccinate.

Next we have another look at this example from the perspective of the boolean logic proposed in this

paper. First we rearrange the data from the experiments in an array, see Table 9. Please notice that

this state table is different from the one shown in Chapter 9, Page 275, in Russell (1995). The first four

columns are definitions of the mutants. The next four columns show the presence state of the four arginine

precursors when none of them is added externally. This can be deduced by the change of growth pattern

after external controls. If we cannot determine the on-off status of an intermediate, we place a question

mark.

The problem is to obtain the pathway in Figure 6 from Table 9. By checking with Table 3, we can

easily infer that either E+ ∼ Ornithine or E+ ≺ Ornithine, F+ ≺ Citrulline, F+ ≺ Argininosuccinate,

F+ ≺ Arginine, G+ ≺ Argininosuccinate, G+ ≺ Arginine, and H+ ≺ Arginine. These pairwise

relations are consistent with the sequence in Figure 6. Even though the heuristic arguments in Russell
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(1995) can do the same job, the pairwise Boolean logic is more general. Also we note that measurement

error has not been considered in the example. When measurement error is unavoidable, we still can make

inference by s-p-scoring. This is its advantage over no-measurement-error logic.

Yeast expression data To study the signaling and circuitry of multiple mitogen-activated protein

kinase (MARK) pathways, Roberts et al. (2000) reported the expression data of yeast Saccharomyces

cerevisiae for various knock-out cells under controlled experimental conditions. They particularly inves-

tigated four MARK pathways: pheromone, PKC, HOG, and filamentous growth. We mentioned earlier

that it is important to sample as much as possible from the state space of a network to avoid selection

bias. This view highlights why various kinds of activation and perturbation, as done in this experiment,

are valuable and necessary for the study of pathways. After activating relevant environmental factors (α-

factor in this study), a cascade of biological activities occur sequentially. We want to use DAB networks

to describe some aspects of these biological processes. We apply the s-p scoring method to explore the

expression profiles. Next we show some exploratory result on the pheromone pathway.

During mating of S. cerevisiae, haploid MATa and MATα cells communicate with each other through

secretion of pheromones α- and a-factor, respectively. Pheromone stimulates yeast cells to increase the

expression of mating genes and arrest cell division in the G1 phase of the cell cycle. The responses to

pheromone are initiated by a cell surface receptor that couples to a G protein and downstream MAPK

kinase cascade; see (Fig. 1A) in Roberts et al. (2000). In some experiments, MATa cells are exposed to

α-factor concentrations ranging from 0.15 to 500 nM. Cells with various knock-out genes are also tested.

The genome-wide expression levels are measured via the technique of cDNA microarrays. Namely, the

abundance of each mRNA with respect to the reference is obtained in the form of expression ratios.

In our analysis, we exclude those experiments carried out under a different condition of 2% galactose

for 3 hours, and two experiments measured at 0 and 15 minutes after the α-factor exposure. In total, we
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consider expression profiles from 45 experiments. We include the α-factor as an element, and discretize

it by setting it on if the concentration is larger than 0.50 nM and off otherwise. Figure 7 shows a DAB

network obtained from our analysis. The part of network close to the α-factor is well reconstructed.

That is, the pheromone α-factor activates the receptor Ste2p. Then receptor stimulation releases free

Gbg (Ste4p/Ste18p). The transcription factor Ste12p, which activates the promoters of mating, is also

identified as one element downstream of the MAPK cascade. The positions of those genes in the middle

of the pathway such as Ste20p, Ste11p, Ste7 are missed. FIG1 is a transcriptional reporter gene for

activation of the MAPK. Our analysis indicates its position in the pathway as shown in Figure 7. We

found that those genes whose expressions stay steady after some exposure to a concentration of α-factor

are more easily identified.

5 Discussion

Discretization The data types in the DAB networks are binary. If elements such as expression levels

are observed on a continuous scale, then we need to discretize them. In cDNA microarrays, a reference

sample is also hybridized to probe. The ratios of expression levels (or differences in the logarithm scale)

lead to a natural way of discretization. That is, an element is on if the log-ratio is larger than zero, and is

off otherwise. If other information are available for some elements, we can exploit them to achieve better

discretization. Consider expression levels of a gene A. Suppose the log-ratio of its expression is l−A in

a knock-out experiment 4A, and is l+A in an experiment in which we know it is over-expressed. Then

the threshold L must satisfy: l−A ≤ L ≤ l+A. Histograms of the expression levels are also helpful for

discretization. In the case that discretization is not perfect, the error mechanism introduced in the model

still allows us to run the s-p-scoring analysis. In Xing and Karp (2001), a mixture model is used as a

quantizer for their clustering method and the result is quite good.
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Coding issues Each element in a DAB network is a dichotomous variable. In practice, an element may

have more than two levels. In this case, we introduce multiple pseudo elements to code for its values. For

example, if an element A has four levels, then we code it by two pseudo elements as shown in Table 10. In

general, the information in a binary element is equivalent to a bit, and n bits can encode up to 2n values.

If samples are obtained from a time course, then it is possible to consider differences of expressions

between two consecutive time points. In this way, the dynamics of the networks are included in the

analysis. For networks with feedback, caution is necessary to apply the s-p-scoring analysis. One strategy

is to consider data in a time window, and then examine how the pairwise relations evolve as the time

window moves.

Computational complexity The key step of the procedure is the computation of s- and p-scores for

each of the m(m−1)
2 pairs of elements, where m is the number of elements. The E-M procedure used to

compute the MLE is an iterative algorithm. It converges at a linear rate that depends on the fraction

of missing data; see McLachlan and Krishnan (1997). The number of iterations required for convergence

varies depending on initial values of parameters. A common practice in numerical implementation is

setting an upper bound for iterations. Consequently, this keeps the O(m2) complexity for the computation

of MLE. According to our numerical experience, the convergence is quite fast for the 2 by 2 count data.

The sorting algorithm such as heapsorting can rank the m(m−1)
2 s-p-scores in O(m2 log m) time and in

place. Thus the overall complexity is O(m2 log m) in time and O(m2) in memory.

Software We have developed MATLAB code for the s-p-scoring method.
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The research is partially supported by the Functional Genomics Program, Institute for Pure and Applied

17



Mathematics, UCLA. Lu’s research is partially supported by the National Science Council in Taiwan. Li’s

research is partially supported by the CEGS grant from NIH.

References

Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D., and Levine., A. J. 1999. Broad

patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed

by oligonucleotide arrays. Proc. Nat. Acad. Sci. USA 96, 6745–6750.

Ben-Dor, A., Shamir, R., and Yakhini, Z. 1999. Clustering gene expression patterns. Journal of Compu-

tational Biology 6, 281–297.

Bickel, P. J. and Doksum, K. A. 1977. Mathematical Statistics : Basic Ideas and Selected Topics. San

Francisco : Holden-Day.

Brightwell, G. 1997. Partial orders. In L. W. Beineke and R. J. Wilson, editors, Graph Connections:

Relationships between Graph Theory and other Areas of Mathematics. Clarendon Press, Oxford.

Cover, T. M. and Thomas, J. A. 1991. Elements of Information Theory. Wiley.

De Jong, H. 2002. Modeling and simulation of genetic regulatory systems: a literature review. Journal of

Computational Biology 9, 67–103.

Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1–22.

Eisen, M., Spellman, P., Brown, P., and Botstein, D. 1998. Clustering analysis and display of genome-wide

expression patterns. Proc. Nat. Acad. Sci. USA 95, 14863–14868.

Eisenberg, D., Marcotte, E. M., Xenarios, I., and Yeates, T. 2000. Protein function in the post-genomic

era. Nature 405, 823–826.

18



Friedman, N., Linial, M., Nachman, I., and Pe’er, D. 2000. Using Bayesian networks to analyze expression

data. Journal of Computational Biology 7, 601–620.

Heckerman, D., Geiger, D., and Chickering, D. M. 1995. Learning Bayesian networks: The combination

of knowledge and statistical data. Machine Learning 20, 197–243.

Jensen, F. V. 1996. An Introduction to Bayesian Networks. University College London Press: London.

Kauffman, S. 1977. Gene regulation networks: A theory for their global structure and behaviors. In

Current Topics in Developmental Biology, volume 6, pages 145–182. Academic Press, New York.

Kauffman, S. 1979. Assessing the probable regulatory structures and dynamics of the metazoan genome. In

R. Thomas, editor, Kinetic Logic: A Boolean Approach to the Analysis of Complex Regulatory Systems,

volume 29 of Lecture Notes in Biomathematics,, pages 30–60. Springer-Verlag, Berlin.

Lehmann, E. L. 1986. Testing Statistical Hypotheses. New York : Wiley.

Li, L. and Lu, H. S. 2001. “Span” directed acyclic boolean networks from array data. Technical report,

Florida State University and University of Southern California.

McGuire, A. M. and Church, G. M. 2000. Predicting regulons and their cis-regulatory motifs by compar-

ative genomics. Nucleic Acids Research 28, 4523–4530.

McLachlan, G. J. and Krishnan, T. 1997. The EM Algorithm and Extensions. John Wiley & Sons: New

York, Chichester, Brisbane, Toronto, Singapore, Weinheim.

Murphy, K. and Mian, S. 1999. Modeling gene expression data using dynamic Bayesian networks. Technical

report, University of California at Berkeley, Department of Computer Science.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann: San Francisco.

19



Roberts, C. J., Nelson, B., Marton, M. J., Stoughton, R., Meyer, M. R., Bennett, H. A., He, Y., Dai, H.,

Walker, W. L., Hughes, T. R., Tyers, M., Boone, C., and Friend, S. H. 2000. Signaling and circuitry of

multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880.

Russell, P. J. 1995. Genetics. Harpercollins College Publisher.

Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6, 461–464.

Spirtes, P., Glymour, C., and Scheines, R. 2000a. Causation, Prediction, and Search. MIT Press, 2nd

edition.

Spirtes, P., Glymour, G., Kauffman, S., Scheines, R., Aimalie, V., and Wimberly, F. 2000b. Constructing

Bayesian network models of gene expression networks from microarray data. In Proceedings of the

Atlantic Symposium on Computational Biology, Genome Information Systems and Technology.

Xing, E. P. and Karp, R. M. 2001. Cliff: clustering of high-dimensional microarray data via iterative

feature filtering using normalized cuts. Bioinformatics 17, 306–315.

20



A

��@
@@

@@
@@

~~~~
~~

~~
~

E B C

��@
@@

@@
@@

����
��

��
��

F

��?
??

??
??

? D̄

��~~
~~

~~
~

G

Figure 1: Diagram of a directed acyclic Boolean network with seven elements and twelve pair relations.
Only arrows between covering pairs are shown.



Figure 2: The asymptotic variance of the MLE of p when p = 0.05. One singularity point occurs at
q10 = 1 and q00 = q11 = q01 = 0.



Figure 3: pA≺B − p, where p = 0.05 and q01 = 0.1. It confirms that pA≺B is larger than p when q01 > 0.
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Figure 4: The Kullback-Leibler divergence between the full model q01 > 0 and the triangular model
q01 = 0 against q01, where p = 0.05, q00 = q11 = q10.
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Figure 5: pA≺B − p against q01, where p = 0.05, q00 = q11 = q10.
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Figure 6: Arginine biosynthetic pathway. The four genes code for the enzymes (not shown) that catalyze
each reaction.



Figure 7: Some pairwise relations identified by s-p-scoring method from the expression data of yeast
Saccharomyces cerevisiae with knock-out and activation; see Roberts et al. (2000).



Table 1: The table of states for directed acyclic Boolean network shown in Figure 1.

case 1 2 3 4 5 6 7 8 9 10 11 12 13
A 0 1 1 1 1 1 1 1 1 1 1 1 1
B 0 0 1 1 1 1 1 1 0 0 0 0 0
C 0 0 0 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 0 1 0 0 1 0 1 0 0
E 0 0 1 1 1 1 1 1 0 0 0 0 0
F 0 0 0 0 0 1 1 1 0 0 1 1 1
G 0 0 0 0 0 0 0 1 0 0 0 0 1



Table 2: 2 × 2 tables for a pair of elements assuming no measurement error. The counts on the left are
regarded as being generated from the multinomial distribution on the right.

A / B 0 1
0 m00 m01

1 m10 m11

A / B 0 1
0 q00 q01

1 q10 q11



Table 3: Count patterns for the six pairwise relations assuming exhaustive sampling and no measurement
error.

A ∼ B
A / B 0 1

0 + 0
1 0 +

A ∼ B̄
A / B 0 1

0 0 +
1 + 0

A ≺ B, B̄ ≺ Ā
A / B 0 1

0 + 0
1 + +

Ā ≺ B̄, B ≺ A
A / B 0 1

0 + +
1 0 +

A ≺ B̄, B ≺ Ā
A / B 0 1

0 0 +
1 + +

Ā ≺ B, B̄ ≺ A
A / B 0 1

0 + +
1 + 0



Table 4: The six pairwise relations, their corresponding probabilistic hypotheses and s-scores, p-scores.

Relation Hypothesis scores
diagonal A ∼ B q01 = q10 = 0 sA∼B

similarity Ā ∼ B q00 = q11 = 0 sĀ∼B

triangular A ≺ B q01 = 0 pA≺B

prerequisite Ā ≺ B̄ q10 = 0 pĀ≺B̄

A ≺ B̄ q00 = 0 pA≺B̄

Ā ≺ B q11 = 0 pĀ≺B



Table 5: The 2× 2 count table for a pair of elements and their generating probabilities in the presence of
measurement error.

A / B 0 1
0 n00 n01

1 n10 n11

A / B 0 1
0 r00 r01

1 r10 r11



Table 6: Splitting counts caused by misclassification error.

A/B 0 1
0 m00,00 m00,01 m01,00 m01,01

m00,10 m00,11 m01,10 m01,11

1 m10,00 m10,01 m11,00 m11,01

m10,10 m10,11 m11,10 m11,11



Table 7: Splitting probabilities caused by misclassification error.

A/B 0 1
0 q00,00 = (1− p)2q00 q00,01 = p(1− p) q00 q01,00 = p(1− p) q01 q01,01 = (1− p)2 q01

q00,10 = p(1− p) q00 q00,11 = p2 q00 q01,10 = p2 q01 q01,11 = p(1− p) q01

1 q10,00 = p(1− p) q10 q10,01 = p2 q10 q11,00 = p2 q11 q11,01 = p(1− p) q11

q10,10 = (1− p)2 q10 q10,11 = p(1− p) q10 q11,10 = p(1− p) q11 q11,11 = (1− p)2 q11



Table 8: For the DAB in Figure 1, we generate 76 samples, and take p = 0.05. The true and false relations
(in parentheses) cross each other by only one case.

ranking hypotheses counts in cells
relation s-p-score q01 = q10 = 0 q00 = q11 = 0 q01 = 0 q10 = 0 q00 = 0 q11 = 0 n00 n01 n10 n11

C ≺ G 0.000 0.441 0.250 0.000 0.441 0.250 0.197 23 0 38 15
A ≺ G 0.000 0.441 0.138 0.000 0.441 0.079 0.138 6 0 55 15
A ≺ C 0.017 0.146 0.388 0.017 0.146 0.079 0.388 5 1 18 52
A ≺ D̄ 0.028 0.250 0.329 0.079 0.250 0.028 0.329 1 5 31 39
A ≺ E 0.030 0.342 0.237 0.030 0.342 0.079 0.237 5 1 41 29
B ∼ E 0.041 0.041 0.498 0.028 0.041 0.605 0.395 42 2 4 28
A ≺ F 0.054 0.309 0.270 0.054 0.309 0.079 0.270 4 2 37 33
F ≺ G 0.058 0.219 0.368 0.058 0.219 0.368 0.197 38 3 23 12
C ≺ D̄ 0.059 0.362 0.231 0.303 0.362 0.059 0.231 3 20 29 24
A ≺ B 0.060 0.329 0.250 0.060 0.329 0.079 0.250 4 2 40 30
C ≺ F 0.099 0.244 0.382 0.099 0.244 0.303 0.382 18 5 23 30

(C ≺ E) 0.112 0.319 0.349 0.112 0.319 0.303 0.349 18 5 28 25
D̄ ≺ G 0.120 0.388 0.257 0.197 0.388 0.257 0.120 23 9 38 6

(C ≺ B) 0.134 0.319 0.362 0.319 0.134 0.303 0.362 17 27 6 26
(Ē ≺ G) 0.148 0.296 0.401 0.197 0.296 0.401 0.148 36 10 25 5
(B̄ ≺ G) 0.180 0.309 0.388 0.197 0.309 0.388 0.180 35 9 26 6
(D ∼ F̄ ) 0.208 0.480 0.208 0.421 0.579 0.187 0.208 11 21 30 14
(D ∼ Ē) 0.301 0.484 0.301 0.394 0.606 0.301 0.288 17 15 29 15
(B ∼ D̄) 0.338 0.500 0.338 0.590 0.411 0.337 0.337 17 27 15 17
(B ≺ F ) 0.360 0.360 0.476 0.360 0.338 0.581 0.419 25 19 16 16
(E ≺ F ) 0.427 0.427 0.419 0.427 0.395 0.419 0.319 24 22 17 13



Table 9: The states of presence in the experiments of growth response.

presence of elements
Mutant strains E F G H Ornithine Citrulline Arginino-succinate Arginine

Wildtype 1 1 1 1 1 1 1 1
argE 0 1 1 1 0 0 0 0
argF 1 0 1 1 ? 0 0 0
argG 1 1 0 1 ? ? 0 0
argH 1 1 1 0 ? ? ? 0



Table 10: Coding an element with 4 expression levels by two pseudo elements.

Level 0 1 2 3
element A1 0 1
element A2 0 1 0 1


