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本報告含三篇完成之研究成果。 

 

 

一、A Bayesian Analysis of Mixture Modeling Using the Multivariate t 
Distribution 
 

此乃與博士生林宗儀教授（目前任教於東海大學統計系）及碩士生倪惠芬（目

前就讀台大博士班）合作的文章。本文已發表於 Statistics and Computing (an SCI  
journal)。其中英文之摘要如下。 

 

 

（一）、中文摘要 

t分佈的有限個體的混合模型被用來當常體分佈的混合模型的延伸。本文提

出t混合模型的貝氏參數推論。先驗分佈採用弱式的有資訊方式以避免後驗分佈

的不可積分，我們提出兩種有效的 EM-式的運算法用以計算後驗分佈的最高值。
馬可夫鏈蒙地卡羅法用來取得後驗分佈的參數估計值，用實際資料來展示貝氏法

優於最大概似法。 

 

 

（二）、英文摘要 

A finite mixture model using the multivariate t distribution has been shown as a 
robust extension of normal mixtures. In this paper, we present a Bayesian approach 
for inference about parameters of t-mixture models. The specifications of prior 
distributions are weakly informative to avoid causing nonintegrable posterior 
distributions. We present two efficient EM-type algorithms for computing the joint 
posterior mode with the observed data and an incomplete future vector as the sample. 
Markov chain Monte Carlo sampling schemes are also developed to obtain the target 
posterior distribution of parameters. The advantages of Bayesian approach over the 
maximum likelihood method are demonstrated via a set of real data. 
 
（三）、報告內容 

Finite mixture models introduced by Pearson (1894) have been a useful tool for 
modeling the data that are thought to come from several different groups with varying 
proportions. In the past two decades, tremendous improvements and applications have 
been made in across many research fields. The fundamental idea and usefulness of the 
mixture models are explained in McLachlan and Basford (1988) and Titterington 
(1985). A comprehensive introduction to the theory and recent advances can be found 
in McLachlan and Peel (2000). 

Historically, much effort has been devoted to the maximum likelihood (ML) 
approach for fitting the mixture models. It was first considered by Rao (1948), who 
used Fisher’s scoring method for a mixture of two normal distributions with equal 
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variance. The computation of ML estimates cannot be easily manipulated until the 
EM algorithm was introduced by Dempster et al. (1977). More recently, Peel and 
McLachlan (2000) considered how to model a mixture of multivariate t distributions. 
They provided the ECM algorithm for parameter estimation and showed the 
robustness of the model in clustering.  

Redner and Walker (1984) pointed out that the ML approach for finite mixture 
model could encounter unbounded likelihood in some special cases. Hathaway (1985) 
suggested that using simple constraints in an optimization problem can lead to a 
strongly consistent and global solution. Hosmer (1973) gave an example of including 
a portion of labeled observations for each component. However, both solutions are 
restricted to the univariate case. 

In recent developments of computational methods, Bayesian methods are 
considered an alternative way to deal with mixture models. Diebolt and Robert (1994) 
used data augmentation and Gibbs sampling as approximation methods for evaluating 
the posterior distribution and Bayes estimators. They also showed that the duality 
principle leads to stronger and more general results about the convergence of the 
simulated Markov chains and of the related moments. Richardson and Green (1997) 
considered a hierarchical prior that avoid the mathematical pitfalls of using improper 
priors in mixture model. More recently, Fruhwirth-Schnatter (2001) explored the 
MCMC output of the random sampler to find suitable identifiability constraints in 
dealing with label switching problems. 

In this article, we extend the ML approach of Peel and McLachlan (2000) to deal 
with a mixture of t distributions from Bayesian viewpoints. Since some observations 
could be missing in many practical situations, our approach is more general as it 
allows for some of the observed vectors to be partly known. For the sake of clarity, 
we only demonstrate one partly known individual and treat it as an incomplete future 
vector in the model. We compare the prediction and classification results on a real 
data set between ML and MCMC techniques via cross-validations. 

 
（四）、參考文獻 
Anscombe F.J. 1967. Topics in the investigation of linear relations fitted by the 

method of least squares. Journal of the Royal Statistical Soc B 29: 1-52. 
Basford K.E., Greenway D.R., McLachlan G.J., and Peel D. 1997. Standard errorsof 

fitted means under normal mixture. Computational Statistics 12: 1-17. 
Brooks S.P. and Gelman A. 1998. General methods for monitoring convergenceof 

iterative simulations. Journal of Computational and Graphical Statistics 
7:434-455. 

Campbell N.A. and Mahon R.J. 1974. A multivariate study of variation in twospecies 
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of rock crab of genus Leptograpsus. Australian Journal of Zoology 22:417-425. 
Van Dyk D.A., Meng X.L. and Rubin D.B. 1995. Maximum likelihood estimationvia 
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Gelfand A.E. and Smith A.F.M. 1990. Sampling based approaches to calculate 
marginal densities. Journal of the American Statistical Association 85: 398-409. 

Gelman A.E. and Rubin D.B. 1992. Inference from iterative simulation using multiple 
sequences. Statistical Science 7: 457-511. 

Gelman A., Carlin, J.B., Stern, H.S., and Rubin, D.B. 1995. Bayesian Data Analysis. 
Champmen & Hall, London. 

Hathaway R.J. 1985. A constrained formulation of maximum-likelihood estimation 
for normal mixture distributions. Annals of Statistics 13(2): 795-800. 

Hosmer D.W. 1973. A comparison of iterative maximum-likelihood estimates of the 
parameters of a mixture of two normal distributions under three different types of 
sample. Biometrics, 29: 761-770. 

Liu C.H. and Rubin D.B. 1994. The ECME algorithm: A simple extension of EM and 
ECM with faster monotone convergence. Biometrika 81: 633-648. 

Liu C.H. 1995. Missing data imputation using the multivariate t distribution.Journal 
of Multivariate Analysis 53: 139-158. 

Liu C.H. and Rubin D.B. 1995. ML estimation of the t distribution using EM and its 
extensions, ECM and ECME. Statistica Sinica 5: 19-39. 

Mardia, K.V., Kent, J.T. and Bibby, J. M., 1979. Multivariate analysis. Academic 
Press, Inc. London. 

McLachlan G.J. and Peel D. 1998. Robust cluster analysis via mixtures of 
multivariate t-distribution. In Lecture Notes in Computer Science, 1451, A. Amin, 
D. Dori, P. Pudil, and H. Freeman (Eds.). Berlin: Springer-Verlag, pp. 658-666. 



 5

McLachlan G.J. and Peel D. 2000. Finite Mixture Model. New York: Wiely. 
McLachlan G.J. and Basford, K. E., 1988. Mixture Models: Inference and Application 

to Clustering. New York: Marcel Dekker. 
Meng X.L. and Rubin D.B. 1991. Using EM to obtain asymptotic variancecovariance 

matrices: The SEM algorithm. Journal of the American Statistical Association 86: 
899-909. 

Meng X.L. and Rubin D.B. 1993. Maximum likelihood estimation via the ECM 
algorithm: A general framework. Biometrika 80: 267-278. 

Pearson K. 1894. Contributions to the theory of mathematical evolution. 
Philosophical Transactions of the Royal Society of London A 185: 71-110. 

Peel D. and McLachlan G.J. 2000. Robust mixture modeling using the t 
distribution.Statistics and Computing 10: 339-348. 

Raftery A.E. 1996. Hypothesis testing and model selection via posterior simulation. In 
practice Markov Chain Monte Carlo (eds W. R. Gilks, S. Richardson and D. J. 
Spiegelhalter), pp. 163-188. Chapman & Hall, London. 

Rao C.R. 1948. The utilization of multiple measurements in problems of biological 
classification. Journal of the Royal Statistical Society B 10: 159-203. 

Redner R.A. and Walker H.F. 1984. Mixture densities, maximum likelihood and the 
EM algorithm. SIAM Rev. 26: 195-239. 

Relles D.A., and Rogers W.H. 1977. Statistics are fairly robust estimators of location. 
Journal of the American Statistical Association 72: 107-111. 

Richardson S. and Green P.J. 1997. On Bayesian analysis of mixtures with an 
unknown number of components. Journal of the Royal Statistical Society B 59: 
731-792. 

Stephens M.A. 1997. Bayesian method for mixtures of normal distributions. 
Ph.D.thesis, University of Oxford. 

Stone, M. 1974. Cross-validatory choice and assessment of statistical prediction (with 
discussion). Journal of the Royal Statistical Society B 36: 111-147. 

Tiao G.C. 1967. Discussion on “Topics in the investigation of linear relations fitted by 
the method of least squares.” Journal of the Royal Statistical Society, series B 29: 
44-47. 

Titterington, D.M., Smith, A.F.M., and Markov, U.E., 1985. Statistical analysis of 
finite mixture distributions. New York: Wiely. 

Vounatsou P. and Smith A.F.M. 1997. Simulation-based Bayesian inferences for 
two-variance components linear models. Journal of Statistical Planning Inferences 
29: 139-161. 

 

（五）、計畫成果自評 
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本研究成果發表於SCI的期刊Statistics and Computing，這是個頗被肯定的國際期
刊。 
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二、Generalized Inferences on the Common Mean of Several Normal Populations 
 

此乃與博士生林淑惠教授(目前任教於台中技術學院)合作的文章。本文將登

於Journal of Statistical Planning and Inference (an SCI journal)。其中英文摘要如下。 

 

（一）、中文摘要 

本文考慮數個常態分佈其未知變異數為未知且不等的共同平均數的推論問

題。利用廣義推論我們提出共同平均數的正確信賴區間的新方法，此法與文獻上

一些方法比較涵蓋率及期望的信賴區間長度。當我們把當中的隨機變量以其期望

值取代後我們的區間與 Jordan Krishnamoorthy (1996)以等值權數下相同。且兩者

皆以著名 Graybill-Deal的共同平均數估計量為中心點。根據比較的結果，我們提

出一些在應用上有關不同模型的選擇手續。 

 

（二）、英文摘要 

The hypothesis testing and interval estimation are considered for the common 
mean of several normal populations when the variances are unknown and possibly 
unequal. A new generalized pivotal is proposed based on the best linear unbiased 
estimator of the common mean and the generalized inference. An exact confidence 
interval for the common mean is also derived. The generalized confidence interval is 
illustrated with two numerical examples. The merits of the proposed method are 
numerically compared with those of the existing methods with respect to their 
expected lengths, coverage probabilities and powers under different scenarios. 
 

（三）、報告內容 

Estimating the common mean of several normal populations with unknown and 

possibly unequal variances is one of the oldest and most interesting problems in 

statistical inference. This problem arises, for examples, when two or more 

independent agencies are involved in measuring the effect of a new drug, while 

utilizing several measuring instruments to measure the products produced by the same 

production process to estimate the average quality, or when different laboratories are 

employed to measure the amount of toxic waste in a river. If it is assumed that the 

samples collected by independent studies are from normal populations with a 

common mean but possibly with different variances, then the problem of interest may 

be to estimate or construct a confidence interval for the common mean µ of these 

populations. If the variances of these populations are assumed to be equal, then there 

are optimal methods available to make inferences on µ. However, when the variances 
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are unknown and unequal, it is clear that the distribution of any combined estimators 

of µ will involve nuisance parameters. Consequentially, the standard method has 

serious limitations for the purpose of finding an exact confidence interval. Thus, 

intensive studies have been made over the last four decades from both classical and 

decision theoretic points of view.  

In the literature, Meier (1953), Maric and Graybill (1979), Pagurova and Gurskii 

(1979), Sinha (1985), and Eberhardt et al. (1989) provided approximate confidence 
intervals for µ, centered at the wellknown Graybill and Deal (1959) estimator GDµ̂  

of µ, 
∑
∑
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µ̂ , where ix , 2
is  are sample means and unbiased sample 

variances for the ith population, i = 1,   ,I; Fairweather (1972) and Jordan and 

Krishnamoorthy (1996) provided exact confidence intervals for µ based on inverting 

weighted linear combinations of the Student’s t statistics and the FisherSnedecor’s F 

statistics, respectively. In general, there is no clear-cut winner between these two 

intervals. Fairweather’s intervals are shorter than Jordan and Krishnamoorthy’s when 

the variance ratios are small; otherwise Jordan and Krishnamoorthy’s interval is 

narrower than Fairweather’s. Therefore, some knowledge regarding the relationship 

between the population variances is needed to choose between these two intervals 

estimates. However, it should be noted that the method considered by Jordan and 

Krishnamoorthy (1996) does not always produce nonempty intervals. Yu et al. (1999) 

considered several confidence intervals that are obtained based on pivots and 

combinations of appropriately defined p-values. Based on simulation studies, they 

recommended the methods by Fisher (1932), Fairweather (1972) and Jordan and 

Krishnamoorthy (1996) for different scenarios. The methods considered by Yu et al. 

(1999), however, do not always produce nonempty confidence intervals except 

Fairweather’s method (1972). A recent work by Krishnamoorthy and Lu (2003) 

provided a procedure based on inverting weighted linear combinations of the 

generalized pivotal quantities, which is similar in spirit to ours, whereas the pivotal 

quantity derived in this paper is based on the best unbiased estimator of µ. Both works 

are based on the concepts of generalized p-values and generalized confidence interval, 

but with different pivotal quantities.  

In this paper, we intend to provide a method that is readily applicable for both 

hypothesis testing and interval estimation of the common mean µ. Our approach is 
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based on the concepts of generalized p-values and generalized confidence intervals. 

The notions of generalized p-values and generalized confidence intervals were 

proposed by Tsui and Weerahandi (1989) and Weerahandi (1993) and since then these 

ideas have been applied to solve many statistical problems, for examples, Lin and Lee 

(2003) have provided exact tests in simple growth curve models and one-way 

ANOVA model, Lee and Lin (2003) have constructed generalized confidence 

intervals for the ratio of means of two normal populations, etc. The methods are exact 

in the sense that the tests and the confidence intervals developed are based on exact 

probability statements rather than on asymptotic approximations. This means that the 

inferences based on the generalized p-values can be made with any desired accuracy, 

provided that the assumed parametric model and/or other assumptions are correct. 

Based on the comparison studies, the expected lengths of the new confidence intervals, 

coverage probabilities and power performances are compared with classical method 

and the methods proposed by Fairweather (1972), Jordan and Krishnamoorthy (1996) 

and Krishnamoorthy and Lu (2003). The numerical results in sections 4 and 5 also 

show that our method performs better than the existing methods.  

This article is organized as follows. The theory of generalized p-values and 

generalized confidence interval will be briefly introduced in Section 2. Our 

procedures for hypothesis testing and constructing the generalized confidence 

intervals about the common mean µ are presented in Section 3. Three existing 

procedures including those proposed by Fairweather (1972), Jordan and 

Krishnamoorthy (1996) and Krishnamoorty and Lu (2003) will be briefly addressed in 

Section 3. We apply these results to two sets of data, and compare our procedure with 

the classical method and the other methods with respect to their expected lengths in 

Section 4. Three simulation studies are presented in Section 5 to compare the 

expected lengths, the coverage probabilities and power performances of these 

methods in different combinations of sample sizes and variances. 
 

（四）、參考文獻 
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Fairweather, W. R., (1972). ”A method of obtaining an exact confidence interval for 

the common mean of several normal populations,” Appl. Statist. 21, 229-233.  
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（五）、計畫成果自評 

本研究成果乃計畫所提的一部分，將登於JSPI，此期刊是SCI統計期刊當中不錯

的雜誌，相當值得肯定。 
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三、Bayesian Analysis of Box-Cox transformed Linear Mixed Models with 
ARMA(p,q) Dependence 
 

此乃與博士生王仁聖及林宗儀教授（目前任教於東海大學統計系）許英麟教

授（目前任教於中興大學應數系）及碩士生李國榮合作的文章。本文將登於Journal 
of Statistical Planning and Inference (an SCI journal)。其中英文摘要如下。 
 
（一）、中文摘要 

本文提出Box-Cox中轉換且具ARMA(p,q)相關之線性混合模式的貝氏推論方
法，除了近似法外，也提供馬可夫鏈蒙地卡羅法的結果。兩種先驗分佈用來比較

參數估計與未來值的預測。利用實際資料與模擬資料展現貝氏法優於最大概似

法。 

 
（二）、英文摘要 

In this paper, we present a Bayesian inference methodology for Box-Cox 
transformed linear mixed model with ARMA(p, q) errors using approximate Bayesian 
and Markov chain Monte Carlo methods. Two priors are proposed and put into 
comparisons in parameter estimation and prediction of future values. The advantages 
of Bayesian approach over maximum likelihood, method are demonstrated by both 
real and simulated data. 
 
（三）、報告內容 

The main purpose of this paper is to address the problem of analyzing growth 
curve data from a Bayesian point of view, using an unbalanced linear mixed model 
with ARMA(p, q) dependence, while applying the Box-Cox transformation (Box and 
Cox, 1964) on the observations. 

The normal linear mixed models proposed by Laird and Ware (1982) have been 
widely applied in dealing with longitudinal data. They assumed the within-subjects 
errors are independent and provided EM algorithms for obtaining the maximum 
likelihood (ML) estimates and the restricted maximum likelihood (RML) estimates of 
model parameters. Jennrich and Schluchter (1986) discussed various types of 
covariance structures, including random effects models and the AR(1) dependence 
separately. Chi and Reinsel (1989) presented an explicit ML estimation procedure 
using the scoring method for the model with both random effects and AR(1) errors 
and remarked that it may be worthwhile to merge higher-order ARMA(p, q) structures 
in the model. Bayesian analysis for ARMA(p, q) regression error models using the 
Markov chain Monte Carlo (MCMC) methods has been considered by Chib and 
Greenberg (1994). Rochon (1992) presented a fixed-effects model with ARMA 
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structures of time heteroscedasticity for analyzing repeated measures experiments. 
More recently, Chib and Carlin (1999) constructed several partially and fully blocked 
MCMC algorithms for hierarchical mixed models with white noise errors. 

Some transformations on the observations could enhance the justification of 
assumptions such as normality of the distribution or linearity of the growth function. 
Lee and Lu (1987) and Keramidas and Lee (1990) showed tremendous improvement 
in predictive accuracy using the Box-Cox transformation for technology substitutions. 
This is primarily due to the fact that the linearity assumption for the growth function 
can be enhanced significantly with the Box-Cox transformation, along with 
incorporating into the model the proper dependence structure among the observations. 
Enhancement of normality and constancy of variance could have relatively minor 
roles in the improvement of predictive accuracy. 

The model considered here is: 

( )
iiiii bZXY εβλ ++= ,   for i = 1, 2,…,N,  

where ( )'
1 ,...,

iitii YYY =  is a 1×it  vector of measurements and is independent of 

jY  for all i ≠  j, β  is an unknown m1 ×1 vector of regression coefficients, Xi and Zi 

are known design matrices, bi is a m2 ×1 random effects to be sampled from 

multivariate normal distribution with mean 0 and covariance matrix Γ2σ , and iε  is 

an independent 1×it  vector of within subject errors whose components are assumed 
to follow the ARMA(p, q) model, i.e., 

∑ ∑
= =

−− +−=
p

j

q

j
ikjkijjkijik aa

1 1
,, ,θεφε   for k=1,…, it , 

where { }ika  is a series of shocks or white noise, which are identically and 

independently distributed as N(0, 2
aσ ). In our study, we assume the observations for 

each subject are made at equally spaced intervals. Following Box et al. (1994), we 

write ( ) ( ) itit aBB θεφ = , where ( ) p
p BBB φφφ −−−= Λ11  and 

( ) q
qBBB θθθ −−−= Λ11  are polynomials of B, which is the backshift operator such 

that B ikε  = 1, −kiε . For the process to be stationary and invertible so that there will be 

a unique model corresponding to the likelihood function, the roots of ( )Bφ  and 
( )Bθ  must lie outside the unit circle, which constrains the parameter vectors 
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( )pφφφ ,...,1=  and ( )qθθθ ,...,1= to lie in regions PC  and qC , respectively. 

For simplifying the estimating procedure, we shall denote iC2σ as the 

covariance matrix of iε  and Ci = [ sr−ρ ], where r; s = 1, 2,…, ti. We found that 

( ) ( )ppaqq ρφρφσϕθϕθσ −−−−−−= ΛΛ 11
2

11
2 11  

where jkj
p

k kj θϕφϕ −= −=∑ 1
 with jθ  = 0 for j > q and jϕ = 0 for j < 0. It is noted 

that jρ ’s are implicit functions of φ  andθ . 

The Box-Cox transformation is defined as: 

( )

( )

( )
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=
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1
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λ
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Y
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where Yij is the jth component of Yi, υ  is a known constant such that Yij + υ  > 0, 
and λ  is an unknown parameter. Without loss of generality, we will assume υ  = 0 

for the rest of the paper. The covariance matrix of ( )λ
iY  can be written as 

( ) ( )θφσσ ,,2'2 ΓΛ=+Γ=∑ iiiii
CZZ  

For the choice of priors, there are two possibilities considered for our Bayesian 
analysis of model (1). In addition to parameter estimation, we also derive two specific 
types of prediction problems which is useful in practice. Furthermore, in recent years 
statisticians have been increasingly drawn to MCMC methods, especially the M-H 
algorithm (Hastings, 1970; Chib and Greenberg, 1995) and the Gibbs sampler 
(Geman and Geman, 1984). Therefore, we also consider the problem for the 
prediction of future observations from a Bayesian point of view. 
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