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A finite mixture model using the multivariate t distribution has been shown asa
robust extension of normal mixtures. In this paper, we present a Bayesian approach
for inference about parameters of t-mixture models. The specifications of prior
distributions are weakly informative to avoid causing nonintegrable posterior
distributions. We present two efficient EM-type algorithms for computing the joint
posterior mode with the observed data and an incompl ete future vector as the sample.
Markov chain Monte Carlo sampling schemes are aso developed to obtain the target
posterior distribution of parameters. The advantages of Bayesian approach over the
maximum likelihood method are demonstrated via a set of real data.

Finite mixture models introduced by Pearson (1894) have been a useful tool for
modeling the data that are thought to come from several different groups with varying
proportions. In the past two decades, tremendous improvements and applications have
been made in across many research fields. The fundamental idea and usefulness of the
mixture models are explained in McLachlan and Basford (1988) and Titterington
(1985). A comprehensive introduction to the theory and recent advances can be found
in McLachlan and Peel (2000).

Historically, much effort has been devoted to the maximum likelihood (ML)
approach for fitting the mixture models. It was first considered by Rao (1948), who
used Fisher’s scoring method for a mixture of two normal distributions with equal

2



variance. The computation of ML estimates cannot be easily manipulated until the
EM a gorithm was introduced by Dempster et al. (1977). More recently, Peel and
McLachlan (2000) considered how to model a mixture of multivariate t distributions.
They provided the ECM algorithm for parameter estimation and showed the
robustness of the model in clustering.

Redner and Walker (1984) pointed out that the ML approach for finite mixture
model could encounter unbounded likelihood in some specia cases. Hathaway (1985)
suggested that using simple constraints in an optimization problem can lead to a
strongly consistent and global solution. Hosmer (1973) gave an example of including
aportion of labeled observations for each component. However, both solutions are
restricted to the univariate case.

In recent developments of computational methods, Bayesian methods are
considered an alternative way to deal with mixture models. Diebolt and Robert (1994)
used data augmentation and Gibbs sampling as approximation methods for eval uating
the posterior distribution and Bayes estimators. They aso showed that the duality
principle leads to stronger and more general results about the convergence of the
simulated Markov chains and of the related moments. Richardson and Green (1997)
considered a hierarchical prior that avoid the mathematical pitfalls of using improper
priorsin mixture model. More recently, Fruhwirth-Schnatter (2001) explored the
MCMC output of the random sampler to find suitable identifiability constraintsin
dealing with label switching problems.

In this article, we extend the ML approach of Peel and McLachlan (2000) to deal
with amixture of t distributions from Bayesian viewpoints. Since some observations
could be missing in many practical situations, our approach is more general asit
allows for some of the observed vectorsto be partly known. For the sake of clarity,
we only demonstrate one partly known individual and treat it as an incomplete future
vector in the model. We compare the prediction and classification results on ared
data set between ML and MCMC techniques via cross-validations.
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Generalized Inferences on the Common Mean of Several Normal Populations
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Jordan Krishnamoorthy (1996)
Graybill-Deal

The hypothesis testing and interval estimation are considered for the common
mean of several normal populations when the variances are unknown and possibly
unequal. A new generalized pivotal is proposed based on the best linear unbiased
estimator of the common mean and the generalized inference. An exact confidence
interval for the common mean is aso derived. The generalized confidence interval is
illustrated with two numerical examples. The merits of the proposed method are
numerically compared with those of the existing methods with respect to their
expected lengths, coverage probabilities and powers under different scenarios.

Estimating the common mean of several normal populations with unknown and
possibly unequal variances is one of the oldest and most interesting problems in
statistical inference. This problem arises, for examples, when two or more
independent agencies are involved in measuring the effect of a new drug, while
utilizing several measuring instruments to measure the products produced by the same
production process to estimate the average quality, or when different laboratories are
employed to measure the amount of toxic waste in ariver. If it is assumed that the
samples collected by independent studies are from norma populations with a
common mean but possibly with different variances, then the problem of interest may
be to estimate or construct a confidence interval for the common mean p of these
populations. If the variances of these populations are assumed to be equal, then there
are optimal methods available to make inferences on . However, when the variances



are unknown and unequal, it is clear that the distribution of any combined estimators
of u will involve nuisance parameters. Consequentially, the standard method has
serious limitations for the purpose of finding an exact confidence interval. Thus,
intensive studies have been made over the last four decades from both classical and
decision theoretic points of view.

In the literature, Meier (1953), Maric and Graybill (1979), Pagurova and Gurskii

(1979), Sinha (1985), and Eberhardt et al. (1989) provided approximate confidence
intervals for p, centered at the wellknown Graybill and Deal (1959) estimator /.,

_ Zilzl ni%z

of W, fgp =", Where X, s* are sample means and unbiased sample
Zi=1%2
variances for the ith population, i = 1, ,I; Fairweather (1972) and Jordan and

Krishnamoorthy (1996) provided exact confidence intervals for i based on inverting
weighted linear combinations of the Student’s t statistics and the FisherSnedecor’s F
statistics, respectively. In general, there is no clear-cut winner between these two
intervals. Fairweather’s intervals are shorter than Jordan and Krishnamoorthy’s when
the variance ratios are small; otherwise Jordan and Krishnamoorthy’s interval is
narrower than Fairweather’s. Therefore, some knowledge regarding the relationship
between the population variances is needed to choose between these two intervals
estimates. However, it should be noted that the method considered by Jordan and
Krishnamoorthy (1996) does not always produce nonempty intervals. Yu et al. (1999)
considered several confidence intervals that are obtained based on pivots and
combinations of appropriately defined p-values. Based on simulation studies, they
recommended the methods by Fisher (1932), Fairweather (1972) and Jordan and
Krishnamoorthy (1996) for different scenarios. The methods considered by Yu et al.
(1999), however, do not always produce nonempty confidence intervals except
Fairweather's method (1972). A recent work by Krishnamoorthy and Lu (2003)
provided a procedure based on inverting weighted linear combinations of the
generalized pivotal quantities, which is similar in spirit to ours, whereas the pivota
guantity derived in this paper is based on the best unbiased estimator of 1. Both works
are based on the concepts of generalized p-values and generalized confidence interval,
but with different pivotal quantities.

In this paper, we intend to provide a method that is readily applicable for both
hypothesis testing and interval estimation of the common mean p. Our approach is



based on the concepts of generalized p-values and generalized confidence intervals.
The notions of generalized p-values and generalized confidence intervals were
proposed by Tsui and Weerahandi (1989) and Weerahandi (1993) and since then these
ideas have been applied to solve many statistical problems, for examples, Lin and Lee
(2003) have provided exact tests in simple growth curve models and one-way
ANOVA model, Lee and Lin (2003) have constructed generalized confidence
intervals for the ratio of means of two normal populations, etc. The methods are exact
in the sense that the tests and the confidence intervals developed are based on exact
probability statements rather than on asymptotic approximations. This means that the
inferences based on the generalized p-values can be made with any desired accuracy,
provided that the assumed parametric model and/or other assumptions are correct.
Based on the comparison studies, the expected lengths of the new confidence intervals,
coverage probabilities and power performances are compared with classical method
and the methods proposed by Fairweather (1972), Jordan and Krishnamoorthy (1996)
and Krishnamoorthy and Lu (2003). The numerical results in sections 4 and 5 also
show that our method performs better than the existing methods.

This article is organized as follows. The theory of generalized p-values and
generalized confidence interval will be briefly introduced in Section 2. Our
procedures for hypothesis testing and constructing the generalized confidence
intervals about the common mean p are presented in Section 3. Three existing
procedures including those proposed by Farweather (1972), Jordan and
Krishnamoorthy (1996) and Krishnamoorty and Lu (2003) will be briefly addressed in
Section 3. We apply these results to two sets of data, and compare our procedure with
the classical method and the other methods with respect to their expected lengths in
Section 4. Three ssimulation studies are presented in Section 5 to compare the
expected lengths, the coverage probabilities and power performances of these
methods in different combinations of sample sizes and variances.

Eberhardt, K. R., Reeve, C. P., Spiegelman, C. H., (1989). " A minimax approach to
combining means, with practical examples,” Chemometrics Intell. Lab. Systems
5, 129-148.

Fairweather, W. R., (1972). ” A method of obtaining an exact confidence interval for
the common mean of several normal populations,” Appl. Satist. 21, 229-233.



Fisher, R. A., (1932). " Statistical methods for research workers,” fourth ed. Oliver &
Boyd, London.

Graybill, F. A., Dedl, R. B., (1959). "Combining unbiased estimators,” Biometrics
15, 543-550.

Jordan, S. M., Krishnamo orthy, K., (1996). "Exact confidence intervals for the
common mean of several normal populations,” Biometrics 52, 77-86.

Krishnamo orthy, K., Lu Yong (2003). " Inferences on the common mean of several
normal populations based on the generalizedvariable method,” Biometrics 59,
237-247.

Lee, J. C., Lin, S. H., (2003). "Generalized confidence intervals for the ratio of
means of two normal populations,” Journal of Satistical Planning and
Inference (In press).

Lin, S. H. and Lee, J. C. (2003), "Exact tests in simple growth curve models and
oneway ANOVA with equicorrelation error structure,” Journal of Multivariate
An aly

Maric, N. and Grayhill, F. A. (1979). "Smal samples confidence intervals on
common mean of two norma distributions with unequal variances,”
Communications in StatisticsTheory and Methods A8, 1255-1269.

Meier, P., (1953). "Variance of aweighted mean,” Biometrics 9, 59-73.

Pagurova, V. I. and Gurskii, V. V. (1979). "A confidence interval for the common
mean of several norma distributions,” Theory of Probability and Its
Applications 88, 882-888.

Skinner, J. B., (1991). "On combining studies,” Drug Information Journal. 25,
395-403.

Sinha, B. K., (1985). "Unbiased estimation of the variance of the Graybilldeal
estimator of the common mean of several normal populations,” Can. J. Statist.
13, 243-247.

Tsui, K. and Weerahandi S. (1989), " Generalized pvalues in significance testing of
hypothesese in the presence of nuisance parameters,” Journal of American
Statistical Association 84, 602-607.

Weerahandi, S. (1993), "Generalized confidence intervals,” Journal of American
Statistical Association 88, 899-905.

10



Weerahandi, S. (1995a), “ANOVA under unequal error variances,” Biometrics 51,
589-599.

Weerahandi, S. (1995b), “Exact dtatistical methods for data analyss,”
SpringerVerlag, New Y ork.

Yu, P. L. H., Sun, Y., and Sinha, B. K. (1999), “On exact confidence intervals for
the common mean of several normal populations,” Journal of Statistical
Planning and Inference, 81, 263-277.

JSPI SCI

11



Bayesian Analysis of Box-Cox transformed Linear Mixed Models with
ARMA(p,q) Dependence
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Box-Cox ARMA(p,q)

In this paper, we present a Bayesian inference methodology for Box-Cox
transformed linear mixed model with ARMA(p, q) errors using approximate Bayesian
and Markov chain Monte Carlo methods. Two priors are proposed and put into
comparisons in parameter estimation and prediction of future values. The advantages
of Bayesian approach over maximum likelihood, method are demonstrated by both
real and simulated data.

The main purpose of this paper isto address the problem of analyzing growth
curve data from a Bayesian point of view, using an unbalanced linear mixed model
with ARMA(p, q) dependence, while applying the Box-Cox transformation (Box and
Cox, 1964) on the observations.

The normal linear mixed models proposed by Laird and Ware (1982) have been
widely applied in dealing with longitudinal data. They assumed the within-subjects
errors are independent and provided EM algorithms for obtaining the maximum
likelihood (ML) estimates and the restricted maximum likelihood (RML) estimates of
model parameters. Jennrich and Schluchter (1986) discussed various types of
covariance structures, including random effects models and the AR(1) dependence
separately. Chi and Reinsel (1989) presented an explicit ML estimation procedure
using the scoring method for the model with both random effects and AR(1) errors
and remarked that it may be worthwhile to merge higher-order ARMA(p, q) structures
in the model. Bayesian analysisfor ARMA(p, ) regression error models using the
Markov chain Monte Carlo (MCMC) methods has been considered by Chib and
Greenberg (1994). Rochon (1992) presented a fixed-effects model with ARMA
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structures of time heteroscedasticity for analyzing repeated measures experiments.
More recently, Chib and Carlin (1999) constructed several partially and fully blocked
MCMC agorithms for hierarchical mixed models with white noise errors.

Some transformations on the observations could enhance the justification of
assumptions such as normality of the distribution or linearity of the growth function.
Leeand Lu (1987) and Keramidas and Lee (1990) showed tremendous improvement
in predictive accuracy using the Box-Cox transformation for technology substitutions.
Thisis primarily dueto the fact that the linearity assumption for the growth function
can be enhanced significantly with the Box-Cox transformation, along with
incorporating into the model the proper dependence structure among the observations.
Enhancement of normality and constancy of variance could have relatively minor
rolesin the improvement of predictive accuracy.

The model considered hereis:

YW =X B+Zb +e, fori=1,2,...N,

where Y, =( Y,,....Y,

it

) isa t, x1 vector of measurements and is independent of

Y, forali # j, B isanunknown mux 1 vector of regression coefficients, Xiand Zi
are known design matrices, b/isanme x 1 random effects to be sampled from
multivariate normal distribution with mean 0 and covariance matrix ¢°l',and &, is

anindependent t, x1 vector of within subject errors whose components are assumed
to follow the ARMA(p, g) model, i.e.,

p q
Ex =D P& .03, T, fork=l...t,
j=1 j=1
where {a,} isaseriesof shocks or white noise, which are identically and
independently distributed as N(0, o). In our study, we assume the observations for

each subject are made at equally spaced intervals. Following Box et al. (1994), we

write ¢(B)e, = 6(B)a,, where ¢(B)=1-gB-A -¢,B" and
6(B)=1-6B-A -6,B® arepolynomials of B, which is the backshift operator such

thatBe, = & ,_,. For the processto be stationary and invertible so that there will be

aunique model corresponding to the likelihood function, therootsof ¢(B) and
6(B) must lie outside the unit circle, which constrains the parameter vectors
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Q= (qq,...,qop) and 6= (61,...,6q)t0 lieinregions C, and C,, respectively.
For simplifying the estimating procedure, we shall denote ¢°C, asthe
covariance matrix of & and Ci= [,OH], wherer; s=1, 2,..., t. We found that
o’ = (1— 0,9, -N\ - 9q¢q)aj/(1— @, N - wppp)
where ¢, = Zlf:quﬁj_k -6, with ¢, =0forj>qgand ¢,=0forj<O0.Itisnoted

that p,’sareimplicit functionsof ¢ andé .

The Box-Cox transformation is defined as:

M ifA1£0

loglY, +u), ifA=0

where Yjjis the jth component of Y;, v isaknown constant such that Y+ v > 0,
and A isanunknown parameter. Without loss of generality, wewill assume v =0

for the rest of the paper. The covariance matrix of Yi(” can be written as

S =0*(zrz +C,)= A (r,0.6)

For the choice of priors, there are two possibilities considered for our Bayesian
anaysis of model (1). In addition to parameter estimation, we also derive two specific
types of prediction problems which is useful in practice. Furthermore, in recent years
statisticians have been increasingly drawn to MCM C methods, especially the M-H
algorithm (Hastings, 1970; Chib and Greenberg, 1995) and the Gibbs sampler
(Geman and Geman, 1984). Therefore, we also consider the problem for the
prediction of future observations from a Bayesian point of view.
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