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中文摘要： 

 

在這篇研究論文裡我們發展一套有系統的方法來研究高維度網格模

型花樣生成問題。我們將定義 ordering matrices 藉由此矩陣來導出一

個遞迴公式以便造成更大尺寸的 ordering matrices。給定一個可允許

的局部花樣子集，相對應 ordering matrices 可定義出 transition 

matrices。我們的目的希望計算一個系統的複雜度，也就是計算它的

熵，而藉由計算高尺寸的 transition matrices 的最大的特徵值，可讓我

們得到此結果。這篇研究報告的成果可應用到網格動態系統和類神經

網路的穩定解問題上。 
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Abstract. In this paper we develop a general approach for investigating pattern
generation problems in multi-dimensional lattice models. Let S be a set of p symbols
or colors, ZN a fixed finite rectangular sublattice of Zd, d ≥ 1 and N a d-tuple of
positive integers. Functions U : Zd → S and UN : ZN → S are called a global
pattern and a local pattern on ZN , respectively. We introduce an ordering matrix
XN for ΣN , the set of all local patterns on ZN . For a larger finite lattice ZÑ ,

Ñ ≥ N , we derive a recursion formula to obtain the ordering matrix XÑ of ΣÑ from
XN . For a given basic admissible local patterns set B ⊂ ΣN , the transition matrix
TN (B) is defined. For each Ñ ≥ N denoted by ΣÑ (B) the set of all local patterns
which can be generated from B, the cardinal number of ΣÑ (B) is the sum of entries
of the transition matrix TÑ (B) which can be obtained from TN (B) recursively. The
spatial entropy h(B) can be obtained by computing the maximum eigenvalues of
a sequence of transition matrices Tn(B). The results can be applied to study the
set of global stationary solutions in various Lattice Dynamical Systems and Cellular
Neural Networks.

1. Introduction. Many systems have been studied as models for spatial pattern
formation in biology, chemistry, engineering and physics. Lattices play important
roles in modeling underlying spatial structures. Notable examples include models
arising from biology [7, 8, 21, 22, 23, 33, 34, 35], chemical reaction and phase tran-
sitions [4, 5, 11, 12, 13, 14, 24, 41, 43], image processing and pattern recognition
[11, 12, 15, 16, 17, 18, 19, 25, 40], as well as materials science[9, 20, 26]. Stationary
patterns play a critical role in investigating of the long time behavior of related dy-
namical systems. In general, multiple stationary patterns may induce complicated
phenomena of such systems.

In Lattice Dynamical Systems(LDS), especially Cellular Neural Networks (CNN),
the set of global stationary solutions (global patterns) has received considerable at-
tention in recent years (e.g.[1, 2, 6, 10, 27, 28, 29, 30, 31, 32, 36, 37]). When the
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638 JUNG-CHAO BAN AND SONG-SUN LIN

mutual interaction between states of a system is local, the state at each lattice
point is influenced only by its finitely many neighborhood states. The admissible
(or allowable) local patterns are introduced and defined on a certain finite lattice.
The admissible global patterns on the entire lattice space are then glued together
from those admissible local patterns. More precisely, let S be a finite set of p el-
ements (symbols, colors or letters of an alphabet) where Zd denotes the integer
lattice on Rd, and d ≥ 1 is a positive integer representing the lattice dimension.
Then, function U : Zd → S is called a global pattern. For each α ∈ Zd, we write
U(α) as uα. The set of all patterns U : Zd → S is denoted by

Σd
p ≡ SZd

,

i.e., Σd
p is the set of all patterns with p different colors in d-dimensional lattice. As

for local patterns, i.e., functions defined on (finite) sublattices, for a given d-tuple
N = (N1, N2, · · · , Nd) of positive integers, let

ZN = {(α1, α2, · · · , αd) : 1 ≤ αk ≤ Nk, 1 ≤ k ≤ d}
be an N1 × N2 × · · ·Nd finite rectangular lattice. Denoted by Ñ ≥ N if Ñk ≥ Nk

for all 1 ≤ k ≤ d. The set of all local patterns defined on ZN is denoted by

ΣN ≡ ΣN,p ≡ {U |ZN
: U ∈ Σd

p}.
Under many circumstances, only a (proper) subset B of ΣN is admissible (allowable
or feasible). In this case, local patterns in B are called basic patterns and B is called
the basic set. In a one dimensional case, S consists of letters of an alphabet, and
B is also called a set of allowable words of length N.

Consider a fixed finite lattice ZN and a given basic set B ⊂ ΣN . For larger finite
lattice Z

�N ⊃ ZN , the set of all local patterns on Z
�N which can be generated by B

is denoted as Σ
�N (B). Indeed, Σ

�N (B) can be characterized by

Σ
�N (B) = { U ∈ Σ

�N : Uα+N = VN for any α ∈ Zd with Zα+N ⊂ Z
�N

and some VN ∈ B},
where

α + N = {(α1 + β1, · · · , αd + βd) : (β1, · · · , βd) ∈ N},
and

Uα+N = VN means uα+β = vβ for each β ∈ ZN .

Similarly, the set of all global patterns which can be generated by B is denoted by

Σ(B) = {U ∈ Σd
p : Uα+N = VN for any α ∈ Zd with some VN ∈ B}.

The following questions arise :

(1) Can we find a systematic means of constructing Σ
�N (B) from B for

Z
�N ⊃ ZN?

(2) What is the complexity (or spatial entropy) of {∑
�N (B)}

�N≥N ?

The spatial entropy h(B) of Σ(B) is defined as follows :
Let

Γ
�N (B) = card(Σ

�N (B)), (1.1)

the number of distinct patterns in Σ
�N (B). The spatial entropy h(B) is defined as

h(B) = lim
�N→∞

1

Ñ1 · · · Ñd

log Γ
�N (B), (1.2)
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where Ñ = (Ñ1, Ñ2, ..., Ñd) be a d-tuple positive integers, which is well-defined and
exists (e.g. [13]). The spatial entropy, which is an analogue to topological entropy
in dynamical system, has been used to measure a kind of complexity in LDS (e.g.
[13], [42] ).

In a one dimensional case, the above two questions can be answered by using
transition matrix. Indeed, for a given basic set B, we can associate the transition
matrix T(B) to B. Then the spatial entropy h(B) = log λ, where λ is the largest
eigenvalue of T(B) (e.g. [29, 41]). On the other hand, for higher dimensional cases,
constructing Σ

�N (B) systematically and computing Γ
�N (B) effectively for a large Ñ

are extremely difficult.
In the two dimensional case, Chow et al. [13] estimated lower bounds of the

spatial entropy for some problems in LDS. Later, using a ”building block” technique,
Juang and Lin [29] studied the patterns generation and obtained lower bounds of the
spatial entropy for CNN with square-cross or diagonal-cross templates. For CNN
with general templates, Hsu et al [27] investigated the generation of admissible
local patterns and obtained the basic set for any parameter, i.e., the first step in
studying the patterns generation problem. Meanwhile, given a set of symbols S
and a pair consisting of a horizontal transition matrix H and a vertical transition
matrix V, Juang et al [30] defined m-th order transition matrices T

(m)
H,V and T̄

(m)
H,V

for each m ≥ 1 and, in doing so, obtained the recursion formulas for both T
(m)
H,V

and T̄
(m)
H,V . Furthermore, they proved that T

(m)
H,V and T̄

(m)
H,V have the same maximum

eigenvalue λm and spatial entropy h(H,V ) = lim
m→∞

log λm

m . For a certain class of

H,V, the recursion formulas for T
(m)
H,V and T̄

(m)
H,V yield recursion formulas for λm

explicitly and the exact entropy. On the other hand, for the patterns generation
problem Lin and Yang [37] worked on the 3-cell L-shaped lattice, i.e., N= . They
developed an algorithm to investigate how patterns are generated on larger lattices
from smaller one. Their algorithm treated all patterns in Σ

�N (B) as entries and
arranged them in a ”counting matrix” M

�N (B). A good arrangement of M
�N (B)

implies an easier extension to M
�

�N
(B) for a larger lattice ˜̃

N ⊃ Ñ and effective
counting of the number of elements in Σ

�N (B). Upper and lower bounds of spatial
entropy were also obtained. Next, there are some relations with matrix shift [13],
that details will appear in section 3.4.

Motivated by the counting matrix MN (B) of [37] and the recursion formulas
for transition matrices in [30], this work introduces the ”ordering matrix” X2 for
Σ2�×2� to study the patterns generation and obtain recursion formulas for Xn for
Σ2�×n� where � ≥ 1 is a fixed positive integer and n ≥ 2. The recursion formulas
for Xn imply the recursion formula for the associated transition matrices Tn(B) of
Σ2�×n�(B), i.e., a generalization of the recursion formulas in [30]. Notably, a dif-
ferent ordering matrix X̃2 for Σ2�×2� induces different recursion formulas of X̃n for
Σ2�×n� and T̃n(B). Among them, X2 defined in (2.9) yields a simple recursion for-
mula (3.16) and rewriting rule (3.14), which enabling us to compute the maximum
eigenvalue of Tn effectively. The computations or estimates of λn are interesting
problems in linear algebra and numerical linear algebra. Owing to the similarity
property of (3.16) or (3.14) of transition matrices {Tn}∞n=2, we show that for a cer-
tain class of B, λn satisfies certain recursion relations and h(B) can be computed
explicitly.
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In d ≥ 3, the structure of ordering matrix and transition matrices has been
explored, and it can be found in [3].

The rest of this paper is organized as follows. Section 2 describes a two dimen-
sional case by thoroughly investigating Σ2×2 and introducing the ordering matrix
X2 of patterns in Σ2×2. The ordering matrix Xn on Σ2×n is then constructed from
X2 recursively. Finally, section 3 derives higher order transition matrices Tn from
T2 and computes λn explicitly for a certain type of T2.

2. Two Dimensional Patterns. This section describes two dimensional patterns
generation. For clarity, we begin by the studying two symbols, i.e., S = {0, 1}. On
a fixed finite lattice Zm1×m2 , we first give a ordering χ = χm1×m2 on Zm1×m2 by

χ((α1, α2)) = m2(α1 − 1) + α2 , (2.1)

i.e.,

m2 2m2 m1m2

...
...

...
...

1 m2 + 1 (m1 − 1)m2 + 1

. (2.2)

The ordering χ of (2.1) on Zm1×m2 can now be passed to Σm1×m2 . Indeed, for
each U = (uα1,α2) ∈ Σm1×m2 , define

χ(U) ≡ χm1×m2(U)

= 1 +
m1∑

α1=1

m2∑
α2=1

uα1α22
m2(m1−α1)+(m2−α2).

(2.3)

Obviously, there is an one-to-one correspondence between local patterns in Σm1×m2

and positive integers in the set N2m1m2 = {k ∈ N : 1 ≤ k ≤ 2m1,m2}, where N is the
set of positive integers. Therefore, U is referred to herein as the χ(U)-th element in
Σm1×m2 . By identifying the pictorial patterns by numbers χ(U), it becomes highly
effective in proving theorems since computations can now be performed on χ(U).
In a two dimensional case, we will keep the ordering (2.1)∼ (2.3) χ on Zm1×m2 and
Σm1×m2 , respectively.

2.1. Ordering Matrices. For 1 × n pattern U = (uk), 1 ≤ k ≤ n in Σ1×n, as in
(2.3), U is assigned the number

i = χ(U) = 1 +
n∑

k=1

uk2(n−k). (2.4)

As denoted by the 1 × n column pattern xn;i,

xn;i =




un

...
u1


 or

un

...
u1

. (2.5)

In particular, when n = 2, as denoted by xi = x2;i,

i = 1 + 2u1 + u2

and

xi =
[

u2

u1

]
or

u2

u1
. (2.6)
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A 2 × 2 pattern U = (uα1α2) can now be obtained by a horizontal direct sum of
two 1 × 2 patterns, i.e.,

xi1i2 ≡ xi1 ⊕ xi2

≡
[

u12 u22

u11 u21

]
or

u12 u22

u11 u21
,

(2.7)

where

ik = 1 + 2uk1 + uk2, 1 ≤ k ≤ 2. (2.8)

Therefore, the complete set of all 16(= 22×2) 2 × 2 patterns in Σ2×2 can be listed
by a 4 × 4 matrix X2 = [xi1i2 ] with 2 × 2 pattern xi1i2 as its entries in

0
0 0

0 0
0

10

0

0

1
0

1 1
01

1

0

0
1

0

1

0

0

0
1

00

1

111

1 1 00
1

1
1

1

0

01

0

0
0

0

1

0

1

1

1

0

0
1

1

1
0

1

10

1

1
1

0
0

1
0

1
1

0
1

1
1

0
1

1
0

0
0

(2.9)

It is easy to verify that

χ(xi1i2) = 4(i1 − 1) + i2, (2.10)

i.e, we are counting local patterns in Σ2×2 by going through each row successively
in Table (2.9). Correspondingly, X2 can be referred to as an ordering matrix for
Σ2×2. Similarly, a 2 × 2 pattern can also be viewed as a vertical direct sum of two
2 × 1 patterns, i.e,

yj1j2 = yj1 ⊕ yj2 , (2.11)

where

yjl
=

[
u1l u2l

]
or u1l u2l ,

and

jl = 1 + 2u1l + u2l, (2.12)

1 ≤ l ≤ 2. A 4× 4 matrix Y2 = [yj1j2 ] can also be obtained for Σ2×2. i.e., we have

1

00
0
0 0

0 0
0

00

0

1

0

1

1

0

0 0

0

1

1

1
0

0
1

1

0

1

01

0

1

1

0
1

1

1

0

0

0
0

00

1

111

1 1 11
1

1
1

1

0

00

0

1
0

0

1

0

0

1

1

0

1
0

0

1
0

1

11

1

1
1

(2.13)
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The relation between X2 and Y2 must be explored. Indeed, from (2.12), ukl can
be solved in terms of jl, i.e., we have

u1l = [
jl − 1

2
] (2.14)

and

u2l = jl − 1 − 2[
jl − 1

2
], (2.15)

where [ ] is the Gauss symbol, i.e., [r] is the largest integer which is equal to or
less than r. From (2.8), (2.12), (2.14) and (2.15), we have the following relations
between indices i1, i2 and j1, j2.

j1 = 1 +
2∑

k=1

[
ik − 1

2
] 22−k, (2.16)

j2 = 1 +
2∑

k=1

{ ik − 1 − 2 [
ik − 1

2
] } 22−k, (2.17)

and

i1 = 1 +
2∑

l=1

[
jl − 1

2
] 22−l, (2.18)

i2 = 1 +
2∑

l=1

{ jl − 1 − 2 [
jl − 1

2
] } 22−l. (2.19)

From (2.16) and (2.17), (2.9) or X2 can also be represented by yj1j2 as

X2 =




y11 y12 y21 y22

y13 y14 y23 y24

y31 y32 y41 y42

y33 y34 y43 y44


 . (2.20)

In (2.20), the indices j1j2 are arranged by two Z-maps successively, as
 1 −→ 2

↙
3 −→ 4


 (2.21)

i.e., the path from 1 to 4 in (2.21) is Z shaped and is then called a Z-map. More
precisely, X2 can be decomposed by

X2 =
[

Y2;1 Y2;2

Y2;3 Y2;4

]
(2.22)

and

Y2;k =
[

yk1 yk2

yk3 yk4

]
. (2.23)

where X2 is arranged by a Z-map (Y2;k) in (2.22) and each Y2;k is also arranged by
a Z-map (ykl) in (2.23). Therefore, the indices of y in (2.20) consist of two Z-maps.

The expression (2.20) of all local patterns in Σ2×2 by y can be extended to all
patterns in Σ2×n for any n ≥ 3. Indeed, a local pattern U in Σ2×n can be viewed
as the horizontal direct sum of two 1 × n local patterns, i.e. U1 and U2, and also
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the vertical direct sums of n many 2× 1 local patterns. As in (2.9), all patterns in
Σ2×n can be arranged by the ordering matrix

Xn =
[

xn;i1i2

]
, (2.24)

a 2n×2n matrix with entry xn;i1i2 = xn;i1 ⊕xn;i2 , where χ(U1) = i1 and χ(U2) = i2
as in (2.4) and (2.5), 1 ≤ i1, i2 ≤ 2n. On the other hand, for two 2 × 2 patterns
yj1j2 and yj2j3 , we can attach them together to become a 2×3 pattern yj1j2j3 , since
the second row in yj1j2 and the first row of yj2j3 are identical, i.e.,

yj1j2j3 ≡ yj1j2 ⊕̂ yj2j3

≡ yj1 ⊕ yj2 ⊕ yj3 .
(2.25)

Herein, a wedge direct sum ⊕̂ is used for 2 × 2 patterns whenever they can be
attached together. In this way, a 2×n pattern yj1···jn

is obtained from n− 1 many
2 × 2 patterns yj1j2 , yj2j3 , · · · , yjn−1jn

by

yj1···jn
≡ yj1j2 ⊕̂ yj2j3 ⊕̂ · · · ⊕̂ yjn−1jn

≡ yj1 ⊕ yj2 ⊕ · · · ⊕ yjn
,

(2.26)

where 1 ≤ jk ≤ 4, and 1 ≤ k ≤ n. Now, Xn in y expression can be obtained as
follows.

Theorem 2.1. For any n ≥ 2, Σ2×n = {yj1···jn
}, where yj1···jn

is given in (2.26).
Furthermore, the ordering matrix Xn can be decomposed by n Z-maps successively
as

Xn =
[

Yn;1 Yn;2

Yn;3 Yn;4

]
, (2.27)

Yn;j1···jk
=

[
Yn;j1···jk1 Yn;j1···jk2

Yn;j1···jk3 Yn;j1···jk4

]
, (2.28)

for 1 ≤ k ≤ n − 2, and

Yn;j1···jn−1 =
[

yj1···jn−11 yj1···jn−12

yj1···jn−13 yj1···jn−14

]
. (2.29)

Proof. From (2.12), (2.14) and (2.15), we have following table.

jl 1 2 3 4

u1l 0 0 1 1

u2l 0 1 0 1

Table 2.1
For any n ≥ 2, by (2.12),(2.14) and (2.15), it is easy to generalize (2.18) and (2.19)
to

in;1 = 1 +
n∑

l=1

[
jl − 1

2
]2n−l, (2.30)
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and

in;2 = 1 +
n∑

l=1

{jl − 1 − 2[
jl − 1

2
]}2n−l. (2.31)

From (2.30) and (2.31), we have

in+1;1 = 2in;1 − 1 + [
jn+1 − 1

2
], (2.32)

and

in+1;2 = 2in;2 − 1 + {jn+1 − 1 − 2[
jn+1 − 1

2
]}. (2.33)

Now, by induction on n the theorem follows from the last two formulas and the
table 2.1. The proof is complete.

Remark 2.2. The ordering matrix on Σm×n can also be introduced accordingly.
However, when spatial entropy h(B) of Σ(B) is computed, only λn, the largest eigen-
value of Tn(B) must be known. Section 3 provides further details.

2.2. More Symbols on Larger Lattices. The idea introduced in the last section
can be generalized to more symbols on Zm×m, where m ≥ 3. We first treat a case
when m is even. Indeed, assume that m = 2�, � ≥ 2 and S contains p elements.
Now, we introduce the ordering matrices X2 = [xi1i2 ] and Y2 = [yj1j2 ] to Σ2�×2�

as follows. Let q = p�2 , X2 can be expressed by yj1j2 , i.e.,

X2 =




Y1 Y2 · · · Yq

Yq+1 Yq+2 · · · Y2q

...
...

. . .
...

Y(q−1)q+1 Y(q−1)q+2 · · · Yq2




q×q

, (2.34)

with

Yj1 =




yj1,1 · · · yj1,q

yj1,q+1 · · · yj1,2q

...
. . .

...
yj1,(q−1)q+1 · · · yj1,q2




q×q

. (2.35)

Now, we can state recursion formulas for higher ordering matrix Xn =
[xn;i1i2 ]qn×qn as follows and omit the proof for brevity.

Theorem 2.3. Suppose we have p symbols, p ≥ 2 and let q = p�2 , � ≥ 2. For any
n ≥ 2, Σ2�×n� = {yj1j2···jn

}, where yj1j2···jn
≡ yj1j2⊕̂yj2j3⊕̂ · · · ⊕̂yjn−1jn

, 1 ≤ jk ≤
q2 and 1 ≤ k ≤ n. Furthermore, the ordering matrix Xn can be decomposed by n
Z-maps successively as

Xn =




Yn;1 Yn;2 · · · Yn;q

Yn;q+1 Yn;q+2 · · · Yn;2q

...
...

. . .
...

Yn;(q−1)q+1 Yn;(q−1)q+2 · · · Yn;q2


 (2.36)
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Yn;j1···jk
=




Yn;j1,··· ,jk,1 Yn;j1,··· ,jk,2 · · · Yn;j1,··· ,jk,q

Yn;j1,··· ,jk,q+1 Yn;j1,··· ,jk,q+2 · · · Yn;j1,··· ,jk,2q

...
...

. . .
...

Yn;j1,··· ,jk,(q−1)q+1 Yn;j1,··· ,jk,(q−1)q+2 · · · Yn;j1,··· ,jk,q2




(2.37)

for 1 ≤ k ≤ n − 2,

Yn;j1···jn−1 =




yj1,··· ,jn−1,1 yj1,··· ,jn−1,2 · · · yj1,··· ,jn−1,q

yj1,··· ,jn−1,q+1 yj1,··· ,jn−1,q+2 · · · yj1,··· ,jn−1,2q

...
...

. . .
...

yj1,··· ,jn−1,(q−1)q+1 yj1,··· ,jn−1,(q−1)q+2 · · · yj1,··· ,jn−1,q2


 .

(2.38)

3. Transition matrices. This section derives the transition matrices Tn for a
given basic set B. For simplicity, the study of two symbols S = {0, 1} on 2 × 2
lattice Z2×2 in two dimensional lattice space Z2 is of particular focus. The results
can be extended to general cases.

3.1. 2×2 systems. Given a basic set B ⊂ Σ2×2, horizontal and vertical transition
matrices H2 and V2 can be defined by

H2 = [hi1i2 ] and V2 = [vj1j2 ], (3.1)

two 4 × 4 matrices with entries either 0 or 1 according to following rules:{
hi1i2 = 1 if xi1i2 ∈ B,

= 0 if xi1i2 ∈ Σ2×2 − B,
(3.2)

and {
vj1j2 = 1 if yj1j2 ∈ B,

= 0 if yj1j2 ∈ Σ2×2 − B.
(3.3)

Obviously, hi1i2 = vj1j2 , where (i1, i2) and (j1, j2) are related according to (2.16)∼
(2.19). Now, the transition matrix T2 for B can be defined by

T2 ≡ T2(B)

=




v11 v12 v21 v22

v13 v14 v23 v24

v31 v32 v41 v42

v33 v34 v43 v44


 .

(3.4)

Define

vj1j2···jn
= vj1j2 · vj2j3 · · · vjn−1jn

, (3.5)

and

Tn = [vj1j2···jn
],

then the transition matrix Tn for B defined on Z2×n is a 2n × 2n matrix with
entries vj1···jn

, which are either 1 or 0, by substituting yj1···jn
by vj1···jn

in Xn, see
(2.27)∼(2.29).
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In the following, we give some interpretations for Tn, one from an algebraic
perspective and the other from Lindenmayer system (for details see Remark 3.2 ).
For clarity, T3 can be written in a complete form as




v11v11 v11v12 v12v21 v12v22 v21v11 v21v12 v22v21 v22v22

v11v13 v11v14 v12v23 v12v24 v21v13 v21v14 v22v23 v22v24

v13v31 v13v32 v14v41 v14v42 v23v31 v23v32 v24v41 v24v42

v13v33 v13v34 v14v43 v14v44 v23v33 v23v34 v24v43 v24v44

v31v11 v31v12 v32v21 v32v22 v41v11 v41v12 v42v21 v42v22

v31v13 v31v14 v32v23 v32v24 v41v13 v41v14 v42v23 v42v24

v33v31 v33v32 v34v41 v34v42 v43v31 v43v32 v44v41 v44v42

v33v33 v33v34 v34v43 v34v44 v43v33 v43v34 v44v43 v44v44




(3.6)

From an algebraic perspective, T3 can be defined through the classical Kronecker
product (or tensor product) ⊗ and Hadamard product �. Indeed, for any two
matrices A = (aij) and B = (bkl), the Kronecker product of A ⊗ B is defined by

A ⊗ B = (aijB). (3.7)

On the other hand, for any two n × n matrices

C = (cij) and D = (dij),

where cij and dij are numbers or matrices. Then, Hadamard product of C � D is
defined by

C � D = (cij · dij), (3.8)

where the product cij ·dij of cij and dij may be multiplication of numbers, numbers
and matrices or matrices whenever it is well-defined. For instance, cij is number
and dij is matrix.
Denoted by

T2 =
[

T1 T2

T3 T4

]
, (3.9)

where Tk is a 2 × 2 matrix with

Tk =
[

vk1 vk2

vk3 vk4

]
. (3.10)

Then, using Hadamard product, (3.6) can be written as

T3 =




v11 v12 v21 v22

v13 v14 v23 v24

v31 v32 v41 v42

v33 v34 v43 v44


 �




T1 T2 T1 T2

T3 T4 T3 T4

T1 T2 T1 T2

T3 T4 T3 T4


 , (3.11)

and can also be written by Kronecker product with Hadamard product as

T3 =
(

T2

)
4×4

�
[ [

1 1
1 1

]
⊗

[
T1 T2

T3 T4

] ]
, (3.12)

where (T2)4×4 is interpreted as a 4×4 matrix given as in (3.4). Hereinafter, (M)k×k

is used as the k × k matrix; its entries may also be matrices.
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Furthermore, by (3.9) and (3.12), T3 can also be written as

T3 =
[

T1 � T2 T2 � T2

T3 � T2 T4 � T2

]
. (3.13)

Now, from the perspective of Lindenmayer system, (3.13) can be interpreted as a
rewriting rule as follows:

To construct T3 from T2, simply replace Tk in (3.9) by Tk � T2, i.e,

Tk −→ Tk � T2 =
[

vk1T1 vk2T2

vk3T3 vk4T4

]
. (3.14)

Now, T3 can be written as

T3 =




v11T1 v12T2 v21T1 v22T2

v13T3 v14T4 v23T3 v24T4

v31T1 v32T2 v41T1 v42T2

v33T3 v34T4 v43T3 v44T4


 . (3.15)

Since vkj is either 0 or 1. The entries of T3 in (3.15) are Tk, i.e, Tk can be taken as
the ”basic element” in constructing Tn , n ≥ 3. As demonstrated later that(3.14)
is an efficient means of constructing Tn+1 from Tn for any n ≥ 2.

Now, by induction on n, the following properties of transition matrix Tn on
Z2×n can be easily proven.

Theorem 3.1. Let T2 be a transition matrix given by (3.4). Then, for higher order
transition matrices Tn, n ≥ 3, we have the following three equivalent expressions
(I) Tn can be decomposed into n successive 2×2matrices (or n-successive Z-maps)
as follows:

Tn =
[

Tn;1 Tn;2

Tn;3 Tn;4

]
,

Tn;j1···jk
=

[
Tn;j1···jk1 Tn;j1···jk2

Tn;j1···jk3 Tn;j1···jk4

]
,

for 1 ≤ k ≤ n − 2 and

Tn;j1···jn−1 =
[

vj1···jn−11 vj1···jn−12

vj1···jn−13 vj1···jn−14

]
.

Furthermore,

Tn;k =
[

vk1Tn−1;1 vk2Tn−1;2

vk3Tn−1;3 vk4Tn−1;4

]
. (3.16)

(II) Starting from

T2 =
(

T1 T2

T3 T4

)
,

with

Tk =
(

vk1 vk2

vk3 vk4

)
,

Tn can be obtained from Tn−1 by replacing Tk by Tk � T2 according to (3.14).

(III) Tn = (Tn−1)2n−1×2n−1 �
(

E2n−2 ⊗
(

T1 T2

T3 T4

) )
,
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where E2k is the 2k × 2k matrix with 1 as its entries.

Proof.
(I)The proof is to simply replace Yn;j1···jk

and yj1···jn
by Tn;j1···jk

and vj1···jn
in

Theorem 2.1, respectively.
(II) follows from (I) directly.
(III) follows from (I), we have

Tn =
[

Tn;1 Tn;2

Tn;3 Tn;4

]
.

And by (3.16), we get following formula.

Tn =




v11Tn;1 v12Tn;2 v21Tn;1 v22Tn;2

v13Tn;3 v14Tn;4 v23Tn;3 v24Tn;4

v31Tn;1 v32Tn;2 v41Tn;1 v42Tn;2

v33Tn;3 v34Tn;4 v43Tn;3 v44Tn;4




= (Tn−1)2n−1×2n−1 �
(

E2n−2 ⊗
(

T1 T2

T3 T4

) )
.

The proof is complete.

Remark 3.2. While studying the growth processes of plants, Lindenmayer, e.g.[39],
derived a developmental algorithm, i.e., a set of rules which describes plant de-
velopment in time. Thereafter, a system with a set of rewriting rules was called
Lindenmayer system or L-system. From Theorem 3.1(III), the family of transi-
tion matrices {Tn}n≥2 is a two-dimensional L-system with a rewriting rule(3.16).
Similar to many L-systems, our system Tn also enjoys the simplicity of recursion
formulas and self-similarity.

As for spatial entropy h(B), we have the following theorem.

Theorem 3.3. Given a basic set B ⊂ Σ2×2, let λn be the largest eigenvalue of the
associated transition matrix Tn which is defined in Theorem 3.1. Then,

h(B) = lim
n→∞

log λn

n
. (3.17)

Proof. By the same arguments as in [13], the limit (1.2) is well-defined and exists.
From the construction of Tn, we observe that for m ≥ 2,

Γm×n(B) =
∑

1≤i,j≤2n

(Tm−1
n )i,j ≡ #(Tm−1

n ). (3.18)

As in a one dimensional case, we have

lim
m→∞

log #(Tm−1
n )

m
= log λn,

e.g. [42]. Therefore,

h(B) = lim
m,n→∞

log Γm×n(B)
mn

= lim
n→∞

1
n

( lim
m→∞

log Γm×n(B)
m

)

= lim
n→∞

log λn

n
.

The proof is complete.



PATTERNS GENERATION AND TRANSITION MATRICES 649

3.2. Computation of Maximum Eigenvalues and Spatial Entropy. Given
a transition matrix T2, for any n ≥ 2, the characteristic polynomials |Tn−λ| are of
degree 2n. In general, computing or estimating the largest eigenvalue λn = λn(T2)
of |Tn − λ| for a large n is relatively difficult. However, in this section, we present
a class of T2 in which λn(T2) can be computed explicitly. Indeed, assume that T2

has the form of
[

A B
B A

]
in (3.9), i.e.,

T1 = T4 = A =
[

a a2

a3 a

]
, (3.19)

and

T2 = T3 = B =
[

b b2

b3 b

]
, (3.20)

where a, a2, a3, b, b2 and b3 are either 0 or 1.
We need the following lemma.

Lemma 3.4. Let A and B be non-negative and non-zero m × m matrices, respec-

tively, and α and β are positive numbers. The maximum eigenvalue of
[

A αB
βB A

]
is then the maximum eigenvalue of

A +
√

αβB.

Proof. Consider ∣∣∣∣ A − λ αB
βB A − λ

∣∣∣∣ = 0.

For |A − λ| �= 0, the last equation is equivalent to∣∣∣∣ A − λ B
0 (A − λ) − αβB(A − λ)−1B

∣∣∣∣ = 0,

or

|I − αβ((A − λ)−1B)2| = 0.

Then, we have

|A +
√

αβB − λ| = 0 or |A −
√

αβB − λ| = 0.

Since A and B are non-negative and α and β are positive, verifying that the maxi-

mum eigenvalue λ of
[

A αB
βB A

]
and A+

√
αβB are equal is relatively easy. The

proof is complete.

Now, we can state our computation results for λn(T2) when T2 satisfies (3.19)
and (3.20).

Theorem 3.5. Assume that T2 =
[

A B
B A

]
and A =

[
a a2

a3 a

]
and B =[

b b2

b3 b

]
where a, b, a2, a3, b2, b3 ∈ {0, 1}. For n ≥ 2, let λn be the largest eigen-

value of

|Tn − λ| = 0.

Then

λn = αn−1 + βn−1, (3.21)
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where αk and βk satisfy the following recursion relations:

αk+1 = aαk + bβk, (3.22)

βk+1 =
√

(a2αk + b2βk)(a3αk + b3βk), (3.23)

for k ≥ 0, and

α0 = β0 = 1. (3.24)

Furthermore, the spatial entropy h(T2) is equal to log ξ∗, where ξ∗ is the maximum
root of the following polynomials Q(ξ):
(I) if a2 = a3 = 1,

Q(ξ) ≡ 4ξ2(ξ − a)2 + (γ2 − 4δ)(ξ − a)2

−γ2ξ2 − 2γ(2b − aγ)ξ − (2b − aγ)2,
(3.25)

where

γ = b2 + b3 and δ = b2b3. (3.26)

(II) if a2a3 = 0 and a2b3 + a3b2 = 1,

Q(ξ) ≡ ξ3 − aξ2 − δξ + aδ − b. (3.27)

Moreover, if a2a3 = 0 and a2b3 + a3b2 = 0, then h(T2) = 0.

Proof. Owing to the special structure of T2, it is easy to verify that for any k ≥ 2,
we have

Tk =
[

Ak Bk

Bk Ak

]
,

and

Tk+1 =
[

Ak+1 Bk+1

Bk+1 Ak+1

]
,

here

Ak+1 = Tk � A =
[

aAk a2Bk

a3Bk aAk

]
, (3.28)

and

Bk+1 = Tk � B =
[

bAk b2Bk

b3Bk bAk

]
, (3.29)

A2 = A and B2 = B. Now by Lemma 3.4, |Tn+1 − λn+1| = 0, so

|An+1 + Bn+1 − λn+1| = 0. (3.30)

Let

α0 = 1 and β0 = 1.

By induction on k, 1 ≤ k ≤ n, and using (3.28),(3.29),(3.30) and Lemma 3.4, it is
straightforward to derive

|αkAn−k+1 + βkBn−k+1 − λn+1| = 0, (3.31)

with αk and βk satisfy (3.22) and (3.23). In particular,

αn = aαn−1 + bβn−1, (3.32)

βn = {(a2αn−1 + b2βn−1)(a3αn−1 + b3βn−1)} 1
2 , (3.33)
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and

λn+1 = αn + βn.

This proves the first part of the theorem.
The remainder of the proof, demonstrates that h(T2) = log λ∗ where λ∗ is the
maximum root of Q(λ). From (3.33), we have

β2
n = a2a3α

2
n−1 + (a2b3 + a3b2)αn−1βn−1

+ b2b3β
2
n−1.

(3.34)

Now, in (3.34), we first solve αn−1 in terms of βn−1 and βn, then substitute αn−1

and αn into (3.32) to obtain difference equations involving βn+1, βn and βn−1.
There are two cases:

Case I. If a2 = a3 = 1, then we have

αn−1 =
1
2
{−γβn−1 + (4β2

n + (γ2 − 4δ)β2
n−1)

1
2 }. (3.35)

Substituting (3.35) into (3.32), yields

{4β2
n+1 + (γ2 − 4δ)β2

n}
1
2 = γβn + (2b − aγ)βn−1

+ a{4β2
n + (γ2 − 4δ)β2

n−1}
1
2 .

(3.36)

Now, let

ξn =
βn

βn−1
, (3.37)

and after dividing (3.36) by βn−1, we have

ξn{4ξ2
n+1 + (γ2 − 4δ)} 1

2 = γξn + (2b − aγ) + a{4ξ2
n + (γ2 − 4δ)} 1

2 . (3.38)

(3.38) can be written as the following iteration map:

ξn+1 = G1(ξn), (3.39)

where

G1(ξ) =
1
2
{4δ + 2γg(ξ) + g2(ξ)} 1

2 , (3.40)

and

g(ξ) = (2b − aγ)ξ−1 + a{4 + (γ2 − 4δ)ξ−2} 1
2 . (3.41)

We first observe the fixed point ξ∗ of G1(ξ), i.e., ξ∗ = G(ξ∗), is a root of Q(ξ).
Indeed, by letting ξn = ξn+1 = ξ∗ in (3.38), we have

(ξ∗ − a)(4ξ2
∗ + (γ2 − 4δ))

1
2 = γξ∗ + (2b − aγ),

which gives us Q(ξ∗) = 0.
It can be proven that the maximum fixed point of G1(ξ) or the maximum root

ξ∗ of Q(ξ) = 0 satisfies 1 ≤ ξ∗ ≤ 2 and

ξn → ξ∗ as n → ∞. (3.42)

Details are omitted here for brevity. By (3.21), (3.35) and (3.37), we can also prove

λn+1

λn
→ ξ∗ as n → ∞. (3.43)
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Hence, h(T2) = log ξ∗.

A B Q(λ) λ∗

(1)
[

1 1
1 1

] [
1 1
1 1

]
λ − 2 2

(2)
[

1 1
1 1

] [
1 1
0 1

]
or

[
1 0
1 1

]
λ3 − 2λ2 + λ − 1 (i)

(3)(α)
[

1 1
0 1

]
or

[
1 0
1 1

] [
1 1
1 1

]
λ2 − λ − 1 g

(3)(β)
[

1 1
1 1

] [
1 0
0 1

]
λ2 − λ − 1 g

(3)(γ)
[

0 1
1 0

] [
1 1
1 1

]
λ2 − λ − 1 g

(4)
[

1 1
0 1

] [
1 0
1 1

]
λ3 − λ2 − 1 (ii)

[
1 0
1 1

] [
1 1
0 1

]

(5)
[

0 1
0 0

]
or

[
0 0
1 0

] [
1 1
1 1

]
λ3 − λ − 1 (iii)

(6)
[

0 1
1 0

] [
1 1
0 1

]
or

[
1 0
1 1

]
λ4 − λ − 1 (iv)

(i) λ∗
.= 1.75488, (ii) λ∗

.= 1.46557, (iii) λ∗
.= 1.32472, (iv) λ∗

.= 1.22074
where, g

.= 1.61803, is the golden mean, a root of λ2 − λ − 1 = 0.

Table 3.1
Case II. If a2a3 = 0 and a2b3 + a3b2 = 1, then, from (3.33), we have

αn−1 = β2
nβ−1

n−1 − δβn−1. (3.44)

Again, substituting (3.44) into (3.32) and letting (3.37) lead to

ξ2
n+1ξn − aξ2

n − δξn + aδ − b = 0, (3.45)

i.e., ξn+1 = G2(ξn), where

G2(ξ) = {aξ + δ + (b − aδ)ξ−1} 1
2 . (3.46)

The maximum fixed point ξ∗ of (3.46) is the maximum root of Q(ξ) = 0 in (3.27).
It can also be proven that (3.42) and (3.43) holds in this case.



PATTERNS GENERATION AND TRANSITION MATRICES 653

Finally, if a2a3 = 0 and a2b3 + a3b2 = 0, then βn are all equal for n ≥ 1. Hence,
αn is at most linear growth in n, implying that h(T2) = 0. The proof is thus
complete.

For completeness, we list all T2 which satisfy (3.19) and (3.20) and have positive
entropy h(T2). The table is arranged based on the magnitude of h(T2). The
polynomial Q(.) in either (3.25) or (3.27) has been simplified whenever possible.

The recursion formulas for λn are

(1) λn = 2n,

(2) λn+1 = λn + (λnλn−1)
1
2 ,

(3) (α) λn+1 = λn + (λn(λn − λn−1))
1
2 ,

(β) λn+1 = λn + λn−1,

(γ) λn+1 = λn + λn−1,

(4) λn+1 = λn + (λn−1(λn − λn−1))
1
2 ,

(5) λn+1 = (λnβn−1)
1
2 + βn−1,

where βn−1 = λn − λn−1 + · · · + (−1)n,

(6) λn+1 = λn + (λnβn−2)
1
2 − βn−2.

Table 3.2

Remark 3.6.
(i) According to Table 3.2, for cases (1)∼(4), λn+1 depends only on two preceding
terms, λn and λn−1. However, in (5) and (6), λn+1 depends on all of its preceding
terms λ1, · · · , λn.
(ii) From Lemma 3.4 and Theorem 3.5, in addition to the maximum eigenvalue
we can obtain a complete set of eigenvalues of Tn explicitly.
(iii) In Theorem 3.5, polynomial Q(ξ) given in (3.25) or (3.27) is the limiting

equation for λ
1
n
n . It is interesting to know if there is any limiting equation for

general Tn.

Remark 3.7. Similar to the concept in Theorem 3.5, if T2 does not satisfy (3.19)
and (3.20), another special structure can allow us to obtain explicit recursion for-
mulas of λn and compute its spatial entropy h(T2) explicitly.

3.3. 2�× 2� Systems. The results in last two subsections can be generalized to p-
symbols on Z2�×2�. Given a basic set B ⊂ Σ2�×2�, horizontal and vertical transition
matrices H2 = [hi1i2 ]q2×q2 and V2 = [vj1j2 ]q2×q2 , where q = p�2 , can be defined
according the rules (3.2) and (3.3) by replacing Σ2×2 with Σ2�×2�, respectively.
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Then the transition matrix T2(B) for B can be defined by

T2 = T2(B) =




V1 V2 · · · Vq

Vq+1 Vq+2 · · · V2q

...
...

. . .
...

V(q−1)q+1 V(q−1)q+2 · · · Vq2


 (3.47)

where

Vm =




vm,1 vm,2 · · · vm,q

vm,(q+1) vm,q+2 · · · vm,2q

...
...

. . .
...

vm,(q−1)q+1 vm,(q−1)q+2 · · · vm,q2


 , (3.48)

1 ≤ m ≤ q2. The higher order transition matrix Tn = [vj1j2···jn
] for B defined on

Z2�×n� is a qn × qn matrix, where vj1j2···jn
is given by (3.5) which are either 1 or

0, by substituting yj1···jn
by vj1···jn

in Xn, see (2.36)∼(2.38). For completeness, we
state the following theorem for Tn and omit the proof for brevity.

Theorem 3.8. Let T2 be a transition matrix given by (3.47) and (3.48). Then for
higher order transition matrices Tn, n ≥ 3, we have the following three equivalent
expressions

(I) Tn can be decomposed into n successive q × q matrices as follows:

Tn =




Tn;1 · · · Tn;q

Tn;q+1 · · · Tn;2q

...
. . .

...
Tn;(q−1)q+1 · · · Tn;q2




Tn;j1···jk
=




Tn;j1,··· ,jk,1 · · · Tn;j1,··· ,jk,q

Tn;j1,··· ,jk,q+1 · · · Tn;j1,··· ,jk,2q

...
. . .

...
Tn;j1,··· ,jk,(q−1)q+1 · · · Tn;j1,··· ,jk,q2




for 1 ≤ k ≤ n − 2 and

Tn;j1···jn−1 =




vj1,··· ,jn−1,1 · · · vj1,··· ,jn−1,q

vj1,··· ,jn−1,q+1 · · · vj1,··· ,jn−1,2q

...
. . .

...
vj1,··· ,jn−1,(q−1)q+1 · · · vj1,··· ,jn−1,q2


 .

Furthermore,

Tn;k =




vk,1Tn−1;1 · · · vk,qTn−1;q

vk,q+1Tn−1;q+1 · · · vk,2qTn−1;2q

...
. . .

...
vk,(q−1)q+1Tn−1;(q−1)q+1 · · · vk,q2Tn−1;q2
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(II) Starting from

T2 =




T1 · · · Tq

Tq+1 · · · T2q

...
. . .

...
T(q−1)q+1 · · · Tq2


 ,

with

Tk =




vk,1 · · · vk,q

vk,q+1 · · · vk,2q

...
. . .

...
vk,(q−1)q+1 · · · vk,q2


 ,

Tn can be obtained from Tn−1 by replacing Tk by Tk � T2 according to

Tk → Tk � T2 =




vk,1T1 · · · vk,qTq

vk,q+1Tq+1 · · · vk,2qT2q

...
. . .

...
vk,(q−1)q+1T(q−1)q+1 · · · vk,q2Tq2




(III)

Tn = (Tn−1)qn−1×qn−1 � (Eqn−2 ⊗ T2).

For the spatial entropy h(B), we have a similar result as in Theorem 3.3.

Theorem 3.9. Given a basic set B ⊂ Σm1×m2 , let � be the smallest integer such
that 2� ≥ m1 and 2� ≥ m2, and let B̃ = Σ2�×2�(B). Suppose λn;� be the largest
eigenvalue of the associated transition matrix Tn, which is defined in Theorem 3.8.
Then

h(B) = 1
�2 lim

n→∞
logλn;�

n .

Proof. As in Theorem 3.3,

h(B) = lim
m,n→∞

logΓm�×n�(B̃)
m� × n�

=
1
�2

lim
n→∞

1
n

( lim
m→∞

log#(Tm−1
n (B̃))
m

)

=
1
�2

lim
n→∞

1
n

( lim
m→∞

logλm−1
n;�

m
)

=
1
�2

lim
n→∞

logλn;�

n
.

The proof is complete.

3.4. Relation with Matrix Shifts. Under many circumstances, we are given a
pair of horizontal transition matrix H = (hij)p×p and vertical transition matrix
V = (vij)p×p, where hij and vij ∈ {0, 1}, e.g. [13, 29, 30, 32]. Now, the set of all
admissible patterns which can be generated by H and V on Zm1×m2 and Z2 are
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denoted by Σm1×m2(H;V ) and Σ(H;V ), respectively. Furthermore, Σm1×m2(H;V )
and Σ(H;V ) can be characterized by

Σm1×m2(H;V ) = {U ∈ Σm1×m2,p : huαuα+e1
= 1 and vuβuβ+e2

= 1,
where e1 = (1, 0), e2 = (0, 1), α = (α1, α2), β = (β1, β2)
with 1 ≤ α1 ≤ m1 − 1 , 1 ≤ α2 ≤ m2 and 1 ≤ β1 ≤ m1 1 ≤ β2 ≤ m2 − 1}

(3.49)

and
Σ(H;V ) = {U ∈ Σ2

p : huαuα+e1
= 1 and vuβuβ+e2

= 1
for all α, β ∈ Z2}. (3.50)

In literature, Σ(H;V ) is often called a Matrix shift, Markov shift or subshift of
finite types, e.g. [13, 30, 32, 38]

As before, we are concerned about constructing Σm1×m2(H;V ). We first show
that the established theories can be applied to answer this question. Indeed, we
introduce S = {0, 1, 2, · · · , p−1}. On Z2×2, consider local pattern U = (uα1α2) with
uα1α2 ∈ S. Define the ordering matrices X2 = [xi1i2 ]p2×p2 and Y2 = [yj1j2 ]p2×p2

for Σ2×2. Now, the basic set B(H;V ) determined by H and V can be expressed as

B(H;V ) = {U = (uα1α2) ∈ Σ2×2 : hu11u21hu12u22vu11u12vu21u22 = 1}. (3.51)

Therefore, the transition matrix T2 = T2(H;V ) can be expressed as T2 =[tj1j2 ]p2×p2

with tj1j2 = 1 if and only if yj1j2 ∈ B(H;V ), i.e., tj1j2 = 1 if and only if

hu11u21hu12u22vu11u12vu21u22 = 1, (3.52)

where jl is related to uα1α2 according to (2.12) similarly.
Now, Tn = Tn(H;V ) can be constructed recursively from T2(H;V ) by Theorem

3.8. Then λn and spatial entropy h(H;V ) can be studied by Theorem 3.9. It is
easy to verify Tn(H;V ) = T

(n)

H,V , the transition matrix obtained by Juang et al

in [30]. Furthermore, T
(n)
H,V in [30] can also be obtained by deleting the rows and

columns formed by zeros in Tn(H;V ).
On the other hand, given a basic set B ⊂ Σ2×2,p (or Σ2l×2l,p), in general there

is no horizontal transition matrix H = (hij)p×p and vertical transition matrix
V = (vij)p×p such that B = B(H;V ) given by (3.51). Indeed, the number of
subsets of Σ2×2,p is 2p4

and the number of B(H;V ) is at most 22p2
and 22p2

< 2p4

for any p ≥ 2. However, as mentioned in p.468[38], one can recode any shift of
finite type to a matrix subshift.

Notably, the n-th order transition matrix Tn(B) is a qn×qn matrix with q = p�2

and the n-th order transition matrix Tn(H(B);V (B))) generated by T2(H(B);V (B)))
is a mn × mn matrix. Consequently, if m = #B is relatively small compared with
q = pl2 , we may study the eigenvalue problems of Tn(H(B);V (B)). It is clear,
small m generates less admissible patterns and then smaller entropy. For B with
positive entropy h(B) as in Table 3.1, #B is much larger than q = 2. Therefore, in
general working on Tn(B) is better than on Tn(H(B);V (B))).
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