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Hyperbolic 分佈在期貨避險之應用 

 

在 Normal 分佈及鞅的假設下，各種最佳期貨避險比例和最小變

異避險比例是等價的。然而在很多的實證市場裡，Normal 分佈的假

設是被拒絕的。在這篇文章裡，我們提出用 hyperbolic 分佈來探討期

貨避險的最佳避險比例問題，並且我們也實證探討 TAIEX, S＆P 500,  

Nasdaq 100 期貨市場。 
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Abstract

Under martingale and joint-normality assumptions, various optimal hedge ra-
tios are identical to the minimum variance hedge ratio. As empirical studies usually
reject the joint-normality assumption, we propose the generalized hyperbolic distri-
bution as the joint log-return distribution of the spot and futures. Using the param-
eters in this distribution, we estimate several most widely-used optimal hedge ratios:
minimum variance, maximum Sharpe measure and minimum generalized semivari-
ance. Under mild assumptions on the parameters, we find that these hedge ratios
are identical. Empirical studies show that our proposed models fit the TAIEX fu-
tures and S & P 500 futures very well. Numerical results for different optimal hedge
ratios also verify our theoretical observations. Regarding the equivalence of these
three optimal hedge ratios, our analysis suggests that the martingale property plays
a much important role than the joint distribution assumption.

ii



1 Introduction

Because of their low transaction cost, high liquidity, high leverage and ease of short
position, stock index futures are among the most successful innovations in the financial
markets. Besides the speculative trading, they are widely used to hedge against the market
risk of the spot position. One of the most important issues for investors and portfolio
managers is to calculate the optimal futures hedge ratio, the proportion of the position
taken in futures to the size of the spot so that the risk exposure can be minimized.

The optimal hedge ratios typically depend on the objective functions under con-
sideration. In literature on futures hedging, there are two different types of objective
functions: the risk function to be minimized, and the utility function to be maximized.
Johnson (1960) obtains the minimum variance hedge ratio by minimizing the variance
of the change in the value of the hedged portfolios. On the other hand, as Adams and
Montesi (1995) indicate, corporate managers are more concerned with the downside risk
rather than the upside variation. A measure of the downside risk is the generalized semi-
variance (GSV) where the risk is computed from the expectation of a power function
of shortfalls from the target return (Bara (1975, 1978); Fishburn (1977)). De Jong et
al. (1997) and Lien and Tse (1998, 2000, 2001) have calculated several GSV-minimizing
hedge ratios. Regarding the utility function approach, we consider the Sharp measure
(SM) criteria, i.e., the ratio of the portfolio’s excess return to its volatility. Howard and
D’Antonio (1984) formulate the optimal hedge ratio by maximizing the Sharp measure.

Normally, these optimal hedge ratios under different approaches are not the same.
However, with the joint-normality and martingale assumptions, they are identical to the
minimum variance hedge ratio. Unfortunately, many empirical studies indicate that major
markets typically reject the joint-normality assumption (Chen et. al. (2001); Lien and
Tse (1998)). In particular, the fat-tail property of the return distribution affects the
hedging effectiveness substantially. It will be useful to find out the nature of the optimal
hedge ratios under more realistic assumption. In this paper we introduce the bivariate
generalized hyperbolic distributions as alternative joint distributions for returns in the
spot and futures markets.

Barndorff-Nielsen (1977, 1978) develops the generalized hyperbolic (GH) distribu-
tions as a mixture of the normal distribution and the generalized inverse Gaussian (GIG)
distribution first proposed in 1946 by Étienne Halphen. The class of the generalized hy-
perbolic distributions includes the hyperbolic distributions, the normal inverse Gaussian
distributions and the variance-Gamma distributions, while the normal distribution is a
limiting case of the generalized hyperbolic distributions. Uses of the generalized hyper-
bolic distributions have been increasing in finance literature. To model the log returns of
some financial assets, Eberlein and Keller (1995) consider the hyperbolic distribution and
Barndorff-Nielsen (1995) proposes the normal inverse Gaussian distribution. For more
recent applications of the generalized hyperbolic distributions in finance, see Bibby and
Sørensen (2003); Eberlein, Keller and Prause (1998); Rydberg (1997, 1999); Kuchler et.
al. (1999); and Bingham and Kiesel (2001).

In terms of the parameters for the bivariate hyperbolic distributions, we have devel-
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oped in this paper the minimum variance hedge ratio, GSV-minimizing hedge ratio and
the SM-maximizing hedge ratio. Moreover, the relationships between these hedge ratios
are explored. In particular, under the martingale assumption, we can still obtain the
result that these hedge ratios are the same as the minimum variance hedge ratio. Based
on the maximum likelihood estimation of the parameters and the numerical methods, we
calculate and compare the different hedge ratios for TAIEX futures, S & P 500 futures.

The paper is divided into six sections. Section 2 first introduces the definitions
and some basic properties for GIG and GH distributions. In Section 3, we study the
optimal hedge ratios under different approaches and estimate these ratios in terms of the
parameters for GH distributions. In Section 4, we employ the kernel density estimators
and MLE method for our data. Based on these estimations of the parameters, the different
hedge ratios are calculated in the fifth section. The last section provides the concluding
remarks.

2 The Generalized Hyperbolic and Inverse Gaussian

Distributions

2.1 The Generalized Inverse Gaussian Distributions

To introduce the generalized inverse Gaussian distribution, we first recall that the
Bessel functions of the third kind with index λ can be written in integral form as

Kλ(x) =
1

2

∫ ∞

0

uλ−1e−
1
2
x(u−1+u)du, x > 0. (1)

From this we see that for any δ, ψ > 0, the function

dGIG(λ,δ,ψ)(x) =
(ψ/δ)λ

2Kλ(δψ)
xλ−1e−

1
2
(δ2x−1+ψ2x), x > 0. (2)

is a probability density function on (0,∞). The distribution with the density function
dGIG(λ,δ,ψ)(x) on the positive half-line is called a generalized inverse Gaussian (GIG)
distribution with parameters λ, δ, ψ, and denoted by GIG(λ, δ, ψ). For λ = −1/2, the
GIG(λ, δ, ψ) reduces to the inverse Gaussian(IG) distribution IG(δ, ψ). By using the fact

that K− 1
2
(x) =

√
π
2
x−

1
2 e−x, we obtain

dIG(δ,ψ)(x) = (
δ2

2π
)

1
2 x−

3
2 e−

ψ2

2x
(x− δ

ψ
)2 .

It worths to notice that IG(δ, ψ) is the law of the first time a standard Brownian motion
with drift ψ reaches the level δ.
The moment generating function of the generalized inverse Gaussian distribution is given
by

MGIG(λ,δ,ψ)(u) =

∫ ∞

0

euxdGIG(λ,δ,ψ)(x)dx =

(
ψ√

ψ2 − 2u

)λ
Kλ(δ

√
ψ2 − 2u)

Kλ(δψ)
(3)
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with the restriction 2u < ψ2. From this and the fact that

K
′
λ(u) = −λ

u
Kλ(u)−Kλ−1(u),

we get

E[GIGr] =

(
δ

ψ

)r
Kλ+r(δψ)

Kλ(δψ)
.

In particular we obtain

E[GIG] =
δ

ψ

Kλ+1(δψ)

Kλ(δψ)

V ar[GIG] = (
δ

ψ
)2[

Kλ+2(δψ)

Kλ(δψ)
− K2

λ+1(δψ)

K2
λ(δψ)

].

Moreover, by letting δ → 0+ and using the fact that Kλ(t) ∼ 1
2
Γ(λ)

(
t
2

)−λ
as t → 0, we

get

lim
δ→0+

MGIG(λ,δ,ψ)(u) =

(
1− 2

ψ2
u

)−λ

which is the moment generating function of the Gamma distribution Γ(λ, a), a = ψ2

2
, with

the density function

dΓ(λ,a)(x) =
aλ

Γ(λ)
xλ−1e−ax, x > 0 (4)

where Γ(λ) is the Gamma function. ( Gamma distributions are often used in finance, in
particular in the context of models for credit risk.) Similarly, for λ < 0 and δ > 0, by
letting ψ → 0+, we get the inverse Gamma distribution IΓ(λ, δ) with density

dIΓ(λ,δ)(x) = (
2

δ2
)λ 1

Γ(−λ)
xλ−1e−

δ2

2x , x > 0.

2.2 The Generalized Hyperbolic Distributions

Barndorff-Nielsen (1977) introduced the class of generalized hyperbolic(GH) distributions
as mean-variance mixtures of normal distributions. More precisely, one says that a random
variable Z has the generalized hyperbolic distribution GH(λ, α, β, δ, µ) if

Z|Y = y ∼ N(µ + βy, y),

where Y is a random variable with distribution GIG(λ, δ,
√

α2 − β2) and N(µ + βy, y)
denotes the normal distribution with mean µ + βy and variance y. From this, one can
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easily verify that the density function for GH(λ, α, β, δ, µ) is given by the formula

dGH(λ,α,β,δ,µ)(x) =

∫ ∞

0

dN(µ+βy,y)(x)d
GIG(λ,δ,

√
α2−β2)

(y)dy

= (
ψ

δ
)λ e(x−µ)β

√
2πKλ(δψ)

[
δ2 + (x− µ)2

α2

]λ− 1
2

2

Kλ− 1
2
(α

√
δ2 + (x− µ)2)

where ψ =
√

α2 − β2. The moment generating function for GH(λ, α, β, δ, µ) is easily
computed as

MGH(u) = euµM
GIG(λ,δ,

√
α2−β2)

(
u2

2
+ uβ

)

= euµ

(
α2 − β2

α2 − (β + u)2

)λ
2 Kλ(δ

√
α2 − (β + u)2)

Kλ(δ
√

α2 − β2)
(5)

whenever |β + u| < α. As above, this implies that

E[GH(λ, α, β, δ, µ)] = µ + βE[GIG(λ, δ, ψ)],

V ar[GH(λ, α, β, δ, µ)] = E[GIG(λ, δ, ψ)] + β2V ar[GIG(λ, δ, ψ)].

The class of hyperbolic distributions is the subclass of GH distributions obtained
when λ is equal to 1. We write H(α, β, δ, µ) instead of GH(1, α, β, δ, µ). Using the fact
that K1/2(z) = (π/2z)1/2e−z, one obtains the density for H(α, β, δ, µ) is

dH(α,β,δ,µ)(x) =

√
α2 − β2

2αδK1(δ
√

α2 − β2)
e−α

√
δ2+(x−µ)2+β(x−µ). (6)

The normal inverse Gaussian(NIG) distributions were introduced to finance in Barndorff-
Nielsen (1995). It is a subclass of the generalized hyperbolic distributions obtained for λ
equal to −1/2. The density of the NIG distribution is given by

dNIG(α,β,δ,µ)(x) =
δ

π

[
α2

δ2 + (x− µ)2

] 1
2

eδψ+(x−µ)βK1(α
√

δ2 + (x− µ)2).

2.3 Multivariate modelling

In finance one does not look at a single asset, but at a bunch of assets. Since the assets in
the market are typically highly correlated, it is natural to use multivariate distributions. A
straightforward way for introducing multivariate generalized hyperbolic(MGH) distribu-
tions is via the mixtures of multivariate Normal distributions with the generalized inverse
Gaussian distributions. In fact the multivariate generalized hyperbolic distributions were
introduced and investigated in Barndorff-Nielsen (1978).
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Let ∆ be a symmetric positive-definite d× d- matrix with determinant |∆| = 1. We
say that a d-dimensional random vector Z has the multivariate generalized hyperbolic
distribution MGH(λ, α, β, δ, µ, ∆) with parameters (λ, α, β, δ, µ, ∆) if:

Z|Y = y ∼ Nd(µ + y∆β, y∆),

where Nd(A,B) denotes the d-dimensional Normal distribution with mean vector A and
covariance matrix B, and Y distributed as GIG(λ, δ,

√
α2 − β′∆β). Here we notice that

λ ∈ R, β, µ ∈ Rd, δ > 0, α2 > β′∆β, and generalized hyperbolic distributions are symmet-
ric if and only if β = (0, ..., 0)′. For λ = (d + 1)/2 we obtain the multivariate hyperbolic
distributions. For λ = −1/2 we obtain the multivariate normal inverse Gaussian distri-
bution.

The density function of the distribution MGH(λ, α, β, δ, µ, ∆) is given by the for-
mula

dMGH(x) = cd

Kλ−d/2

(
α
√

δ2 + (x− µ)′∆−1(x− µ)
)

(
α−1

√
δ2 + (x− µ)′∆−1(x− µ)

)d/2−λ
e(β′(x−µ)) (7)

where cd =

(√
α2−β′∆β/δ

)λ

(2π)d/2Kλ(δ
√

α2−β′∆β)
.

The moment generating function of MGH(λ, α, β, δ, µ, ∆) distribution is given by

MMGH(z) = eµ′z
(

α2 − β′∆β

α2 − (β + µ)′∆(β + z)

)λ/2
Kλ(δ

√
α2 − (β + z)′∆(β + z))

Kλ(δ
√

α2 − β′∆β)
, z ∈ Rd

whenever α2 > (β + u)′∆(β + u) . The mean and covariance of MGH are given by

E[MGH(λ, α, β, δ, µ, ∆)] = µ + ∆βE[GIG(λ, δ, ψ)], (8)

V ar[MGH(λ, α, β, δ, µ, ∆)] = ∆E[GIG(λ, δ, ψ)] + ∆ββ′∆V ar[GIG(λ, δ, ψ)] (9)

where ψ =
√

α2 − β′∆β. (For details, see, e.g., Bæsild (1981).)

3 Futures hedge ratios

We consider a decision maker. At the decision date (t = 0), the agent engages in the
production of Q (Q > 0) commodity units for sale at the terminal date (t = 1) at the
random cash price P1. In addition, at the decision date the agent can sell X commodity
units in the futures market at the price F0, but must repurchase them back at the terminal
date at the random futures price F1. Let the initial wealth be V0 = P0Q and the end-
of-period wealth be V1 = P1Q + (F0 − F1)X. Then we consider the wealth return that
is

r̃θ =
V1 − V0

V0

=
P1Q + F0X − F1X − P0Q

P0Q

=
P1 − P0

P0

− F1 − F0

F0

(
F0

P0

X

Q
) = r̃p − θr̃f (10)
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where r̃p = P1−P0

P0
and r̃f = F1−F0

F0
are one-period returns on the spot and futures positions,

respectively, h = X
Q

is the hedge ratio and θ = hF0

P0
. ( Note that θ is so-called the

adjusted hedge ratio.) The main objective of hedging is to choose the optimal hedge ratio
θ. However the optimal hedge ratio will depend on a particular objective function to be
optimized. We recall some most widely used theoretical approaches to the optimal futures
hedge ratios and compute explicitly these optimal ratios in terms of the parameters for
MGH distributions. For a comprehensive review of futures hedge ratios, see Chen et al.
(2002).

3.1 Minimum variance hedge ratio

The most widely-used hedge ratio is minimum variance hedge ratio which is known
as the MV hedge ratio. The objective function to be minimized is the variance of r̃θ.
Clearly we have

V ar[r̃θ] = σ2
rp

+ θ2σ2
rf
− 2θρσrpσrf

,

where σrpand σrf
are standard deviations of r̃p and r̃f , respectively and ρ is the correlation

coefficient between r̃p and r̃f . The MV hedge ratio is obtained by minimizing V ar[r̃θ].
Simple calculation shows that the MV hedge ratio is given by

θ∗MV = ρ
σrp

σrf

. (11)

Theorem 3.1. Assume (r̃f , r̃p)
′ is distributed as MGH(λ, α, β, δ, µ, ∆), where β = (β1, β2)

′, µ =

(µ1, µ2)
′, and ∆ =

(
∆11 ∆12

∆21 ∆22

)
is symmetry. Then we have

θ∗MV =
∆12E[GIG] + δfp

∆11E[GIG] + δff

(12)

where GIG = GIG(λ, δ,
√

α2 − β′∆β) and

δff =
[
β2

1∆
2
11 + 2β1β2∆11∆12 + β2

2∆
2
12

]
V ar[GIG]

δfp =
[
β2

1∆11∆12 + β1β2(∆11∆22 + ∆2
12) + β2

2∆12∆22

]
V ar[GIG].

In particular, if β = (0, ..., 0)′, then θ∗MV = ∆12

∆11
.

Proof. The second statement follows from the first one. We prove the first state-
ment. By the equation (9), we obtain

Cov(r̃f , r̃p) = ∆12E[GIG] + δfp

and
σ2

rf
= ∆11E[GIG] + δff .

Then our result follows by plugging these into the formula θ∗MV =
Cov(r̃f ,r̃p)

σ2
rf

. ¤
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3.2 Sharpe hedge ratio

We consider the optimal hedge ratio that incorporates both risk and expected return.
Howard and D‘Antonio(1984) considered the optimal level of futures contracts by maxi-
mizing the ratio of the portfolio’s excess return to its volatility, that is

max
θ

µrp − θµrf
− rL

σθ

, (13)

where σθ is the stanard deviation of r̃θ, µrp , µrf
are expected values for r̃p and r̃f , respec-

tively, and rL is the risk-free interest rate.
Consider the function

r(θ) =
µrp − θµrf

− rL

σθ

.

Then we have

r
′
(θ) =

θ
[
−σ2

rf
(µrp − rL) + µrf

σrf rp

]
+ (µrp − rL)σrprf

− σ2
rp

µrf

σ3
θ

(14)

where σrf rp = Cov(r̃p, r̃f ) and, hence, the critical point for r(θ) is given by

θ∗s =
(

σrp

σrf
)2µrf

− ρ
σrp

σrf
(µrp − rL)

ρ
σrp

σrf
µrf

− (µrp − rL)
. (15)

It follows from the equation (14) that if µrp − rL > ρ
σrp

σrf
µrf

, then r′(θ) > 0 for θ < θ∗s and

r′(θ) < 0 for θ > θ∗s . Hence the optimal hedge ratio(Sharpe hedge ratio) for the equation
(13) is given by

θ∗s =
(

σrp

σrf
)2µrf

− ρ
σrp

σrf
(µrp − rL)

ρ
σrp

σrf
µrf

− (µrp − rL)
. (16)

Similarly, if µrp − rL < ρ
σrp

σrf
µrf

, then r(θ) has a minimum at θ∗s . (Note that if µrp − rL =

ρ
σrp

σrf
µrf

, then r(θ) is strictly monotonic in θ.)

The measure of hedging effectiveness (abbreviated HE) is given in Howard and
D‘Antonio(1984) by

HE = rs(θ
∗
s)�(

µrp − rL

σrp

). (17)

Write

ζ =
µrf

/σrf

(µrp − rL)/σrp

(18)
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(ζ is also-called the risk-return relative.) Then we have

θ∗s =
σrp

σrf

(
ρ− ζ

1− ζρ
)

and

HE =

√
(ρ− ζ)2

1− ρ2
+ 1 .

Clearly the last equality implies that

HE

{
> 1 when ρ 6= ζ
= 1 when ρ = ζ.

Moreover we have the following relationship between θ∗s and θ∗MV .

Proposition 3.2. Assume µrp > rL and 1 > ζρ. Then we have




θ∗s > θ∗MV when µf < 0
θ∗s = θ∗MV when µf = 0
θ∗s < θ∗MV when 0 < µf .

Proof Assume that µrp > rL. Then 1 > ζρ if and only if µrp − rL > ρ
σrp

σrf
µrf

. Also

µf has the same sign as that of ζ. From this, we observe




ρ−ζ
1−ρζ

> ρ when µf < 0
ρ−ζ
1−ρζ

= ρ when µf = 0
ρ−ζ
1−ρζ

< ρ when 0 < µf .

Therefore if µf > 0, then θ∗s =
σrp

σrf

ρ−ζ
1−ζρ

<
σrp

σrf
ρ = θ∗MV . Other cases follow similarly. ¤

Therefore, if the expected return on the futures contract is zero and µrp > rL, then
the Sharpe hedge ratio reduces to the minimum variance hedge ratio.

Recall that σrf rp = Cov(r̃p, r̃f ). Then we have

θ∗s =
σ2

rp
µrf

− σrf rp(µrp − rL)

σrf rpµrf
− σ2

rf
(µrp − rL)

. (19)

¿From this and by equations (8) and (9), we obtain

Theorem 3.3. Assume (r̃f , r̃p)
′ is distributed as in Theorem 3.1. Assume that

ζfp [(µ1 + β1∆11 + β2∆12)E[GIG]] < ζff [(µ2 + β1∆21 + β2∆22)E[GIG]− rL] .

Then we have

θ∗s =
ζpp [(µ1 + β1∆11 + β2∆12)E[GIG]]− ζfp [(µ2 + β1∆21 + β2∆22)E[GIG]− rL]

ζfp [(µ1 + β1∆11 + β2∆12)E[GIG]]− ζff [(µ2 + β1∆21 + β2∆22)E[GIG]− rL]
(20)

8



where δff , δfp, GIG are the same as in Theorem 3.1 and

δpp =
[
β2

1∆
2
21 + 2β1β2∆21∆22 + β2

2∆
2
22

]
V ar[GIG]

ζff = ∆11E[GIG] + δff

ζfp = ∆12E[GIG] + δfp

ζpp = ∆22E[GIG] + δpp.

3.3 Minimum generalized semivariance hedge ratio

In this case the optimal hedge ratio is obtained by minimizing the generalized semi-
variance(GSV) given below:

Ln(c,X) =

∫ c

−∞
(c− x)ndF (x), n > 0, (21)

where F (·) is the probability distribution function of the return X. The GSV is specified
by two parameters: the target return c and the power of the shortfall n. (Note that if the

density function of X is symmetric at c, then we obtain L2(c,X) = Var(X)
2

. Hence in this
case, the GSV approach is the same as that of the minimum variance.) The GSV, due to
its emphasis on the returns below the target return, is consistent with the risk perceived
by managers(see Lien and Tse (2001)).

For futures hedge, we write

Ln(c, θ) = Ln(c, r̃f − θr̃p). (22)

Assume that n > 1 and h(rf , rp) is a joint density function of r̃f and r̃p. Then we have

Ln(c, θ) =

∫ ∞

−∞

∫ c+θrf

−∞
(c− rp + θrf )

nh(rf , rp)drpdrf .

Simple calculation gives

∂

∂θ
Ln(c, θ) =

∫ ∞

−∞

∫ c+θrf

−∞
nrf (c− rp + θrf )

n−1h(rf , rp)drpdrf

and

∂2

∂2θ
Ln(c, θ) =

∫ ∞

−∞

∫ c+θrf

−∞
n(n− 1)r2

f (c− rp + θrf )
n−2h(rf , rp)drpdrf .

Since ∂2

∂2θ
Ln(c, θ) > 0, the minimum for Ln(c, θ) occurs at the unique critical point(if it

exists.) If the futures and spot returns are jointly normally distributed and if the future
price is unbiased (i.e., expected futures price change is zero), Lien and Tse (1998) showed
that the minimum GSV hedge ratio is the same as the minimum-variance hedge ratio.
For later application, we summarize their arguments here.
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Suppose that (r̃f , r̃p) is bivariate normal distributed. The joint density h(rf , rp) is charac-
terized by means µri

= E(r̃i), i = p, f, and by the covariance σrirj
= cov(r̃i, r̃j), i, j = p, f.

Write x = c + θrf − rp and y = rf . Then we have

∂

∂θ
Ln(c, θ) =

∫ ∞

0

∫ ∞

−∞
nxn−1yh(y, c− x + θy)dydx. (23)

The function h(y, c − x + θy) can be decomposed as 1
2πΛ

e
−1
2

AB, where Λ2 = σ2
rp

σ2
rf
−

(σrprf
)2, σ2

rθ
= θ2σ2

rf
− 2θσrprf

+ σ2
rp

, and

A =
[
y + (c− x− µrp)(θσ

2
rf
− σrprf

)σ−2
rθ
− µrf

(σ2
rp
− θσrprf

)σ−2
rθ

]2

Λ−2σ2
rθ

B = (c− x− µrp + θµrf
)2σ−2

rθ
.

Plugging this into equation (23) and then integrating with respect to y give

∂

∂θ
Ln(c, θ) =

∫ ∞

0

1√
2π

nxn−1σ−3
rθ

kc(x, θ)e
−1
2

(
c−x−µrp+θµrf

σrθ
)2

dx (24)

where kc(x, θ) = −(c−x−µrp)(θσ
2
rf
−σrprf

)+µrf
(σ2

rp
−θσrprf

). In the case of an unbiased

futures market(i.e., µrf
= 0), then the above equation implies that

σrprf

σ2
rf

is a critical point

for Ln(c, θ). Hence, by remark above, the minimum generalized semivariance hedge ratio
is established at θ∗GSV =

σrprf

σ2
rf

= θ∗MV , ∀ n > 1.

Next, we consider the case that r̃f and r̃p are distributed as symmetric bivariate
generalized hyperbolic distribution with parameters (λ, α, 0, δ, µ, ∆). Recall that given
Y = y, r̃f and r̃p are distributed jointly as bivariate normal distribution with mean
vector (µ1, µ2)

′ and covariance matrix y∆. Write h(µ,y∆)(rf , rp) for the joint density of
this distribution. Then the generalized semivariance is given by the formula

Ln(c, θ) =

∫ ∞

−∞

∫ c+θrf

−∞

∫ ∞

0

(c− rp + θrf )
nh(µ,y∆)(rf , rp)dGIG(y)dydrpdrf

where dGIG(y) is the density function for the GIG(λ, δ, α) distribution.
Similar arguments as above and using the formula (24) give

∂

∂θ
Ln(c, θ) =

∫ ∞

0

∫ ∞

0

1√
2π

nxn−1σ−3
θ ykc(x, θ)e

−1
2

(
c−x−µ2+θµ1

σθ
)2
dGIG(y)dydx

where σ2
θ = y(∆22 + θ2∆11− 2θ∆12) and kc(x, θ) = −(c− x−µ2)(θ∆11−∆12) + µ1(∆22−

θ∆12). Clearly, if µ1 = 0 and θ = ∆12

∆11
, then kc(x, θ) = 0. Hence Ln(c, θ) has a critical

point at ∆12

∆11
. From this, we obtain the following.

Theorem 3.4. Assume (r̃f , r̃p) is the same as in Theorem 3.1. If β = 0 and µ1 = µrf
= 0,

then the minimum GSV hedge ratio is the same as the minimum variance hedge ratio(i.e.,
θ∗GSV = θ∗MV = ∆12

∆11
).
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In empirical studies, the true distribution is unknown or complicated. Then θ∗GSV

can be estimated from the sample by using the so-called empirical distribution method
adapted in, e.g., Price et al. (1982) and Harlow (1991). Suppose we have m observations
of (r̃f , r̃p), say, (rf (i), rp(i)), i = 1, 2, ..., m. From this, the GSV can be estimated by the
formula:

Lobs
n (c, θ) =

1

m

m∑
i=1

(c− ri,θ)
nIri,θ≤c, (25)

where ri,θ = rp(i) − θrf (i) . Given c and n, numerical methods can be used to search
the hedge ratio that minimizing the sample GSV, Lobs

n (c, θ). (We will write θobs
GSV for this

numerical value.)

4 Estimation and Simulation

4.1 Kernel Density Estimators

Assumed that we have n independent observations x1, ..., xn from the random variable
X with the unknown density function f . The kernel density estimator for the estimation
of f is given by

f̂h (x) =
1

nh

n∑
i=1

K(
x− xi

h
), x ∈ R (26)

where K is a so-called kernel function and h is the bandwidth. In this paper we work with
the Gaussian kernel: K(x) = 1/

√
2π exp{−x2/2} and h = (4

3
)1/5σn

−1
5 . (For more details,

see Scott(1979).) Meanwhile it is worth noting that Lien and Tse (2000) proposed the
kernel density estimation method to estimate the probability distribution of the portfolio
return for every θ, and then grid search methods was adapted to find the optimum GSV
hedge ratio.

Table 1: Mean, standard deviation, skewness and kurtosis of daily log returns
of major indices and futures

Insert Table 1 here.

In Table 1 we summarize the empirical mean and standard deviation for the daily
log returns of major indices and futures over the period from January 2000 until December
of 2004. Figure 1 shows the Gauussian kernel density estimators together with the fitted
normal distributions, with parameters from Table 1. We see that the Gaussian kernel
density estimators have sharp peaked distributions and heavy tail behavior than that of
normal distributions.
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4.2 Maximum-Likelihood Estimation

We focus on how to estimate the parameters of a density function f(x; Θ), where Θ
is the set of parameters to be estimated. Suppose that we have n independent observa-
tions x1, ..., xn of a random variable X with the density function f(x; Θ). The maximum
likelihood estimator θ̂MLE is the parameter set that maximizes the likelihood function

L(Θ) =
n∏

i=1

f(xi; Θ).

Clearly this is equivalent to maximizing the logarithm of the likelihood function:

log L(Θ) =
n∑

i=1

log f(xi; Θ).

The log-likelihood function for hyperbolic distribution H(α, β, δ, µ) is given by

`H(α,β,δ,µ)(Θ) = n
(
log

√
α2 − β2 − log 2− log α− log δ − log K1(δ

√
α2 − β2)

)

+
n∑

i=1

[
−α

√
δ2 + (xi − µ)2 + β(xi − µ)

]
.

The first derivatives are:

∂`H

∂α
= n

[
2α

α2 − β2
− 1

α
+

αδ√
α2 − β2

K0(δ
√

α2 − β2)

K1(δ
√

α2 − β2)

]
−

n∑
i=1

√
δ2 + (xi − µ)2

∂`H

∂β
= n

[
−2β

α2 − β2
− δβ√

α2 − β2

K0(δ
√

α2 − β2)

K1(δ
√

α2 − β2)
− µ

]
+

n∑
i=1

xi

∂`H

∂δ
= n

[√
α2 − β2

K0(δ
√

α2 − β2)

K1(δ
√

α2 − β2)

]
− αδ

n∑
i=1

1√
δ2 + (xi − µ)2

∂`H

∂µ
= α

n∑
i=1

(xi − µ)√
δ2 + (xi − µ)2

− nβ.

Table 2: MLE parameters for hyperbolic distribution (d=1)
Insert Table 2 here.

Figure 2 shows the Gauussian kernel density estimators based on the daily log returns
of major indices and futures over the period from 2000 until the end of 2004, together
with the fitted hyperbolic distributions, with parameters from Table 2. Compared with
Figure 1, in which the normal counterpart were plotted, we see a significant improvement.

The symmetric MGH density function is given by the formula

(α/δ)λ

(2π)d/2Kλ(αδ)

Kλ− d
2
(α

√
δ2 + (x− µ)′∆−1(x− µ))

(α−1
√

δ2 + (x− µ)′∆−1(x− µ))
d
2
−λ

.

12



Note that K 1
2
(z) =

√
π
2
z−

1
2 e−z. Hence the two-dimensional symmetric hyperbolic distri-

butions(i.e., β = 0 and λ = 3
2
) has the density

H2 =
(α/δ)3/2

23/2
√

παK 3
2
(αδ)

e−α
√

δ2+(x−µ′)∆−1(x−µ).

From this, we obtain the log-likelihood function for two-dimensional symmetric hyperbolic
distributions :

`H2 = n

[
3

2
log

α

δ
− 3

2
log 2− 1

2
log π − log α− log K 3

2
(αδ)

]

−α

n∑
i=1

√
δ2 + (xi − µ)′∆−1(xi − µ).

Table 3: MLE parameters for symmetric hyperbolic distribution (d=2)
Insert Table 3 here.

Figure 4 shows the fitted symmetric hyperbolic distributions with parameters from
Table 3.

4.3 Comparison of the Estimates

Various distances between two distributions have been proposed in literature. The
Kolmogorov-Smirnov distance is defined as the supremum over the absolute difference
between the two cumulative density functions, i.e.,

DK = max
x∈R

|Femp(x)− Fest(x)|

where Femp and Fest are the empirical and the estimated CDFs. The Anderson and
Darling statistic is given by

DAD = max
x∈R

|Femp(x)− Fest(x)|√
Fest(x)(1− Fest(x))

.

In Table 4, for both Kolmogorov-Smirnov and Anderson-Darling distances, we get better
results for the GH distributions than for the normal distributions.

Table 4: Distance between the estimated and empirical cumulative density functions
Insert Table 4 here.
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4.4 Simulation of Generalized Hyperbolic Random Variables

From the representation of GH distribution as a conditional normal distribution
mixed with the generalized inverse Gaussian, a schematic representation of the algorithm
reads as follows.

1. Sample Y from GIG(λ, δ, ψ) distribution;

2. Sample ε from N(0, 1);

3. Return X = µ + βY +
√

Y ε.

Similarly, for simulating a MGH distributed random vector, we have :

1. Set ∆ = LT L via Cholesky decomposition;

2. Sample Y from GIG(λ, δ, ψ) distribution;

3. Sample Z from N(0, I), where I is d× d-identity matrix;

4. Return X = µ + Y ∆β +
√

Y LT Z.

The efficiency of the above algorithms depends on the method of sampling the gen-
eralized inverse Gaussian distributions. Atkinson (1982) applied the method of rejection
algorithm to sampling GIG. We summarize his results below.

Consider a generalized inverse Gaussian distribution GIG(λ, δ, ψ). We write the
density function as dGIG(λ,δ,ψ) = ce(λ, a, b) and set

t = m(λ, a, b) =

{
λ−1+

√
(1−λ)2+ab

b
, b > 0

γ
2(1−λ)

, b = 0

where e(λ,a,b)(x) = xλ−1e−0.5(ax−1+bx), a = δ2, and b = ψ2 For any two constants s and p
(to be choosen later), set

S1 = e(λ,a,b+2s)(xL) where xL = m(λ, a, b + 2s)

S2 = e(λ,a,b−2p)(xR) where xR = m(λ, a, b− 2p)

and

k =
(est − 1)/s

S2

+
e−pt/p

S1

.

Write k1 = 1/kS2, k2 = 1/kS1 and r = k1
(est−1)

s
.

ALGORITHM GIG

1. Generate independent U and U∗, where U and U∗ are uniformly distributed on
(0, 1). If U > r, go to 2.

x = 1
s
log

(
1 + sU

k1

)
.

If log U∗ > log{e(λ,a,b+2s)(x)/S1} go to 1. Otherwise return x.
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2. x = −1
p

log
{

p
k2

(1− U)
}

.

If log U∗ > log{e(λ,a,b−2p)(x)/S2} go to 1. Otherwise return x.

The algorithm with highest efficiency is found by choosing the values of s and p to minimize

the function S1
(est−1)

s
+ S2

e−pt

p
.

5 Empirical Analysis

This section empirically analyzes the futures hedging for the spot markets of TAIEX,
S&P 500 and Nasdaq 100 using the optimal hedge ratio formulae developed in the earlier
sections. We consider the spot and futures prices in our tests. For the futures series,
the closing settlement prices of the contracts of the nearest month are used. For the
spot market, we adopt the closing indexes as the prices series. All data consist of daily
observations of these prices from January 2000 through December 2004.

Based on the MLE estimation procedures discussed in Section 4, parameters of the
distributions are obtained. We use different statistical tests to examine the goodness of
fit of the estimated distributions. Table 5 depicts the result of the Kolmogorov-Smirnov
test of normal distribution in various markets. It shows that the normality hypotheses are
rejected significantly for all the spot and the futures markets, with P-values ranging from
0.000037 to 0.0133. On the other hand, under the hyperbolic distributions, the data fit
very well at a 5% significance level as shown in Table 6. Moreover the bivariate symmetric
hyperbolic distribution hypothesis is not rejected at the level of 5%, for TAIEX and S &
P 500. However the same hypothesis is rejected for Nasdaq 100. (See Table 7.)

Table 5: Kolmogorov-Smirnov test of normal distribution
Insert Table 5 here.

Table 6: Kolmogorov-Smirnov test of hyperbolic distribution
Insert Table 6 here.

Table 7: χ2-test of symmetric bivariate hyperbolic distribution
Insert Table 7 here.

Table 8 provides the minimum variance hedge ratios for TAIEX and S&P 500 using
the estimated parameters of the symmetric bivariate hyperbolic distribution. As for the
Sharpe hedge ratio, we first estimate the value of µrp − ρ

σrp

σrf
µrf

. (See Table 9.) For

existence of maximum, we need the condition that rL < µrp −ρ
σrp

σrf
µrf

(see section 3.2). In

our cases, it does not exist for any reasonable value of rL. The dependence of the Sharp
measure on the hedge ratio( for rL = 10−4) are shown in Figure 4. From the figure, it is
seen that we obtain the minimum instead of the maximum.

Table 8: Estimated minimum variance hedge ratios under H2 distribution
Insert Table 8 here.

15



Table 9: Estimated values of µrp − ρ(σrp/σrf
)µrf

under H2 distribution
Insert Table 9 here.

To find the GSV-minimizing hedge ratios, we consider several target returns (TR=-
0.005, 0, and 0.005) with power of shortfall (n) equal to 1.5 (see Table 10) and 2 (see
Table 11). For comparison purpose, the optimal hedge ratios are calculated by Monte
Carlo method from parameters of the bivariate hyperbolic distribution and of the normal
distribution. The hedge ratios from the empirical distribution obtained from the samples
are also provided. As symmetry property is not rejected for TAIEX or S&P 500 markets
(see Table 7), it is noted that GSV-minimizing hedge ratios (see Table 10 and 11) are
very close to the minimum variance hedge ratios (see Table 8), which are consistent with
Theorem 3.4 as discussed in the earlier section.

Table 10: GSV-minimizing hedge ratios (n=1.5)
Insert Table 10 here.

Table 11: GSV-minimizing hedge ratios (n=2)
Insert Table 11 here.

Overall, our empirical data from TAIEX spot and futures and from S&P 500 spot and
futures support the proposed model very well. Under the bivariate symmetric hyperbolic
distribution, the optimal hedge ratios calculated from different approaches are found
consistent with the theoretical implication.

6 Concluding Remarks

Although there are many different theoretical approaches to the optimal futures hedge
ratios, under the martingale and joint-normality assumptions, various optimal hedge ra-
tios are identical to the minimum variance hedge ratio. However empirical studies show
that major market data reject the joint-normality assumption. In this paper we propose
the generalized hyperbolic distribution as the joint log-return distribution of the spot
and futures. Using the parameters for generalized hyperbolic distributions, we estimate
several most widely-used optimal hedge ratios: minimum variance, maximum Sharpe
measure and minimum generalized semivariance. In particular, under mild assumptions
on the parameters, we obtain that these theoretical approaches are equivalent. Empirical
studies show that our proposed models fit the TAIEX futures and S & P 500 futures
very well. Numerical results for different optimal hedge ratios also verify our theoretical
observations. Moreover, regarding the equivalence of these three optical hedge ratios,
our empirical studies and simulation results suggest that the martingale property plays a
much important role than the joint distribution assumption.

Although our empirical studies show that the value of complicated and sophisticated
estimation methods for GSV hedge ratio is negligible, which is consistent with the findings
of Lence (1995), conditional heteroskedasticity and stochastic volatility are observed in
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many spot and futures price series. This implies that the optimal hedge strategy should
be time-dependent. To account for this dynamic property, parametric specifications of
the joint distribution are required. Based on our work here, it is natural to extend the
results to time-varying hedge ratios, which will be the task in the near future.
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[20] Kücher, U., Neumann, K., Sørensen, M. and Streller, A. (1999). Stock returns and
hyperbolic distributions. Mathematical and Computer Modelling, 29, 1-15.

[21] Lien, D., and Tse.,Y.K. (1998). Hedging time-varying downside risk. Journal of Fu-
tures Markets, 18, 705-722.

[22] Lien, D., and Tse.,Y.K. (2000). Hedging downside risk with futures contracts. Applied
Financial Economics, 10, 163-170.

[23] Lien, D., and Tse.,Y.K. (2001). Hedging downside risk: futures vs. options. Interna-
tional Review of Economics and Finance, 10, 159-169.

[24] Prause, K.(1999). The Generalized Hperbolic Model: Estimation, Financial Deriva-
tivate, and Risk Meansues. Mathematische Fakultät der Albert-Ludwigs-Universität
Feriburg i. Br.

[25] Price, K., Price, B. and Nantell, T.J. (1982). Variance and lower partial moment
measures of systematic risk: some analytical and empirical results. Journal of Finance,
37, 843-855.

[26] Rydberg, T.H. (1997). The normal inverse Gaussian Lévy process: simulation and
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Table 1: Mean, standard deviation, skewness and kurtosis of daily log returns of major
indices and futures

mean ×10−4 standard deviation skewness kurtosis
TAIEX Futures -2.8313 0.0204 -0.0807 4.8848
TAIEX Index -2.8154 0.0177 0.0103 4.1432

S&P 500 Futures -1.5092 0.0128 0.0562 4.8801
S&P 500 Index -1.4577 0.0127 0.1221 4.7822

Nasdaq 100 Futures -6.8444 0.0265 0.1478 5.3631
Nasdaq 100 Index -6.7680 0.0269 0.3078 5.5348

Table 2: MLE parameters for hyperbolic distribution(d=1)

α̂ β̂ δ̂ µ̂
TAIEX Futures 69.995 1.5937 0.0027 −9.5635× 10−4

TAIEX Index 89.647 3.3658 0.0095 -0.0014
S&P 500 Futures 122.474 -5.8050 0.0059 8.0431× 10−4

S&P 500 Index 125.312 -3.4285 0.0069 4.1696× 10−4

Nasdaq 100 Futures 53.510 -3.8168 0.0028 0.0021
Nasdaq 100 Index 54.506 -2.2591 0.0071 9.9398× 10−4

Table 3: MLE parameters for symmetric hyperbolic distributions(d=2)

α̂ δ̂ µ̂× 10−4 ∆̂11 ∆̂12 ∆̂21

TAIEX -2.8313
Futures/Index 161.1448 0.0027 -2.8154 3.3632 2.7491 2.5445
S&P500 -1.5092
Futures/Index 298.1549 0.0017 -1.4577 4.3914 4.2464 4.3339
Nasdaq100 -6.8444
Futures/Index 157.1192 0.0000 -6.7680 4.5243 4.4855 4.6681
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Table 4: Distance between the estimated and empirical cumulative density functions

Kolmogorov-Smirnov
GH Normal

TAIEX Futures 0.0153 0.0655
TAIEX Index 0.0152 0.0434
S&P 500 Futures 0.0148 0.0488
S&P 500 Index 0.0142 0.0445
Nasdaq 100 Futures 0.0217 0.0619
Nasdaq 100 Index 0.0234 0.0628

Anderson-Darling

TAIEX Futures 0.0748 0.4326
TAIEX Index 0.0608 0.2466
S&P 500 Futures 0.0779 1.0848
S&P 500 Index 0.0653 0.6985
Nasdaq 100 Futures 0.0827 16.2749
Nasdaq 100 Index 0.1192 95.3173

Table 5: Kolmogorov-Smirnov test of normal distribution

Markets P -value
TAIEX Futures 3.7457× 10−5

TAIEX Index 0.0168
S&P 500 Futures 0.0049
S&P 500 Index 0.0133
Nasdaq 100 Futures 1.2275× 10−4

Nasdaq 100 Index 9.3381× 10−5

Table 6: Kolmogorov-Smirnov test of hyperbolic distribution

Markets P -value
TAIEX Futures 0.9277
TAIEX Index 0.9334
S&P 500 Futures 0.9450
S&P 500 Index 0.9628
Nasdaq 100 Futures 0.5959
Nasdaq 100 Index 0.4994
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Table 7: χ2-test of symmetric bivariate hyperbolic distribution

Markets χ̂2
1 n1 P1-value χ̂2

2 n2 P2-value
TAIEX
Futures/Index 28.45 26 0.0555 18.78 21 0.1302
S&P 500
Futures/Index 30.24 32 0.1769 34.28 33 0.1021
Nasdaq 100
Futures/Index 65.47 29 1.8364×10−6 63.21 30 7.4001×10−6

*(To avoid any problems arising from partition sensitivity, two different estimation
procedures were considered. To do this, we partition the whole space into cells of equal
size, and compute the expected number of each cell. Now the first procedure is to count
cells of which the expected value of observations greater than five, and then integrate all
other cells of which the expected value of observations less than five into a new cell. The

second procedure is very much the same as the first, but now combine all the cells of
which the expected value of observations less than five with the random chosen cell of
which the expected number is greater than 5. ni is the number of the modified cells in

procedure i.)

Table 8: Estimated minimum varaince hedge ratios under H2 distribution

θ∗MV

TAIEX 0.8175
S&P500 0.9670

Table 9: Estimated value of µrp − ρ
σrp

σrf
µrf

under H2 distribution

µrs − ρ
σrp

σrf
µrf

TAIEX -5.0106×10−5

S&P500 1.6494×10−7
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Table 10: GSV-minimizing Hedge Ratios (n=1.5)

T R θN2
GSV θH2

GSV θsample
GSV

-0.005 0.8165 0.8182 0.8266
(2.54) (2.99)

TAIEX 0 0.8163 0.8183 0.8224
(1.42) (1.41)

0.005 0.8164 0.8185 0.8320
(1.89) (1.56)

-0.005 0.9650 0.9696 0.9743
(3.80) (4.70)

S&P 500 0 0.9670 0.9701 0.9749
(0.80) (0.71)

0.005 0.9659 0.9672 0.9863
(2.43) (1.99)

TR= Target Return. θN2
GSV = GSV-based optimal hedge ratio from Monte Carlo

Simulation using estimated normal distribution. θH2
GSV = GSV-based optimal hedge ratio

from Monte Carlo Simulation using estimated H2 distribution, and θsample
GSV =GSV-based

optimal hedge ratio computed from sampled market data. The rows in each box without
brackets are the means and the rows with brackets are the variances measured in units
of 10−4.
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Table 11: GSV-minimizing Hedge Ratios ( n=2)

T R θN2
GSV θH2

GSV θsample
GSV

-0.005 0.8121 0.8123 0.7884
(1.65) (3.65)

TAIEX 0 0.8143 0.8176 0.8131
(1.24) (2.12)

0.005 0.8161 0.8208 0.8271
(1.51) (1.90)

-0.005 0.9608 0.9648 0.8764
(1.85) (6.86)

S&P 500 0 0.9656 0.9688 0.9643
(0.74) (1.09)

0.005 0.9687 0.9750 0.9678
(1.70) (1.36)

TR= Target Return. θN2
GSV = GSV-based optimal hedge ratio from Monte Carlo

Simulation using estimated normal distribution. θH2
GSV = GSV-based optimal hedge ratio

from Monte Carlo Simulation using estimated H2 distribution, and θsample
GSV =GSV-based

optimal hedge ratio computed from sampled market data. The rows in each box without
brackets are the means and the rows with brackets are the variances measured in units
of 10−4.
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Figure 1: Normal density and Gaussian kernel density estimators
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Figure 2: Log-densities of daily log returns of major indices and futures(2000-2004)
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Figure 3: Estimated symmetric H2 distributions
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Figure 4:
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