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1.INTRODUTION 

 

 The main purpose in this discussion is to find the distribution function of the sum 

of independent and identical distributed Weibull random variables. The Weibull 

distribution is a two-parameter distribution which by adjusting a scale parameter 

(denoted by c) and a shape parameter (denoted by β ) we can obtain a variety of 

shapes to fit experimental data. Thus, this distribution is highly adaptable and widely 

used in practice. Without loss of generality, we can assume the scale parameter to be 

one. In addition, the Weibull distribution is widely used in reliability modeling since 

other distributions such as exponential (c=1), Rayleigh (c=2), and normal (if a 

suitable value for the shape parameter is chosen) are special cases of the Weibull 

distribution. In the version of hazard-rate function, when c>1, the hazard rate is a 

monotonically increasing function with no upper bound that describes the wear-out 

region, and when c=1, the hazard rate becomes constant (constant failure-rate region), 

and when c<1, the hazard rate is a monotonically decreasing with time (the early 



failure-rate region). This enables the Weibull distribution to describe the failure rate of 

many failure data in many kinds of application. 

 Unlike the renewal processes with the exponential inter arrivals, those with the 

Weibull interarrivals do not possess elegant properties. It is well known that by the 

nature of the renewal processes, the distribution of the process is related to the 

distribution of a finite sum of the independent and identically distributed inter arrivals, 

i.e. suppose that inter arrivals nXXX ,...,, 21  are a random sample of Weibull(c, β ) 

distributed with probability density function 

                         β
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The probability of interest is  

                    )( tSP n ≤  where nn XXS ++= ...1 ,                (2) 

which has no simple formula to evaluate. The major result of this report is to present a 

simple, elegant and relatively accurate form of an approximation. 

 

2. METHODOLOGY 

 

 In this section, we discuss the approximation of )()( tSPtF nn ≤= , which could 

be seen as the convolution of n functions. When n is large, the evaluation of n-fold 

convolution includes n-dimensional integration, thus the evaluation becomes difficult. 

Even using the numerical analysis, the results of evaluation are obtained pointwisely. 

That is, when fixed one value of t, we can numerically evaluate )(tFn , but just only 

one value in every evaluation. The numerical computation of the inverse Laplace 

transform [8] still directs to the answer pointwisely. Another approach is to use 

Edgeworth Expansion [3 and 7], but the shortage is that we have to includ numerical 

integration and when the shape parameter c<1, the accuracy of the approximation 



would not behave well relatively. Here we use three quantiles to obtain a simple 

approximation method, and the evaluation of approximation is obtained 

functionwisely, not pointwisely. Our approach describes as the following: 

Suppose iX  is a random variable from ) 1 ,  ( cWeibull distribution. Via the transform 

of variable c
ii XY = , we obtain that iY  is a random variable from ) 1 (lExponentia  

distribution with ni ,...,1= . Thus, we expect to use the distribution function of 

nYY ++ ...1  to approximate the distribution function of nXX ++ ...1 . Since the two 

distribution functions are continuously differentiable functions, for every 0≥t , we 

expect to find some continuously differentiable function )(tw , such that 

                 ))(...()...( 11 twYYPtXXP nn ≤++=≤++ ,               (3) 

with 0)0( =w . Thus, we consider the form of third degree polynomial 

)(tw = ccc ttt    23 τ+γ+α . (Note that we can consider the form cc tt   2 γ+α , but the 

approximation isn’t well relatively.) Three unknown parameters above can be 

determined by three quantiles of nXX ++ ...1  and nYY ++ ...1 . 

First, let pt  satisfy  

                       ptXXP pn =≤++ )...( 1 ,                      (4) 

and pθ  satisfy 

                        pθYYP pn =≤++ )...( 1 ,                      (5) 

Thus, pt  and pθ  are the p-quantile of nXX ++ ...1  and nYY ++ ...1 , respectively. 

When =p 0.1, 0.5, and 0.9, we can apply p
c
p

c
p

c
p θttt =++    23 τγα  to construct three 

linear functions. Thus, three unknown parameters can be evaluated through the three 

linear functions.  

 



Lemma 1: 

Suppose nYYY ,...,, 21  are a random sample from ) 1 (lExponentia  distributed. Then  
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Proof: 

First let ∑
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i
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* , there is a counting process }0 ),:sup()({ * ≥≤= θθθ nSnN  

which is a renewal process, conclude that 

                        nNSn ≥⇔≤ )(* θθ .                          (7) 

As inter arrivals are a random sample from ) 1 (lExponentia  distributed, we know 

that )(θN  is a random variable from )(θPoisson  distributed. Thus 
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Via lemma 1, the value of pθ  can be obtained by numerical method (We use the 

Newton-Raphson method). Different to pθ  which follows lemma1, we must 

simulate the value of pt . We interpret the procedure of the approach as the follows: 

 

(1) Through Newton-Raphson method we can obtain the solutions of the equation 

p / i!θe
n
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i
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1 , where =p 0.1, 0.5, 0.9, i.e. 9.05.01.0   and , , θθθ . 

(2) Determine the numbers of simulate data 710=N , let NTTT ,...,, 21  be a random 

sample from )...()( 1 xXXPxF nn ≤++= , and order them become to 

)()2()1( ,...,, NTTT . Thus, let )(
ˆ

Npp Tt =  be the approximation of the true quantile pt , 



where =p 0.1, 0.5, 0.9. 

(3) Via the three linear equations  
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Three of unknown parameters ,α γ, τ  can be determined.  

(4) Under fixed n and shape parameter c, the estimated form of )(tw  is  

                         ccc ttttw    )(ˆ 23 τγα ++= .                    (10) 

(5) Thus the approximation of the distribution function of interest is  

        ∑
−

=

−−=≤++≅≤++
1

0

)(ˆ
11 ! / )(ˆ1))(ˆ...()...(

n

i

itw
nn itwetwYYPtXXP .      (11)  

 

We choose the number of simulate data is 710=N , and )(NpT  is the p-th sample 

quantile. From [6] we can know that )(NpT  is asymptotically following the 

)
)(

)1(,( 2 Ntf
pptN
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−  distributed, the error is proportional to 2
7

101 −
=

N
, thus )(NpT  

would close to the true p-th quantile. Equation (11) is the most important result of this 

dissertation and offers a simple approximation via the correlation between the 

Exponential and the Weibull distributed. Moreover, the approximation approach will 

reduce a lot of time relative to simulation. In the next section we will discuss the 

accuracy of the approach.  

 

 

3.APPROXIMATION RESULTS 



 

In order to appraise the accuracy of our approximation, the criterion that be used is the 

relative error. We denote the relative error is 
P

PP ˆ−
, where p is the true probability 

and ))(ˆ...(ˆ
)(1 Npn TwYYPP ≤++=  is the approximation of p. Total cases that we have 

done are as 10  ..., ,3  ,2=n , 0.9  ..., 0.2,  ,1.0=c  and 9  ..., 3,  2, =c . In table 3.1, 

we list the relative error table includes only cases of 9 and 5  ,2=n , c = 0.5 and 5, 

the others have the analogous result and tendency. Fixed n and c, in every block of 

table 3.1 includes the relative errors of probabilities 0.05, 0.1, …0.95. Further, we list 

the same cases of three of parameters in table A.1 of Appendix A. 

We can discover that when c=0.5, the maximum relative error is 0.14%; and c=5, the 

maximum relative error is 1.4%, noted that happened as p=0.05, concludes that the 

absolute error isn’t very large. Hence, we believe that Equation (11) brings a nice 

accuracy of approximation.  

 

[Table 3.1] 

Fixed as n=2 

p                  c 0.5 5 

0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 
0.6 

0.000726445242646 
-0.000000002616051 
0.000119820278476 
-0.000194908815901 
0.000138893117596 
-0.000011260430451 
0.000043543016760 
0.000186524455173 
0.000024819173472 
-0.000000000567722 
-0.000148473532176 
-0.000059519398334 

-0.010161527424567 
-0.000000000000001 
0.003828824693817 
0.005143137693705 
0.005324085016400 
0.005005107033746 
0.004334074875617 
0.002847272084006 
0.001416814541063 
0.000000000000000 
-0.001696971491006 
-0.003003892633153 



0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 

-0.000040240442348 
-0.000105114490566 
-0.000172923165788 
-0.000064298286200 
0.000007023458372 
-0.000000001380996 
0.000165231376151 

-0.004332428288305 
-0.005246866270862 
-0.005520852102506 
-0.005102997297659 
-0.003342411510635 
0.000000000000000 
0.004920445151018 

 
Fixed as n=5 

p                   c 0.5 5 

0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 

-0.000028135251537 
-0.000000007634631 
0.000008069914397 
0.000509988574720 
0.000340433284307 
0.000628625741176 
0.000642236022542 
0.000125130856831 
0.000196852924741 
-0.000000001023538 
0.000325840009388 
0.000290632220714 
0.000252098046966 
0.000277480011670 
0.000254161667295 
0.000199371124861 
0.000174674060825 
-0.000000001927334 
-0.000021837121247 

-0.014064661989290 
0.000000000000002 
0.003784904432964 
0.005825262499093 
0.006454284943475 
0.005655125010712 
0.004201874492865 
0.002810794471418 
0.001418848371266 
0.000000000000002 
-0.001174124992608 
-0.002266358442895 
-0.002949416858121 
-0.003413516974510 
-0.003491304489550 
-0.003091183240431 
-0.001950997481086 
0.000000000000001 
0.002886342734995 

 
 
 

Fixed as n=9 

p                   c 0.5 5 

0.05 0.001436234621018 -0.010512189365780 



0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 

-0.000000012003200 
0.000557973789439 
0.000524827975903 
0.000174871687116 
0.000275117740350 
0.000340236827250 
0.000406740368423 
0.000277355403994 
-0.000000001422286 
0.000113761481000 
-0.000128186125497 
-0.000099682351945 
0.000002286246061 
0.000047694801632 
-0.000065649121020 
0.000010740192212 
-0.000000002419210 
0.000015724643715 

0.000000000000005 
0.004208106793534 
0.004523974335599 
0.004347404044753 
0.003550649249438 
0.002914461327970 
0.001891905365702 
0.000952014957686 
-0.000000000000003 
-0.000865972087613 
-0.001469193796314 
-0.002062921597401 
-0.002299894298618 
-0.002261558612072 
-0.001909441671796 
-0.001183948276717 
-0.000000000000003 
0.001799676396769 

 

 
APPENDIX A 

 
 [Table A.1]  

Fixed n and c, there are three parameters in every block, where α , γ  and τ  are in 
the upper, middle and down side, respectively.  
 

n                   c 0.5 5 

 
2 

0.000280751644006 
-0.010114574919690 
1.255212150831596 

0.000004835157895 
-0.000513436509664 
0.087023676809991 

 
3 

-0.000395335224320 
-0.012406564768126 
1.464308967719061 

0.000000025577837 
-0.000019005934388 
0.018978874641112 

 
4 

-0.000224864735582 
-0.016947170359548 
1.650435209948320 

0.000000000555125 
-0.000001658936240 
0.006292385415443 



 
5 

-0.000493569188358 
-0.018315452950023 
1.816576635488150 

0.000000000026227 
-0.000000236200742 
0.002643130317068 

 
6 

-0.000726355289725 
-0.018704570924749 
1.967622246201590 

0.000000000002166 
-0.000000047912910 
0.001296831369222 

 
7 

-0.000497097072477 
-0.022139525917010 
2.112546353444382 

0.000000000000270 
-0.000000012598155 
0.000709991929183 

 
8 

-0.000863384052326 
-0.020185034372005 
2.239924284448030 

0.000000000000042 
-0.000000003807886 
0.000419152653162 

 
9 

-0.000835110482110 
-0.021605902558135 
2.367244177097372 

0.000000000000008 
-0.000000001360679 
0.000263824260089 

 
10 

-0.000897769786661 
-0.021741736990287 
2.484964323969154 

0.000000000000002 
-0.000000000536868 
0.000174175974127 
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