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1.INTRODUTION

The main purpose in this discussion is to find the distribution function of the sum
of independent and identical distributed Weibull random variables. The Weibull
distribution is a two-parameter distribution which by adjusting a scale parameter
(denoted by ¢) and a shape parameter (denoted by /) we can obtain a variety of
shapes to fit experimental data. Thus, this distribution is highly adaptable and widely
used in practice. Without loss of generality, we can assume the scale parameter to be
one. In addition, the Weibull distribution is widely used in reliability modeling since
other distributions such as exponential (c=1), Rayleigh (¢=2), and normal (if a
suitable value for the shape parameter is chosen) are special cases of the Weibull
distribution. In the version of hazard-rate function, when ¢>1, the hazard rate is a
monotonically increasing function with no upper bound that describes the wear-out
region, and when c=1, the hazard rate becomes constant (constant failure-rate region),

and when c¢<1, the hazard rate is a monotonically decreasing with time (the early



failure-rate region). This enables the Weibull distribution to describe the failure rate of
many failure data in many kinds of application.

Unlike the renewal processes with the exponential inter arrivals, those with the
Weibull interarrivals do not possess elegant properties. It is well known that by the
nature of the renewal processes, the distribution of the process is related to the
distribution of a finite sum of the independent and identically distributed inter arrivals,

i.e. suppose that inter arrivals X, X,,..., X, are a random sample of Weibull(c, )

n

distributed with probability density function

f)=Sxte 7. (1)
The probability of interest is
P(S,<t) where S =X, +..+X,, (2)

which has no simple formula to evaluate. The major result of this report is to present a

simple, elegant and relatively accurate form of an approximation.

2. METHODOLOGY

In this section, we discuss the approximation of F,(¢) = P(S, <t), which could
be seen as the convolution of » functions. When # is large, the evaluation of n-fold
convolution includes n-dimensional integration, thus the evaluation becomes difficult.
Even using the numerical analysis, the results of evaluation are obtained pointwisely.
That is, when fixed one value of z, we can numerically evaluate F, (), but justonly
one value in every evaluation. The numerical computation of the inverse Laplace
transform [8] still directs to the answer pointwisely. Another approach is to use
Edgeworth Expansion [3 and 7], but the shortage is that we have to includ numerical

integration and when the shape parameter ¢<1, the accuracy of the approximation



would not behave well relatively. Here we use three quantiles to obtain a simple
approximation method, and the evaluation of approximation is obtained
functionwisely, not pointwisely. Our approach describes as the following:

Suppose X, isarandom variable from Weibull( c,1) distribution. Via the transform

of variable Y, = X,°, we obtain that Y, is a random variable from Exponential(1)

distribution with ;i =1,...,n. Thus, we expect to use the distribution function of
Y, +..+Y, to approximate the distribution function of X, +...+ X, . Since the two

distribution functions are continuously differentiable functions, for every >0, we
expect to find some continuously differentiable function w(¢), such that
PX,+..+ X, <t)=P(Y,+..+Y, <w(?)), 3)

with  w(0)=0 . Thus, we consider the form of third degree polynomial

w(t)=o > +yt* +1¢°. (Note that we can consider the form o ¢* +vy¢¢, but the

approximation isn’t well relatively.) Three unknown parameters above can be

determined by three quantilesof X, +..+X, and Y +..+7Y,.

First, let ¢, satisfy

P(X,+.+X,<t)=p, 4)
and 6, satisfy

P(Y,+..+Y,<0)=p, (5)
Thus, ¢, and 6, are the p-quantile of X, +..+ X, and Y, +..+Y,, respectively.

When p=0.1,0.5, and 0.9, we can apply a ¢ +y ¢ +7t;, =0, to construct three

linear functions. Thus, three unknown parameters can be evaluated through the three

linear functions.



Lemma I:

Suppose Y,,Y,,....Y, arearandom sample from Exponential(1) distributed. Then

n

n—1
P(Y,+.4+Y,<0)=1->¢0" [ il (6)

i=0

Proof:

First let S,::ZYi, there is a counting process {N(#) =sup(n:S, <6),0 >0}

i=1

which is a renewal process, conclude that
S'<0< N@)=n. (7)

As inter arrivals are a random sample from Exponential(1) distributed, we know

that N(0) isarandom variable from Poisson(@) distributed. Thus

P(Y,+..+Y, <0)=P(S, <0) = P(N(6) > n)

=1-P(N(®) <n)=1-> 0"/l (8)

i=0

Via lemma 1, the value of 6, can be obtained by numerical method (We use the
Newton-Raphson method). Different to 6, which follows lemmal, we must

simulate the value of #,. We interpret the procedure of the approach as the follows:

(1) Through Newton-Raphson method we can obtain the solutions of the equation

n-1
1->e™0) /il=p,where p=0.1,05,009,ie 6,6 and b,,.

i=0

(2) Determine the numbers of simulate data N =107, let T7;,7,,..,T, be a random
sample from F (x)=P(X,+..+X,<x), and order them become to

T,

w1 Ty - Thus, let ¢, =T

@ Loy vy D€ the approximation of the true quantile ¢,



where p=0.1,0.5,0.9.

(3) Via the three linear equations

a 2635 +y ;02; +7 200.1 =051,

& lgs +7 los +Tlgs = bgs, ©)

a 20?3 +y 202,5 + rfég =0,,.

Three of unknown parameters a, y, ¢ can be determined.
(4) Under fixed » and shape parameter c, the estimated form of w(z) is
wit)=at* +yt* +1t°. (10)

(5) Thus the approximation of the distribution function of interest is

n-1 R )
P(X,+..+ X, <) = P(Y,+..+Y, <W(t)) =1-D e ") 141, (11)
i=0

We choose the number of simulate data is N =107, and T\ 1s the p-th sample

quantile. From [6] we can know that T,

oy 1S asymptotically following the

7

PA=P)\ i - - 1 2
N(t ,~——2) distributed, the error is proportional to — =10 2, thus T,
(P Jan(tp)N) prop /N (Np)

would close to the true p-th quantile. Equation (11) is the most important result of this
dissertation and offers a simple approximation via the correlation between the
Exponential and the Weibull distributed. Moreover, the approximation approach will
reduce a lot of time relative to simulation. In the next section we will discuss the

accuracy of the approach.

3.APPROXIMATION RESULTS



In order to appraise the accuracy of our approximation, the criterion that be used is the

A

relative error. We denote the relative error is

, Where p is the true probability

and P = P(Y, +...+Y, <W(T,,)) isthe approximation of p. Total cases that we have

done are as n=2, 3,..., 10, ¢=0.1 0.2,..., 09 and ¢=2, 3,..., 9. In table 3.1,
we list the relative error table includes only cases of n=2, 5and9, ¢ =0.5 and 5,
the others have the analogous result and tendency. Fixed » and ¢, in every block of
table 3.1 includes the relative errors of probabilities 0.05, 0.1, ...0.95. Further, we list
the same cases of three of parameters in table A.1 of Appendix A.

We can discover that when ¢=0.5, the maximum relative error is 0.14%; and ¢=5, the
maximum relative error is 1.4%, noted that happened as p=0.05, concludes that the

absolute error isn’t very large. Hence, we believe that Equation (11) brings a nice

accuracy of approximation.

[Table 3.1]
Fixed as n=2
p c 0.5 5
0.05 0.000726445242646 -0.010161527424567
0.1 -0.000000002616051 -0.000000000000001
0.15 0.000119820278476 0.003828824693817
0.2 -0.000194908815901 0.005143137693705
0.25 0.000138893117596 0.005324085016400
0.3 -0.000011260430451 0.005005107033746
0.35 0.000043543016760 0.004334074875617
04 0.000186524455173 0.002847272084006
0.45 0.000024819173472 0.001416814541063
0.5 -0.000000000567722 0.000000000000000
0.55 -0.000148473532176 -0.001696971491006
0.6 -0.000059519398334 -0.003003892633153



0.65
0.7
0.75
0.8
0.85
0.9
0.95

Fixed as n=5

p
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

Fixed as n=9

p
0.05

-0.000040240442348
-0.000105114490566
-0.000172923165788
-0.000064298286200
0.000007023458372
-0.000000001380996
0.000165231376151

0.5

-0.000028135251537
-0.000000007634631
0.000008069914397
0.000509988574720
0.000340433284307
0.000628625741176
0.000642236022542
0.000125130856831
0.000196852924741
-0.000000001023538
0.000325840009388
0.000290632220714
0.000252098046966
0.000277480011670
0.000254161667295
0.000199371124861
0.000174674060825
-0.000000001927334
-0.000021837121247

0.5
0.001436234621018

-0.004332428288305
-0.005246866270862
-0.005520852102506
-0.005102997297659
-0.003342411510635
0.000000000000000
0.004920445151018

5

-0.014064661989290
0.000000000000002
0.003784904432964
0.005825262499093
0.006454284943475
0.005655125010712
0.004201874492865
0.002810794471418
0.001418848371266
0.000000000000002
-0.001174124992608
-0.002266358442895
-0.002949416858121
-0.003413516974510
-0.003491304489550
-0.003091183240431
-0.001950997481086
0.000000000000001
0.002886342734995

5
-0.010512189365780



0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

Fixed n and c, there are three parameters in every block, where «, y and 7 are in

-0.000000012003200
0.000557973789439
0.000524827975903
0.000174871687116
0.000275117740350
0.000340236827250
0.000406740368423
0.000277355403994
-0.000000001422286
0.000113761481000
-0.000128186125497
-0.000099682351945
0.000002286246061
0.000047694801632
-0.000065649121020
0.000010740192212
-0.000000002419210
0.000015724643715

APPENDIX A

[Table A.1]

the upper, middle and down side, respectively.

0.5

0.000280751644006
-0.010114574919690
1.255212150831596

-0.000395335224320
-0.012406564768126
1.464308967719061

-0.000224864735582
-0.016947170359548
1.650435209948320

0.000000000000005
0.004208106793534
0.004523974335599
0.004347404044753
0.003550649249438
0.002914461327970
0.001891905365702
0.000952014957686
-0.000000000000003
-0.000865972087613
-0.001469193796314
-0.002062921597401
-0.002299894298618
-0.002261558612072
-0.001909441671796
-0.001183948276717
-0.000000000000003
0.001799676396769

5

0.000004835157895
-0.000513436509664
0.087023676809991

0.000000025577837
-0.000019005934388
0.018978874641112

0.000000000555125
-0.000001658936240
0.006292385415443
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-0.000493569188358
-0.018315452950023
1.816576635488150

-0.000726355289725
-0.018704570924749
1.967622246201590

-0.000497097072477
-0.022139525917010
2.112546353444382

-0.000863384052326
-0.020185034372005
2.239924284448030

-0.000835110482110
-0.021605902558135
2.367244177097372

-0.000897769786661
-0.021741736990287
2.484964323969154

REFERENCES

0.000000000026227
-0.000000236200742
0.002643130317068

0.000000000002166
-0.000000047912910
0.001296831369222

0.000000000000270
-0.000000012598155
0.000709991929183

0.000000000000042
-0.000000003807886
0.000419152653162

0.000000000000008
-0.000000001360679
0.000263824260089

0.000000000000002
-0.000000000536868
0.000174175974127

Selected Topics. 2nd edition. Volumel. New Jersey: Prentice-Hall.
Elsayed, A. (1996). Reliability Engineering. MA: Addison-Wesley.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. New York:

Springer-Verlag.

Ross, S. M. (1996). Stochastic Processes. 2nd edition. New York: Wiley.
Ross, S. M. (1997). Simulation. 2nd edition. New York: Academic Press.

. Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New

York: J. Wiley & sons.

. Stuart, A. & Ord, J. K. (1987). Kendall’s Advanced Theory of Statistics. 5th ed.,

Volume 1, Distribution Theory. London: Charles Griffin & Co.

. Trivedi, K. S. (2002). Probability and Statistics with Reliability, Queuing and

Computer Science Applications. 2nd edition. New York: Wiley.



