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一,中文摘要 

可調式調變是根據瞬間訊雜比來決定調變模

式。在單一載波時，一般我們常用 Torrance

及 Lagrange 方法來求所需的改變臨界值。臨

界值是根據位元錯誤率及傳送率之間的比較

而決定。這兩個方法都把通道變化描述成一個

SNR數學式，再由Cost Function來決定臨界

值。本研究探討如何簡化 Torrance 的求解方

法。我們首先提出漸近式的求解法，先從最低

的二個模式的臨界值開始求（把其它值設為無

窮大）。當最低的值找出之後，再找第二個臨

界值。這個值一定是在第一個值跟無窮大之

間。因此，一個值的變化，只跟二個相關的調

變模式有關。由這個道理，我們繼續簡化求解

公式，而提出了單一模式的調變成本函數。利

用這些單一模式的調變成本來決定臨界值。最

後再把單一載波所求到的臨界值應用到多載

波之情況。 

 
Abstract- In single carrier, the two formulations 
that are commonly used in the determination of the 
switching levels are the Torrance cost function and 
the Lagrangian optimization. From the 
Lagrangian optimization, it can be seen that the 
switching levels can be each separately related to 
the target bit error rate with the constraint that 
the average bit error satisfies the target bit error 
requirement. This provides a search direction for 
the optimum solution of the Torrance formulation. 
In this case, each switching level is only related to 
two adjacent modulation modes. Based on this 
relation, we approximate the Torrance formulation 
with a two-mode one-dimensional search problem. 
From this decomposition, we further develop a one 
mode cost function to derive the switching level. 
This method evaluates the cost of using one specific 
modulation mode as a function of instantaneous 
SNR. Switching levels can be determined by simply 
comparing these one mode cost function. We then 
evaluate these switching levels at the case of 
multi-carrier and try to find a way to represent the 
mean SNR for the case of multi-carrier.   
 
二,緣由與目的 
In adaptive modulation, the aim is to optimize 
the set of switching levels s, so that the average 

BPS throughput ( , )B r s  can be maximized 

under the constraint ( ; )avg thP r s P= , where 

avgP  for a K-mode adaptive coded modulation 
scheme is defined as the sum of the mode 
specific average BEP weighted by the BPS 
throughput of the individual constituent mode 
(bit error per symbol) divided by the average 
BPS (bit per symbol): 

1

0

1

0

( ; )     

1       

K

R k k
k

K

avg k k
k

P r s b P

P b P
B

−

=

−

=

=

∑

∑

@

          (1) 

 

and thP  is the target bit error threshold, r  is 
the average SNR per symbol, s is the set of 
switching levels, K is the number of constituent 
coded-modulation modes, kb  is the BPS 
throughput of the k-th constituent mode and the 
mode-specific average BEP kP  is given as: 
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Two of the popular methods that are used to 
derive the switching levels are the Torrance 
method and the Lagrangian method [1][2][3][4]. 
 
The Torrance cost function is defined as  
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while the Lagrange method define the cost 
function as   
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The difference between these two formulations 
is the way to express the relation between avgP  

and thP . Although it is formulated as a 
multidimensional search problem in the 
Torrance formulation, actually, the switching 
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levels can be derived as a function of the thP  
only. This fact is indicated by the solution 
derived from the Lagrange method. 
The Lagrange cost function can be evaluated as: 
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When ( ) 0kf s ≠ , it can be simplified by 

dividing both sides by ( )kf s , to yield 

{ }11(1 ) ( ) ( ) 0
k kk th k m k k m kc P b p s b p sλ λ
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Re-arrange the above equation and assume 
0kc ≠ , we have: 
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It can be seen that the switching level s is just a 
function of the target bit error rate, as long as the 
value of λ  is known. The following set of 
functions defines the relation between the 
switching level and the mode specific BEP.  
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The set of switching level needs to satisfy the 

constraint function ( , ( ))kY r s s  defined as 

( , ( )) ( , ( )) ( , ( ))k R k th kY r s s P r s s P B r s s−@  (4) 
Eq(3) indicates that each of the switching levels 
can be separately derived but is a function of 
1 thPλ− , as long as the set of switching level 
satisfies the requirement of the Y function in 
Eq(4). For the case if the requirement can not be 
met, such as in a low average SNR channel, we 
will have to use the Torrance constraint. In this 
case, assume that there is no thP  in the 
formulation. From the Lagrange solution, it is 
seen that the optimum solution of the switching 
level is only related to two adjacent modes. The 
consideration of thP  makes the Torrance 

formulation non-linear. If thP is removed, the 
formulation is a linear and each switching level 
can be independently derived. A solution for this 
case with SNR=25 db is shown in Table 1.  
 
三、研究方法及成果 

Based on this argument, a successive 
optimization method is proposed in this paper. 
This method finds the solution from the first 
threshold that the system switches from 
no-transmission to the first transmission mode, 
and successively finds the next threshold up to 
the highest transmission mode. During the 

successive optimization, the cost function in (1) 
considers two modes at a time.  
 
Since our interest is not the actual cost function, 
but the switching level for the available 
transmission modes. Or more importantly, for a 
particular SNR value, we compare the use of two 
adjacent transmission modes. We seek the mode 
that will result in lower cost function. So we 
need only to compare the part of the cost 
function that is affected by the use of two 
adjacent modes at some particular SNR. For 
each particular SNR value, two modes can be 
chosen. The objective is to choose the one that 
has lower total cost function.  
 
From this two-mode cost function, we develop a 
simple comparison method to evaluate the cost 
associated with each of the transmission mode. 
We break the cost function that involves only 
two adjacent transmission modes into two 
separate partial cost functions. During the 
successive optimization, only the partial cost 
function is required. The partial cost function is 
a measure of only the part of the cost that 
involves with transmission mode that has been 
used from 0db up to a given SNR. The partial 
cost function associated with one particular 
mode up to instantaneous SNR ξ  is derived 
below. Let us temporarily neglect the BER 
threshold by assuming that it is small enough 
that the system can not achieve. Also, for 
simplicity, the log function is neglected 
temporarily. Thus this derivation is not complete 
but an intermediate step for the setup of the 
following cost function that is to be proposed. 
Take BPSK and QPSK as an example. 
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The meaning of the above cost function is that 
when x increases, the part associated with BPSK 
will increase and the part associated with QPSK 
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will decrease. The cost function adds the amount 
that is to be increased and subtracts the amount 
that is to be removed. Based on the above 
derivation, we define the partial cost function as 

1 1
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The original cost function becomes the 
comparison of the two partial cost functions. 
Both the two functions keep increase in BER as 
a function of x. But one is to be added and one is 
to be removed. The optimum solution is when 
the two cost functions are equal.  
 
To make the partial cost function a 
monotonically decreasing function of the SNR, 
we normalize the cost function with the 
integration interval. For practical application, we 
also consider the BER threshold. The 
normalization is as follows,  
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For computational purpose, we modify the new 
normalized cost function as 
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where ρ  is a normalization constant. We 
normalize the accumulated BER by the 
probability interval. This will not change the 
final result, because both the partial cost 
functions are normalized by the same interval. 
The computation is based on the comparison of 
the BER value of two adjacent modulation 
modes. The threshold is likewise normalized by 
ρ , so the normalized BER is compared with the 
normalized threshold. The normalization interval 
is a function of the SNR.  
 
When compared with the case derived by the 
peak bit error rate, it can be seen that in order to 
increase the throughput, the system derived from 
the above cost function will switch to the next 
higher transmission mode at a lower SNR. That 
is the required SNR for the change to the next 
higher transmission mode will be lower than that 
obtained by the peak bit error rate. This decrease 
of the threshold is at the price of larger bit error 
rate. But the increased bit error rate is 
compensated by the increased throughput. So the 
new switching threshold is at the point where the 
increased bit error rate is at equilibrium with the 

increased throughput. This is the minimum point 
in the two-mode cost function. 
 
A property of the cost function is that when the 
SNR is low, the bit error rate dominates the cost 
function. This part of the cost function is very 
similar to the bit error rate verse SNR curve. But 
when the SNR reaches a certain value, the bit 
error rate decreases to the level set by the 
threshold, and from that on the bit error rate is 
no more considered in the cost function and the 
throughput dominates the cost function. So an 
almost flat curve in the tail of the cost function 
results.  
 
As explained above, the cost function is to be 
minimized and the switching point is where 
these two partial cost functions equal. The first 
threshold is the intersection of the cost 
associated with BPSK transmission mode with 
that of the no-transmission. In this derivation of 
the switching level, for any SNR, only two 
choices have to be made, the original 
transmission mode or the next higher 
transmission mode. Thus, the threshold is the 
intersection of two cost functions associated 
with two adjacent modes. For each used 
transmission mode, when the SNR increases to a 
certain value, the bit error rate decrease to a 
point where the throughput will begin to 
dominate. After this point, higher transmission 
mode will be chosen due to higher throughput.  
 
四、結論 
First let us examine the case with no thP  in the 
Torrance formulation. The optimum solution 
with SNR=25db is shown in Table 1 labeled as 
Torrance-WT. When thP is not considered, each 
switching level is related only to two adjacent 
transmission modes. The best achievable BER 
is 42.17*10− . The x symbol in the column of 
s1 means no solution. Because without a 
threshold, no-transmission dominates the error 
rate. If 310thP −= is set, then there are infinite 
sets of solution that can achieve this BER 
requirement. Any switching levels can be shifted 
to left, as long as the requirement is kept. For the 
optimum solution, a full multidimensional 
search is then performed. The one that 
minimizes the cost function is listed in Table 1. 
In this case, the switching level is shifted to the 
left for higher throughput. The throughput 
increases from 4.5172 to 5.0193 and the BER 
is 47.86*10− . The bit error rate and throughput 
for these various switching levels are listed in 
Table 2.  
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In the case of two-mode cost function, the 
determination of each threshold is concerned 
with only two adjacent modulation modes. This 
simplifies the search at the price of slightly 
reduced throughput, from 5.0193 to 4.97. For 
any adjacent two modes, it is the comparison of 
the corresponding BER and the throughput when 
adjusting the switching level. In the case of two 
modes, when one threshold is determined, the 
following thresholds for higher mode transition 
will not have any effect on it, since each 
threshold is only related to two adjacent 
transmission modes. The result shown in Fig.1 is 
with SNR=25db and 310thp −= . The result 
shown in Fig. 2 is with SNR=25db 
and 210thp −= . In the latter case, both s1 and s2 
are zero. This is due to the low requirement of 
the BER as compared with the case in Fig. 1. 
The characteristics of the Torrance cost function 
is that when a switching level results in a BER 
that is below the threshold only the throughput is 
taken into account in the cost function. Starting 
the switching level from -∞db means the system 
uses the higher mode at first. As shown in Fig. 1, 
the value of the cost function decreases first 
when switching level increases from -∞db. The 
decrease means using lower mode will reduce 
the BER more than the sacrifice of the 
throughput. When the switching level increases, 
the part of the cost function involving BER will 
decrease. The lowest point is the switching point 
as shown in the red curve and the green curve in 
Fig.1. In the case when avgp  is always less 

than thp , the minimum point is the point where 
decrease of BER is less than the value of the 
throughput reduction. From that on, the cost 
begins to increase. 
 
When we set a threshold, as long as the BER 
reaches the threshold, the BER is no more 
considered. After this point, we will only see the 
reduction of throughput and thus the increase of 
cost function. This can be seen in the blue curve 
in Fig.1 as well as the blue curve and the green 
curve in Fig.2. In Fig.1, in the lowest point, the 
cost function has a value of 4.1 with switching 
level at 2db. In Fig. 2, the lowest cost is 4 for the 
blue curve and 2 for the green curve. This is the 
lowest available. This is because the low BER 
threshold, switching at -∞db to run the higher 
modulation mode will satisfy the BER 
requirement and result in more throughput. As 
long as the BER reaches the threshold, the 
switching point is determined. From that on, the 
adaptive system chooses higher transmission 
mode. On the other hand, the result shown in 
Fig.3 indicates that no switching levels will 

satisfy the BER requirement due to lower SNR 
at 20db. In this case, the cost function is not 
affected by the threshold 310thp −= , which is 

not attainable.  
 
The BER of higher modulation mode is always 
larger than the lower one. So if we compare the 
BER it is always the lower one that will be 
chosen. The comparison is thus the compensated 
BER with the throughput. If increasing the 
throughout one bit can be made to be equivalent 
to a certain amount of BER increase, then 
modulation mode can be changed. So the cost 
function is a measure of the value of one bit in 
throughput and the value of BER. Starting from 
the lowest mode, when the BER difference of 
two adjacent modes becomes smaller than the 
value of one bit in throughput, we change the 
mode. The cost function considers the difference 
of the two accumulations. The difference is the 
increase of the BER when switching from the 
lower mode to the higher mode.  
 
Now let us investigate the behavior of the 
proposed modified cost function involving only 
one mode. The result with the proposed cost 
function is shown in Fig. 4. The appearance of 
the cost function is similar to the bit error rate 
curve. The difference is that there is a turning 
point specified by the target bit error rate. As 
shown in Fig. 4, the turning point is where the 
BER has reached the threshold. The intersect 
point between two curves is where the switching 
level is. As explained above, the switching point 
is set when the two partial cost functions equal. 
On the left side of the switching point, the part in 
the cost function associated with the lower mode 
is less than the part associated with the higher 
mode, so the cost function keeps decreasing. On 
the right side of the switching point, the part 
associated with the high mode becomes smaller, 
so the cost function begins to increase. The 
intersect point is the minimum point in the cost 
function. According to the y function in (3), the 
worth of one bit in throughput is not a constant, 
it depends on where the BER threshold is set. 
Thus the distance between the turning point and 
the intersect point is a function of the BER 
threshold. The movement of the switching level 
from the turning point to the intersect point is 
indication of the tradeoff for throughput at the 
price of BER. The amount of the movement 
depends on the worth of one bit in throughput.  
 
Our proposed method is a non-linear 
approximation to the original Torrance method. 
The accuracy of our method depends on the 
setting of the normalization constant ρ . This is 
done by iteratively solve the Lagrangian 
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constraint. In this case, s1 is tried iteratively 
(everything is related to s1). After the s1 is 
determined, we can backward to derive the 
normalization constant ρ  in our simplified 
method. The other way is to set the value based 
on the solution obtained either by the Torrance 
method or the two-mode method. The various 
switching levels derived from the Torrance 
method, two-mode method and our simplified 
method are listed in Table 1 for comparison. The 
throughput in our method is higher than that 
from Torrance method. The reason is due to that 
the s4 is 22 in Torrance method [4]. This can be 
due to the problem in the full search with the 
Matlab package. We will continue to verify this 
numerical problem. The above derivation is 
aimed at single carrier system at narrow band 
channel. For wide band channel and multicarrier 
system, still more work is needed.  
 
In the case of single carrier, the SNR is well 
defined. For the case of multicarrier, we then 
need more complicated methods to define the 
SNR for a group of subcarriers, since each 
subcarrier in a group has its own SNR associated 
with it. To allow each subcarrier to adapt 
independently is not an economic approach. For 
group adaptation, we have examined several 
methods. The easiest one is to select the lowest 
SNR. It can be expected that the performance of 
this method is low BEP and low BPS. And the 
performance gets worse when the group 
becomes larger, since more subcarriers with 
good SNR have to be sacrificed. The group size 
actually is a function of the channel condition, 
because the best condition is that all the 
subcarriers in a group experience the same 
channel condition. That is all the subcarriers are 
within the coherent bandwidth. However, in the 
practical application the group size is usually 
fixed. This represents a problem. Another 
problem is that in the 802.16 OFDMA, the 
subcarriers are spread out uniformly distributed 
across the spectrum, so all the subcarriers will 
experience different channel condition. This is 
good for channel diversity but is bad for 
adaptive modulation. In the following, two 
simulations with group consisting of continuous 
subcarriers are shown. The purpose is to show 
how to select the best subcarrier to represent the 
group. Both simulations show the value of 
Torrance cost function of the adaptive system as 
a function of the group SNR. The cost function 
is defined as the sum of log of the bit error rate 
and the throughput for all the subcarriers in the 
group. In this case, the SNR of one particular 
subcarrier is chosen as the group SNR. The chart 
indicates the best subcarrier to choose to 
represent the group. With proper setting of the 
group SNR, the whole group will operate at a 

more suitable transmission mode. Thus the 
overall error rate will be low while the 
throughput can be high to obtain the lowest cost 
function. This choice actually depends on the 
channel condition and the group size. In the 
following year, group based OFDM adaptive 
modulation will be investigated more for the 
issue of group size, group SNR definition, group 
with non-continuous subcarriers, etc..   
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Fig1. Two mode cost function  SNR=25dB ; Pth=10^-3 

 

 
Fig2. Two mode cost function SNR=25dB; Pth=10^-2 
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Fig3 Two mode cost function SNR=20dB; Pth=10^-3 ; 

 

 
Fig4. Cost function for each single mode 

( 50, 10 ^ 3thPρ = = − ,SNR=25) 

 
Table 1a switching level with 3 methods; Pth=10^-3 ; 

SNR=25 s1 s2 s3 s4

Torrance WT  X 9 18 24

Torrance -∞   -2 15 22

Two-mode WT     X 11 16 22

Two-mode    -∞ 2 16 22

Ours ( 50)ρ =      7 9 14 19

Ours( ( 48)ρ =      8    9.2  14.2 19.5
WT—without threshold 
 

Table 1b switching level with 3 methods; Pth=10^-3 

SNR=20 s1 s2 s3 S4

Torrance 0 7 15 22

Two-mode 
      

-∞ 9 15 19

Ours ( 50)ρ =         8 9 14 21
 

Table 1c switching level with 3 methods; Pth=10^-3 

SNR=15 s1 s2 s3 s4

Torrance 3 6 15 22

Two-mode 3 8 13 16

Ours ( 50)ρ =  8 10 15        X

 
 

Table 2 bit error rate and throughput: Pth=10^-3 ; 

SNR=25 Pavg Bavg 

Torrance WT  2.17E-04  4.5172 

Torrance 7.86E-04   5.0193 

Two-mode WT     3.80E-04 4.936 

Two-mode     5.78E-04 4.97 

Ours ( 50)ρ =      1.7E-03 5.3625 

Ours ( 48)ρ =      1.2E-03      5.30 
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Fig 5 cost function as a function of the group SNR  


