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ABSTRACT 
This project is to explore the theoretical 
and practical issues of real-time 
applications of FNN (Fuzzy Neural 
Network) for linear and nonlinear 
dynamical systems. The first year goal has 
been achieved by developing a new on-line 
TS-type FNN training architecture with 
dynamical optimal training under real-time 
environment to represent the original 
dynamical system. Therefore the TS-type 
FNN can be optimally trained with 
maximum error reduction in minimum time 
period. The inverted pendulum system is 
illustrated by our new TS-type FNN 
training architecture and a proportional 
controller is also designed based upon 
pole-placement technique to achieve the 
balancing of the rod. By the end of the first 
year, we assume the computational time of 
the controller and optimal training 
mechanism is small enough and can be 
neglected. This is not realistic at all. 
However, this has also paved a healthy way 
for us to explore the second year goal of 
finding the maximum computational time, 
or the maximum delay time, for the 
controller and optimal training mechanism, 
so that the closed-loop system can be 
asymptotical stable. 

 
I. The TS-Type FNN Model for 
Uncertain Nonlinear Systems 

We consider an uncertain nth order nonlinear 
system with m inputs described by the 
nonlinear equation as 
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The states )(tx and the inputs )(tu of the 
nonlinear system are assumed to be 
measurable, and )(tx&  can be obtained 
from )(tx with some past information. The ith 
rule of TS-type fuzzy model to represent the 
nonlinear system can be described by:  

Rule i: If )(1 tz is 1iF  and . . . and )(tzg is 

igF then )()()( tuBtxAtx iii +=& ,        

for  i=1, 2, …, r. 
 
where Fij is the fuzzy set, nn

iA ×ℜ∈ , 

mn
iB ×ℜ∈ ; r is the number of If-then rules.; 

and )(1 tz , )(2 tz , . . . , )(tzg  are the 

premise variables. The Ai and Bi matrices are 

normally obtained from the Jacobian matrix 

to locally linearize the well-specified 

nonlinear systems [5]-[7]. For uncertain 

nonlinear systems, the Ai and Bi matrices can 

only be obtained from on-line training 

process which will be discussed in the 

following sections. To start with, we propose 

the following configuration as the TS-type 

fuzzy model to represent the uncertain 

nonlinear system: 
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Fig. 1  TS type fuzzy model for uncertain 
nonlinear systems 

The above fuzzy system should be inferred 
as: 
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and r is the number of rules, or the number 
of nominal operating points for the uncertain 
nonlinear systems. Equation 2 shows that 
the uncertain nonlinear system can be 
represented by a linear dynamical equation 
at any time instant, which can be inferred 
from the TS-type fuzzy model. Also, the Af 
and Bf matrices are different at different time 
instants. Further we need to derive the 
on-line BP training rules to update the Ai and 
Bi matrices. We define the cost function H as 
follows: 

2||)()(||
2
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To minimize H, we have the following BP 
equations to update Ai and Bi matrices: 
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II   On-Line Optimal Training with 

Least-Squared Initialization 
Dynamical optimal off-line training for a 
two-layer NN was proposed in [13]. It can 
be guaranteed in [13] that the 
back-propagation training process can be 
optimally converged in the sense of 
maximum error reduction after each 
iteration. For on-line training purpose, it 
may still not be suitable due to its 
unpredictable initial values of the weighting 
factors. But the dynamical optimal training 
in [13] can be very powerful for on-line 
disturbance rejection due to its guaranteed 
maximum error reduction. In this section, 
the optimal training process in [13] will be 



utilized in the on-line optimal training of 
TS-type fuzzy model for uncertain nonlinear 
systems (Fig. 1). Also the least-squared 
initialization for Fig. 1 will be proposed to 
provide proper initial values for the 
weighting factors so as to speed-up the 
on-line optimal training process. 
Let us define the input training matrix R, the 
output matrix of the TS-type fuzzy model 
(for uncertain nonlinear system) Y and the 
actual output matrix of the uncertain 
nonlinear system D as: 

1)(
121 ])(...)()(...)()([ ×+ℜ∈= nmT

mn tututxtxtxR (8) 

1])(...)()([)(
21

×ℜ∈== nT
ffff txtxtxtxY
n

&&&& (9) 

xn
n txtxtxtxD 1

21 ])(...)()([)( ℜ∈== &&&& (10) 
Also we can define an augmented weighting 
matrix W to include the uncertain Ai and Bi 
matrices defined in (4): 
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Therefore the output of fuzzy model Y in (9) 
can be shown as: 

Y = RTW      (12) 
Theorem 1 
The BP training rule to update the weighting 
matrix Wi in (11) is 

kkii RE
mn

kWkW 1)()1( β−=+  (17) 

where βk is the learning rate for kth iteration, 
R is defined in (8) and Ek is the error matrix 
after kth iteration, defined in (14). 
 
Theorem 1 is to simultaneously update the 
Ai and Bi matrices for each subsystem in the 
TS-type fuzzy model in Fig. 1. It is our goal 

to guarantee the convergence of the on-line 
training process in Theorem 1. Therefore the 
dynamical optimal training in [13] can be 
applied in this case. The dynamical optimal 
learning rate can guarantee the fastest 
convergent speed for the on-line training 
process. Even if the initial values of the 
weighting matrix Wi in (11) is far from 
satisfactory, the dynamical optimal training 
can still guarantee the optimal convergence, 
just takes longer time to converge. But this 
is not good enough for on-line training. In 
other words, choosing random initial value 
for weighting matrix Wi is unacceptable for 
on-line training purpose. Further the 
least-squared estimation techniques for 
linear systems can be found in [1]. Since the 
TS-type fuzzy model for uncertain nonlinear 
system contains many linear subsystems, 
therefore it is reasonable to use the 
least-squared estimation techniques [1] to 
estimate the initial values of Wi. If the order 
of the linear subsystems of TS-type fuzzy 
model is n and the number of input (u(t))is 
m, then we must measure n+m outputs to get 
the estimated initial value of Wi. Assume the 

initial value of Wi is 0
iW : 
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Further, input u(t) and measured state 
vectors x(t) can be combined as θ : 
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The set of measured outputs (i.e., x& ) is also 
defined as: 
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Therefore we have the following matrix 
equation: 

Y = θM + ε    (21) 

Equation (21) includes the noise matrix term 
ε  from the measurement. Then the 
estimated M

)
(via least squared method) can 

be shown as 

01)( i
TT WYM == − θθθ

)
   (22) 

From (22), we can get the least-squared 
initial parameters of each linear subsystem 
in the TS-type fuzzy model in Fig. 1. The 
following Algorithm I summarizes the 
procedures to perform the on-line optimal 
training (with least-squared initialization) of 
TS-type fuzzy model for uncertain nonlinear 
systems. 
Algorithm I: Dynamical Optimal Training 

of TS-type Fuzzy Model 
with Least-Squared 
Initialization 

[Step 1]: Use any input u(t) to excite the 
uncertain nonlinear system and 
measure sufficient data 
information of )(tx and )(tx& . Then 
define the r nominal operating 
points and the corresponding 
membership functions 
for )(tx and )(tx& . Apply (22) to 

find the initial weighting matrix 

0
iW of each subsystem for i=1, …, 

r.  
[Step 2]: Release the system to run freely to 

track a reference input signal. 
[Step 3]: If the norm of tracking error is less 

than a pre-defined threshold e1, 
GOTO Step 2. Otherwise GOTO 
Step 4. 

[Step 4]: Measure on-line )(tx and )(tx& . For 
i=1,…, r, apply Theorem 1 in [13] 
to find the optimal learning rates 
to train the weighting matrix of 
each subsystem via (17). The 
optimal training must continue 
until relative errors of Wi is less 
than another pre-defined threshold 
e2. 

[Step 5]: GOTO Step 2. 
 

III.   Stable Tracking Controller for 
TS-Type Fuzzy Model of Uncertain 

Nonlinear Systems  
In this section, a stable tracking controller 
for TS-type fuzzy model of uncertain 
nonlinear system will be proposed. The full 
state feedback with pole placement 
techniques will be adopted to construct the 
tracking controller. The tracking controller 
will be updated via adaptive rules during 
on-line operations. The adaptive rules are 
designed to supervise the ability of the 
controller based on tracking error. If 
tracking error is over some threshold value, 
the TS-type fuzzy model must be optimally 
re-trained. This will imply the update of the 
tracking controller. Fig. 3 shows the overall 



closed-loop configuration. 
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Fig.  3. Closed-loop configuration of tracking controller 
To start with, we assume that during the pth 
time interval, we can use (23) to represent 
the uncertain nonlinear system, 

 
)()()()()( tupBtxpAtx ff +=&       (23) 

where Af(p) and Bf(p) are updated from the 
on-line optimal training process at the 
beginning of pth time interval. The time 
interval sequence is shown in Fig. 4. 

......

0t 1t 1−pt pt ∞=mt

1st time
interval

1+pt

Pth time
interval

Fig.  4. Time sequence of control intervals 
For simplicity, we adopt A and B to replace 
A(p) and B(p) in pth time interval in the 
following derivations. In order to design a 
tracking controller for the uncertain 
nonlinear system, we can simplify Fig. 3 
into Figure 5 as follows: 

Uncertain
Nonlinear System

Kp

su

+_ε+
ru

_
x

Reference
Input

u

Fig. 5.  Simplification of Fig. 3 
In Fig. 5, it is desired to let the output x to 
track the reference input )(tu r  by the 
proportional controller Kp. An extra )(tu s is 
also desired to satisfy the following linear 

dynamics of )(tu r : 

)()()( tuBtuAtu sfrfr +=&    (24) 

In order to find us(t), the following 
lease-squared estimation can be applied: 

( ) )]()([)( 1 tuAtuBBBtu rfr
T
ff

T
fs −=

−
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However, as mentioned in section II, the 
above lease-squared estimation is not 
suitable for on-line purpose. Therefore we 
propose a new iterative approach to estimate 
us(t) during on-line operations. This can be 
shown in the following Theorem 2. 
Theorem 2 
The estimation of us(t) in (24) can be 
obtained from the on-line optimal training 
with least-squared initialization in Algorithm 
I for a Multi-Input-Single-Output two layer 
neural network shown in Fig. 6. 
Proof: 
In order to find us(t), (24) can be 
re-organized as 

)()()( tuAtutuB rfrsf −= &    (25) 

Since the right-hand-side of (25) is known 
and can be denoted as 



)()( tuAtud rfr −= &    (26) 

Therefore (25) becomes 

dtuB sf =)(      (27) 

where Bf is an n×m matrix and )(tu s  is an 

m×1 vector and d is an n×1 vector. In 
comparison with (12), )(tu s in (27) can be 
viewed as the unknown weighting matrix W 

to be decided, T
fB  can be viewed as the 

input training vector R, d is the desired 
output vector. Let 
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where y is the actual output vector which 
should be very close to the desired output 
vector if us(t) can be properly found. 
Equation (27) can be further expanded as: 

iis
T
i dytub ≈=× )(  for i=1, …, n. (28) 

Therefore we can draw a two-layer neural 
network from (27) as follows: 

:
:

1,su

2,su

msu ,

)1(ib

)2(ib

)(mbi

ii dy ≈

{For i=1~n}

 

Fig. 6. Two layer NN to find us(t) 
The above Fig. 6 is the MISO 
(Multi-Input-Single-Output) version of the 
two-layer NN in [13]. Therefore the on-line 
optimal training with least-squared 
initialization in Algorithm I in Section III 
can be applied to find the us(t) at any time 
instant t. 

Q.E.D. 
Subtracting (24) from (23) we have 

)( sff uuBA −+= εε&      (29) 

where rux −=ε . In order to guarantee the 
asymptotic stability of the error vector )(tε , 
we let 

εps Kuu −=−       (30) 

Then (29) becomes  

εε )( pff KBA −=&      (31) 

where pK  is the state feedback gain and 

can be obtained by assigning the closed-loop 

poles of  pff KBA −  to lie within the 

left-half plane. This is a common 
pole-placement technique. Hence the error 
dynamics in (31) can be asymptotical stable. 
This will imply rux → . 

Algorithm II: On-Line Stable Tracking 
Controller 
[Step 1]: From Figures 5 and 6, apply 

Algorithm I to find us(t). 
[Step 2]: Specify stable poles for (31). Kp 

can then be found through 
pole-placement technique. 

For the overall closed-loop configuration in 
Fig. 5, we have all the necessary blocks and 



signals except the Adaptive Rules. The 
Adaptive Rules can be shown in the 
following Algorithm III. 
Algorithm III: Adaptive Rules for updating 
the closed-loop system in Fig. 5 
If Thresholdt >||)(|| ε  

Apply Algorithm I to update the 
TS-type Fuzzy Model 
 Apply Algorithm I to update us(t) 
 Apply Algorithm II to update Kp 
Else 

Stand Still 
End. 
The adaptive rules in Algorithm III can 
stabilize the closed-loop system (Fig. 5) due 
to the fact that our proposed modified 
on-line dynamical optimal training [13] can 
guarantee the fastest convergent speed of the 
training process. 
 

IV.  Example 
In this section, we will apply our optimal 
on-line training to design a tracking 
controller to control the inverted pendulum 
to track a sinusoidal signal. For robustness 
test, the inverted pendulum system will be 
added with extra 50% of mass to simulate 
the case of sudden model change or noise at 
any time instant. 
Example 1: Consider the inverted pendulum 
system [31] as shown in Fig.7. Let x1 = θ  
be the angle of the pendulum with respect to 
the vertical line. 
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Fig. 7 The inverted pendulum system 
The dynamic equations of the inverted 
pendulum system [31] are 
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and gv = 9.8meter/sec2 is the acceleration 
due to gravity, mc is the mass of the cart, l is 
the half-length of the pole, m is the mass of 
the pole and u is the control input. In this 
example, we assume that mc = 2kg, m = 
0.21kg and l = 0.75 meter. 
 
We define three membership functions for 
each state variable as shown in Fig. 10. The 
Median membership function is defined as: 
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The positive and negative membership 
functions (Mp and Mn) are defined as: 










>=








<=

−
−

−
−

else

centerxforexM

else

centerxforexM

ii
width

centerx

in

ii
width

centerx

ip

i

ii

i

ii

1

)1()(

1

)3()(

2

2

)
)1(

)1(
(

)
)3(

)3(
(    (41) 

For state x1, ]4.004.0[1 −=center  

and ]2.02.02.0[1 =width .  For state x2, 

]101[2 −=center and
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Fig. 8. The membership functions for inverted pendulum system 

Following the design procedure, the 
intelligent closed-loop indirect adaptive 
controller design for inverted pendulum can 
be shown in the following steps: 
[Step 1]: Apply a light input u = 0.1sin(t) to 

excite the nonlinear uncertain 
system, then measure sufficient 
data information of  x(t), )(tx&  
and u(t)  via (18) - (21). 

[Step 2]: Apply Algorithm I to perform the 
dynamical optimal training of 
TS-type fuzzy model with 
least-squared initialization. The 
initial parameters for the nine 
linear subsystems are: 
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By applying Eq. (41) and fuzzy 
defuzzification, the initial state 
space of the linear system can be 
obtained and written as: 
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[Step 3]: Specify closed-loop poles as -10 
and –15 and apply Algorithm II to 
design an on-line stable tracking 
controller for the closed-loop 
system. 

[Step 4]: Apply Algorithm III, the Adaptive 

Rules, to update the TS-type fuzzy 
model and tracking controller to 
stabilize the closed-loop system in 
Fig. 5. 

 
We assume the initial states of x1 is [-0.5 
1.2]T. The reference trajectory for state x1 is 
yr = 0.2sin(2πt) and the reference trajectory 
for state x2 is ry = 0.4πcos(2πt). Figure 16 
shows the convergence of state x1. Figure 9 
also shows the disturbance rejection with 
our overall control algorithm. 

 
Fig. 9 Trajectories of reference yr (solid line) with state x1 (dotted line). 
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