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ABSTRACT
This project is to explore the theoretical
and practical issues of real-time
applications of FNN (Fuzzy Neural
Network)  for

dynamical systems. The first year goal has

linear and nonlinear
been achieved by developing a new on-line
TS-type FNN training architecture with
dynamical optimal training under real-time
environment to represent the original
dynamical system. Therefore the TS-type
FNN can be optimally trained with
maximum error reduction in minimum time
period. The inverted pendulum system is
illustrated by our new TS-type FNN
training architecture and a proportional
controller i1s also designed based upon
pole-placement technique to achieve the
balancing of the rod. By the end of the first
year, we assume the computational time of
the controller and optimal training
mechanism is small enough and can be
neglected. This is not realistic at all.
However, this has also paved a healthy way
for us to explore the second year goal of
finding the maximum computational time,
or the maximum delay time, for the
controller and optimal training mechanism,
so that the closed-loop system can be

asymptotical stable.

1. The TS-Type FNN Model for
Uncertain Nonlinear Systems
We consider an uncertain n” order nonlinear
system with m inputs described by the
nonlinear equation as
x(1) = f(x(2),u(?)) (1)

where

x(t) =[x, (1) x,() x, 01",
u(®) =[u, (1) u, (1) u, ()],
x(t) =[x,@) x,() x,01"

The states x(¢)and the inputs u(¢)of the
to be
measurable, and X(#) can be obtained

nonlinear system are assumed

from x(7) with some past information. The i
rule of TS-type fuzzy model to represent the

nonlinear system can be described by:

Rule i: If z(9)is F, and...and z,(¢)is

F then

g

X, ()= A4, x(0)+ Bu(®)

for ~=1,2,...,r

where Fj; is the fuzzy set, 4, e R"™",
B, e R™™; r is the number of If-then rules.;

and z/(¢), z,(#), . .., z,(f) are the

premise variables. The 4; and B; matrices are
normally obtained from the Jacobian matrix
linearize the

to locally well-specified

nonlinear systems [5]-[7]. For uncertain
nonlinear systems, the 4; and B; matrices can
only be obtained from on-line training
process which will be discussed in the
following sections. To start with, we propose
the following configuration as the TS-type

fuzzy model to represent the uncertain

nonlinear system:



(1) = A;x (1) + B u(r)

TS type fuzzy model for uncertain
nonlinear systems
The above fuzzy system should be inferred

as:

X (0= iﬂf(z(l))[Afz(l) +Bu()]=A,x () + B, u(r) (2)

where

z(t)=[z,(t) z,(?) z, (O]

[5 2> Y ueo)=1 3)
w1 (2(0) =— P
Z(HE,)

Ai(l.l) Ai(l,n) Bi(l,l) . Bi(l,m)
A = : : ’B,. = R : (4)

AFn.l) A(n,n) B-(n'l) B»(n‘m)

and r is the number of rules, or the number
of nominal operating points for the uncertain
nonlinear systems. Equation 2 shows that
the wuncertain nonlinear system can be
represented by a linear dynamical equation
at any time instant, which can be inferred
from the TS-type fuzzy model. Also, the Ay
and Bymatrices are different at different time
instants. Further we need to derive the
on-line BP training rules to update the 4; and
B; matrices. We define the cost function H as

follows:
H =%||a_'cf(z)—a_'c<r>||2 )

To minimize H, we have the following BP

equations to update 4; and B; matrices:

oH oH
Ak +1)= A (k)-L"> B(k+1)=B,(k)-L—
i(k+1) = 4,(k) oA i(k+1) =B, (k) 2B,

Where
): OH |
aH 814-(1’1) aA‘(l,n)
04 | aH OH
04" 04"
[ o0H OH
oH OBV OB
OB, | aH OH
oB{"" oB""
and
oH ) )
I Ok, (1) =%, (Ox,(0); (p, g =
1,2,...,n) 6)
OoH ) )
B (Ox, () =X, (Ou, (1) ; (r=1,
2,..,n;8=1,2,...,m) (7)

II  On-Line Optimal Training with
Least-Squared Initialization
Dynamical optimal off-line training for a
two-layer NN was proposed in [13]. It can
[13] that the

back-propagation training process can be

be guaranteed in

optimally converged in the sense of

maximum error reduction after each
iteration. For on-line training purpose, it
may still not be suitable due to its
unpredictable initial values of the weighting
factors. But the dynamical optimal training
in [13] can be very powerful for on-line
disturbance rejection due to its guaranteed
maximum error reduction. In this section,

the optimal training process in [13] will be



utilized in the on-line optimal training of
TS-type fuzzy model for uncertain nonlinear
systems (Fig. 1). Also the least-squared
initialization for Fig. 1 will be proposed to
provide proper initial values for the
weighting factors so as to speed-up the
on-line optimal training process.

Let us define the input training matrix R, the
output matrix of the TS-type fuzzy model
(for uncertain nonlinear system) Y and the
actual output matrix of the uncertain
nonlinear system D as:

u, (] e (8)

R=[x(t) x,(t) ... x,(&) u(t) ..

Y=x,0=[x,0 ¥, x, O] eR™9)

D=i(0)=[%() %@ .. %,0]eR™(10)
Also we can define an augmented weighting
matrix W to include the uncertain 4; and B;

matrices defined in (4):

z T
/uiA[T r — Ai

W - Z =ZMVK’andVK _{BJ (11)
2B '

Therefore the output of fuzzy model Y in (9)

can be shown as:
Y=R'W

Theorem 1

(12)

The BP training rule to update the weighting

matrix W;in (11) is
W,k +1)=W,() - B, ——RE,  (17)
mn

where [ is the learning rate for K0 iteration,
R is defined in (8) and Ej is the error matrix

after k™ iteration, defined in (14).

Theorem 1 is to simultaneously update the
A;and B; matrices for each subsystem in the

TS-type fuzzy model in Fig. 1. It is our goal

to guarantee the convergence of the on-line
training process in Theorem 1. Therefore the
dynamical optimal training in [13] can be
applied in this case. The dynamical optimal
learning rate can guarantee the fastest
convergent speed for the on-line training
process. Even if the initial values of the
weighting matrix W; in (11) is far from
satisfactory, the dynamical optimal training
can still guarantee the optimal convergence,
just takes longer time to converge. But this
is not good enough for on-line training. In
other words, choosing random initial value
for weighting matrix W; is unacceptable for
Further the

techniques for

on-line training purpose.

least-squared estimation
linear systems can be found in [1]. Since the
TS-type fuzzy model for uncertain nonlinear
system contains many linear subsystems,
therefore it is reasonable to wuse the
least-squared estimation techniques [1] to
estimate the initial values of W,. If the order
of the linear subsystems of TS-type fuzzy
model is # and the number of input (u(¢))is
m, then we must measure n+m outputs to get

the estimated initial value of W;. Assume the

initial value of W;is W' :

1

(18)

Further,

vectors x(¢) can be combined as 6:

input u(f) and measured state

T T

X, U
x0 o ul
0= = —? (19)
T T
£n+l71 zm+n



The set of measured outputs (i.e.,x) is also

defined as:
. T
X,
xT
Yy=| =2 (20)
g
X

=n+m
Therefore we have the following matrix
equation:

Y=0M+e Q1)

Equation (21) includes the noise matrix term
Then the

estimated M (via least squared method) can

¢ from the measurement.

be shown as
M=@0"0)"'0"Yy =w° (22)

From (22), we can get the least-squared
initial parameters of each linear subsystem
in the TS-type fuzzy model in Fig. 1. The
following Algorithm I summarizes the
procedures to perform the on-line optimal
training (with least-squared initialization) of
TS-type fuzzy model for uncertain nonlinear

systems.

find the initial weighting matrix

Wl.0 of each subsystem for i=1, ...,

r.

[Step 2]: Release the system to run freely to
track a reference input signal.

[Step 3]: If the norm of tracking error is less
than a pre-defined threshold e;,
GOTO Step 2. Otherwise GOTO
Step 4.

[Step 4]: Measure on-line x(¢) and x(¢). For
i=1,..., r, apply Theorem 1 in [13]
to find the optimal learning rates
to train the weighting matrix of
each subsystem via (17). The
optimal training must continue
until relative errors of W; is less
than another pre-defined threshold
e.

[Step 5]: GOTO Step 2.

Algorithm I: Dynamical Optimal Training
of TS-type Fuzzy Model
with Least-Squared
Initialization

[Step 1]: Use any input u(f) to excite the

uncertain nonlinear system and
measure sufficient data
information of x(¢#) and x(¢). Then
define the » nominal operating
points and the corresponding
membership functions

for x(¢) and x(¢) . Apply (22) to

III.  Stable Tracking Controller for
TS-Type Fuzzy Model of Uncertain
Nonlinear Systems
In this section, a stable tracking controller
for TS-type fuzzy model of uncertain
nonlinear system will be proposed. The full
feedback with pole

techniques will be adopted to construct the

state placement
tracking controller. The tracking controller
will be updated via adaptive rules during
on-line operations. The adaptive rules are
designed to supervise the ability of the
controller based on tracking error. If
tracking error is over some threshold value,
the TS-type fuzzy model must be optimally
re-trained. This will imply the update of the

tracking controller. Fig. 3 shows the overall




closed-loop configuration.

Reference Input —
u,(t) &(t) | Conffoller
g | GinK,

T

Design of tracking
controller <

Uncertain Nonlinear
System

L x(0) = f(x(0),u(®)

On-line Optimal
Trainined TS-type

Fuzzy Model

f

»  Adaptive Rules

Fig. 3. Closed-loop configuration of tracking controller

To start with, we assume that during the p”
time interval, we can use (23) to represent

the uncertain nonlinear system,

x(1) = A, (p)x() + B, (pu(t) (23)
where A(p) and B/(p) are updated from the
on-line optimal training process at the
beginning of p™ time interval. The time

interval sequence is shown in Fig. 4.

P™ time
interval

15 time
interval

ty h L 1, Ly

Fig. 4. Time sequence of control intervals
For simplicity, we adopt A and B to replace
A(p) and B(p) in p™ time interval in the
following derivations. In order to design a
the

nonlinear system, we can simplify Fig. 3

tracking controller for uncertain

into Figure 5 as follows:

= Uncertain X
Reference Nonlinear System
Input

Fig. 5.
In Fig. 5, it is desired to let the output x to

Simplification of Fig. 3

track the reference input u, (¢) by the

proportional controller K,. An extra u (¢)is

also desired to satisfy the following linear

dynamics of u, (¢):

u,(t)=A,u, () +B,ur) (24)

In order to find uy(¢), the following

lease-squared estimation can be applied:
1 .
u,(t)=(B7B, )" B[ (1)~ A,u,(1)]

However, as mentioned in section II, the

above lease-squared estimation 1is not
suitable for on-line purpose. Therefore we
propose a new iterative approach to estimate
us(?) during on-line operations. This can be
shown in the following Theorem 2.
Theorem 2

The estimation of uy(¢) in (24) can be
obtained from the on-line optimal training
with least-squared initialization in Algorithm
[ for a Multi-Input-Single-Output two layer
neural network shown in Fig. 6.

Proof:

In order to find uy(¢), (24) can be

re-organized as

Bu, (1) =11, (1)~ A,u, (1) (25)

Since the right-hand-side of (25) is known
and can be denoted as



d=u,(t)-A4,u,() (26)
Therefore (25) becomes
Bou(1)=d (27)

where Bris an nxm matrix and u (f) is an

mx1 vector and 4 is an nxl vector. In
comparison with (12), u (¢)in (27) can be

viewed as the unknown weighting matrix W

to be decided, B_; can be viewed as the

input training vector R, d is the desired

output vector. Let

b() b(2) ... b(m)
b,(1) b,(2) .. b,(m)
Es(t)=[us,1 ug, u?m]T,
d:[dl d, dn]T
y=b » -l

where y is the actual output vector which
should be very close to the desired output
vector if wuyf) can be properly found.

Equation (27) can be further expanded as:
b/ xu,(ty=y, ~d, fori=l,..,n.  (28)

Therefore we can draw a two-layer neural

network from (27) as follows:

b1

Fig. 6. Two layer NN to find u(?)
The above Fig. 6 is the MISO
(Multi-Input-Single-Output) version of the
two-layer NN in [13]. Therefore the on-line
optimal  training  with  least-squared
initialization in Algorithm I in Section III

can be applied to find the uy(¢) at any time

instant 7.

Q.E.D.
Subtracting (24) from (23) we have
&= Af§+B_/'(2_Qs) (29)

where ¢ =x—u,. In order to guarantee the

asymptotic stability of the error vectorg(t),

we let

u-u =-K, & (30)
Then (29) becomes

é=(4,-B,K)e (31)

where K, is the state feedback gain and

can be obtained by assigning the closed-loop

poles of A4, -B,K,6 to lie within the

left-half plane. This is a

pole-placement technique. Hence the error

common

dynamics in (31) can be asymptotical stable.
This will imply x > u, .

Algorithm II: On-Line Stable Tracking

Controller

[Step 1]: From Figures 5 and 6, apply
Algorithm I to find uy(2).

[Step 2]: Specify stable poles for (31). K,
can then be

found through

pole-placement technique.

For the overall closed-loop configuration in

Fig. 5, we have all the necessary blocks and




signals except the Adaptive Rules. The
Adaptive Rules can be shown in the
following Algorithm III.

Algorithm II1: Adaptive Rules for updating
the closed-loop system in Fig. 5
If || &(?) ||> Threshold
Apply Algorithm [ to update the
TS-type Fuzzy Model
Apply Algorithm I to update u(t)
Apply Algorithm II to update K,
Else
Stand Still
End.

The adaptive rules in Algorithm III can
stabilize the closed-loop system (Fig. 5) due
to the fact that our proposed modified
on-line dynamical optimal training [13] can
guarantee the fastest convergent speed of the

training process.

V. Example

In this section, we will apply our optimal
on-line training to design a tracking
controller to control the inverted pendulum
to track a sinusoidal signal. For robustness
test, the inverted pendulum system will be
added with extra 50% of mass to simulate
the case of sudden model change or noise at
any time instant.

Example 1: Consider the inverted pendulum
system [31] as shown in Fig.7. Let x; = €
be the angle of the pendulum with respect to

the vertical line.

=a

X x2
mgy sin(x1)

/

u
me «—

Fig. 7 The inverted pendulum system

The dynamic equations of the inverted

pendulum system [31] are

5] [0 s Jo],, .
w7l ofx [TV G

where
) mix3 cosx; sinx;
g, sinx; —

3 m, +m o
/o= ; ;8=
/ (4 mcos? x;

3 m.+m
CoS X,
m, +m
4  mcos? x,
I - )
3 m.+m

and g, = 9.8meter/sec’ is the acceleration
due to gravity, m,. is the mass of the cart, / is
the half-length of the pole, m is the mass of
the pole and u is the control input. In this
example, we assume that m, = 2kg, m =
0.21kg and [ = 0.75 meter.

We define three membership functions for
each state variable as shown in Fig. 10. The

Median membership function is defined as:

X;—center; ,

- )
width;; ( 4 O)

—(
M, (x;)=e

The positive and negative membership
functions (M, and M,) are defined as:



 xcenter;(3) 5
widih; (3)

M, ()= ¢
1

_uzcenter(1) 5
e ()
M,(x;) =

for (4 1)

X, < center,(3)

else

Jor

x; > center, (1)

1 else

For state x;, center;=[-04 0 04]

andwidth, =[0.2 0.2 0.2]. For state x,

negative positive

-0.8 -0.4 0 0.4 0.8

center, =[—1 0 1]

width, =[0.5 0.5 0.5].

negative positive

Fig. 8. The membership functions for inverted pendulum system

the

indirect adaptive

the

closed-loop

Following design procedure,
intelligent
controller design for inverted pendulum can
be shown in the following steps:
[Step 1]: Apply a light input u = 0.1sin(7) to
excite the nonlinear uncertain
system, then measure sufficient
data information of x(¢), x(¢)
and u(f) wvia (18)-(21).

[Step 2]: Apply Algorithm I to perform the

dynamical optimal training of
TS-type fuzzy model with
least-squared initialization. The

initial parameters for the nine

linear subsystems are:
0 1
A= :
{20.6251 —0.6866}
0 1
A, = :
{18.9598 0.2051}

0 1
A, = ,
{22.63 12 1.5709}

o0 1
A, =
20.9676 —0.0116}
0 1
A = ,
119.9498 —o}
0 1
A, = ,
121.1859 —0.0139}
0 1
A, =
120.6313 0.7084}
0 1
Ay = ,
119.0468 —0.2568}

~ 0 1
Ao = 23.1741 -1.6748

and

|

[ 0 ] 0

B1 = » Bg = »
10.8174] 0.8478
[ 0 ] 0

B, = , B, =
10.8992 | 0.9327
[0 ] 0

Bs = » B6 = »
10.9211) 0.9072
0 0

B, = B, =
10.8236 0.8473
0

B, =
_0.8743}



By applying Eq. (41) and fuzzy
defuzzification, the initial state
space of the linear system can be

obtained and written as:

0 1
Af = B
20.6317 0.7069

0 1 c-|'.p=0
B — 5 = 2 =
4 {0.8238} 0

[Step 3]: Specify closed-loop poles as -10
and —15 and apply Algorithm II to
design an on-line stable tracking
controller for the closed-loop

system.

[Step 4]: Apply Algorithm III, the Adaptive

Rules, to update the TS-type fuzzy
model and tracking controller to
stabilize the closed-loop system in
Fig. 5.

We assume the initial states of x; is [-0.5
1.2]". The reference trajectory for state x, is

v = 0.2s5in(27t) and the reference trajectory

for state x, i1s y = 0.47cos(2nt). Figure 16

shows the convergence of state x;. Figure 9
also shows the disturbance rejection with
our overall control algorithm.

\disturbed

5 t (sec)

8 1 1 1

(a)

0 2 4

Fig. 9 Trajectories of reference y, (solid line) with state x; (dotted line).
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