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1967 Golomb

Golomb

Pseudorandom sequence generators are essential components in many cryptographic algorithms
including stream-cipher algorithms, block-cipher algorithms and pseudorandom number
generators. The security of many cryptographic systems depends upon the unpredictability of the
numbers generated. Therefore, constructing a good pseudorandom sequence generator becomes
important. The theory of keystream generators in stream cipher has been developed for many
decades. Most modern constructions of stream ciphers are based on linear feedback shift
registers (LFSR) due to their ssimple structures. In addition, a lot of mathematical tools and
theory are developed to help analyze the randomness and unpredictability of the numbers
generated. In stream cipher, a keystream generator should be able to defend all possible attacks
which are caused by the weakness of designed Boolean functions. The designed factors of a
Boolean function include balancedness, correlation immunity, propagation characteristics and
nonlinearity.

In this project we have investigated three kinds of LFSR-based pseudorandom number generators:
filter generators, combining generators and clock-control generators and study those
characteristics of related Boolean functions for us.



In 1967, Golomb was the first to establish some criteria for pseudorandom sequences. To follow
Golomb’s criteria we finally use five statistical tests to justify the goodness of our proposed
pseudorandom sequences.

Keywords: pseudorandom sequence generator, unpredictability, stream cipher, LFSR, Boolean
function, balancedness, correlation immunity, propagation characteristics, nonlinearity, statistical
test

pseudorandom sequence
pseudorandom sequence generator
pseudorandom number generator

randomness unpredictability
cryptographic system
one-time pad
keystream DES secret key RSA
P q DSA private key
f (U, U A ULy)
A A A A
<« Uy |« U e <« U —< Uiq
1
stream cipher keystream
generator
linear
feedback shift register LFSR Boolean function L
1 L stage
(state) f feedback function f
f GF(2)" GF(2)
filter generator combination generator

clock control generator



LFSR

\A A
f
Zi
2
LFSR 1
LFSR 2
LFSRN
3
@)
LFSR 1 v o,
(2)
LFSR 2 v, .
f 3 »
(m)
LFSRm SN
u(m+1) R
LFSRn+1
(n)
LFSR N d
4
2 f filter function
f combining function
4 f
control function
frequency test serial test poker test
run test autocorrelation test

balancedness
correlation immunity propagation characteristics nonlineariy



1967 Golomb binary

period sequence [4]
1 0 run 0
0- 1 1
2 p S A A k
p D
S autocorrelation AC(K) AC(K) = (A-D)/p
Golomb
1 0 1
2. run 1/2 1 14 2 18
3
3. k p k AC(K)
0 1
0 1 0 1
Y



L 2-1
primitive polynomial

[8]

Frequency Test
0 1

X]_:(no- nl) 2/ n

1
n
No 0
Ny 1

n=>10 X1 significance level a
1 0 1
Serial Test
00 01 10 11
_ 4 2 2 2 2
Xz _n__l(noo + Ny + Ny + Ny,
2 (n>+n?)+1
n 0 1

2
n
No 0
ny 1
Noo 00
No1 01
N1o 10
N11 11

n=21 X2 a 2
Poker Test
m
om Z

str(;nf)—k



Fstmzm)
m
k :[2“ s k
m
| m
X3 a
Run Test
0 1
K _ 2 k - 2
x=3 B8 5 (G -a)
= € i1 €
2k-2
i 0 1 1<i<k
1
€ q = (n_i +%+2
Bi 0
Gi 1
X4 a
Autocorrelation Test
d
N(0,1)
X :ZEQA(d)—%)/\/n‘d
d 1<d< \_%J
n-d-1
Ad) Ad)= D505,
i=0
S [ S 0{0,3

0 XOR

(n-d)=10 Xs

m
k S
2k-2
correlation
a



balancedness
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