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Abstract graphs with at most 280 vertices are included. As a closed
relative of those strongly regular graphs studied in the pre-
Following results of Bernasconi, Codenotti, and Van- vious section, strongly regular grapf®G(n, k, A\, \) are
derKam on a characterization of bent functions, feasible pa- studied in section 4.
rameters and corresponding eigenvalues of the associated
Cayley graphs of k_)ent functions are given; in pamcular, all 2 Bent Functions
of those graphs with at most 280 vertices are included.

The Fourier transformof a Boolean functionf(z) :
L3 — L is defined to bef*(z) = 5 Yy,epy f(2) -
(—1)), which satisfies the property thaf(z) =

. - L () - (—=1)N2) -
The problem of analyzing the spectral coefficients of 27 ZVAGZS Fr) - (=1) - The Cayley grapiG; as

Boolean functions has been brought to the framework of Sociated with a Boolean functiofi : Zy — Z is de-
spectral analysis of graphs though their associated Cayleyfined on the verte>§ sefy, with u,w € Z3 adjacent if
graphs, and hence the using of tools from algebraic graph’ @ © € {1y = f7 (1) , or equivalentlyf(w & u) = 1.
theory for investigations related to the spectral coefficients FOF @ Boolean functiorf : Z3 — Z,, the spectrum of
of Boolean functions with small numbers of distinct coeffi- 1S usually denoted bﬁpec(Gf)b = (1927]: A1y ey Aony)
cients is possible. Among others, a characterization of bentWhereAi = y,ez, f(x)- (=)= =2m. f*(b(i)) and
functions in terms of strongly regular graphs by Bernasconi, b(i) is the binary representation afthe multiplicity of its
Codenotti, and Vanderkam [1,2] is a successful example. Itlargest eigenvalug* (b(0)) is 2"~ 4m(©s) (which implies
was shown in [1] that the associated Cayley graph of a bentthe graphG is [ ¢|-regular with2"~#m{2s) connected
function is a strongly regular graph by showing that it has components and the grajgh; is connected itlim(S2y) =
exactly three distinct eigenvalues. They further showed thatn)- A Boolean functions is characterized by its spectrum
bent functions are the only Boolean functiofsvith asso-  if it is possible to identify its associated graph (i.e., deter-
ciated strongly regular graph by studying the integral solu- mine all the details of its topology) only on the basis of the
tions of a quadratic equation in [2] As a consequence, bentkﬂOWledge of its distinct eigenvalues, i.e., without USing any
functions can be characterized as Boolean functions with ainformation regarding their eigenvectors, see [6] for exam-
certain class of strongly regular graphs, followed by a nice ple. It is interesting to note that the fewer the number of
interpretation of bent functions in terms of strongly regular distinct spectral coefficients are, the stronger are the alge-
graphs. braic properties of the sély; for instance, it is well-known
Further investigation of those strongly regular graphs thatif a connected graph has exaetlydistinct eigenvalues,
involved in the characterization of bent functions consid- then its diameted satisfies! < m — 1.
ered in [1,2] is the purpose of this paper. The definitions A Boolean functionf : Z; — Z is called abent func-
of Fourier transformation of Boolean functions, bent func- tionif ((—1)/(*))*(z) = £ 4= for any A € Z3, the term
tions, and strongly regular graphs are given in section 2.of bent was coined by Rothaus [8]. f{x) is a bent func-
In section 3, some properties of Cayley graphs associatedion onZ3 with n > 3, thenn = 2k must be even, and the
with bent functions are recalled first, then feasible parame-degree off(z) is at mostk; moreoverf(x) is irreducible
ters and their corresponding eigenvalues of associated Caywheneverdeg(f(z)) = k > 3, see [8] for details. The ex-
ley graphs of bent functions are given; in particular, those istence of bent functiong(x) is equivalent to the fact that

1. Introduction



whether](—1)f(=+¥)] is a Hadamard matrix.

A Ek-regular graplts is strongly regular if there exist non-
negative integers\ and p such that for all vertices:, vy,
the numbel G, (z) () G1(y)| of vertices adjacent to both
andy is \ if x andy are adjacent, and otherwise, where
Gi(x) = {z|z € V(G) is adjacent ta:}. A k-regular con-
nected graph is strongly regular if and only if it has ex-
actly three distinct eigenvalueg = k,0,, with multi-
plicities 1, mg, andm,, respectively. This type of grapfi
is usually denoted b RG (v, k, A, u) with v = |V(G)|,
and Spec(QG) (kt,6me rms). A rephrase of Parse-
val's identity gives thaif*(b(0)) Zf:al(f*(b(i)))Q and
then yields the following useful equality — 6)(k — 7) =
2"(k + 67) wherek = |Qy|, andr must be replaced by
dim(§2y) if G is not connected. |5 is strongly regular,
then\ = k+ 07 + 60 + 7 andu = k + 7. It was also ob-

served that the class of bent functions is associated to a very
special class of strongly regular graphs, and indeed identi-

fies the bent functions precisely. Refer to [3,5] for more
details on strongly regular graphs.

3. The Cayley Graphs associated with Bent
Functions

If fis a Boolean function o} with connected strongly
regular graphGy, then there existy € €y such that
r @y € Qy for eachr € Zy \ Qf, and there exish el-
ementsz € Qy such thaty © z € Qf, whereh = X if
y € Qy, andp if y ¢ Q for eachy € Qy. In order to find
a complete characterization of the class of functions with
three distinct nonzero spectral coefficients with additional
properties, it was proved in [2] that the quadratic equation
x? — 2"z + (2" — 1)y? = 0 has integer solutions in and
yonlyif y2 = 0,1,2" 2. As a consequence, bent functions

can be characterized as binary functions with a certain class

of strongly regular graphs.

Theorem 3.1. [1,2] The associated Caley graply;

of a bent function f is a strongly regular graph
SRG(v, k, A, X); moreover, the bent functions are the only
Boolean funct|onsf whose associated graply; is a
strongly regular graphSRG (v, k, A, \)

Those graphss; with small numbers of distinct eigen-
values are considered: @y has a single eigenvalue, then
Gy = Kon_1 ; ; if Gy has two distinct eigenvalues then
Gyis e|ther‘Q ‘+1K\Qf|+1 whenb(0) ¢ Q, or \52 |K|Qf|
with loops otherW|se; ifG¢ has three eigenvalues then
(k,0,7) = (I19],0,—]Qy|) if and only if G is the com-
plete bipartite graph between vertice€in and inZ3 \ Q;
(k,0,7) = (|Q2],0,7) if and only if G is a complete mul-
tipartite graph withGy = (—@ +1)K_,. If Gy is con-

nected, thet@ y is aSRG (2", ||, A, i) with

7T(2" 1) 121

Spec(Gy) =(124]", (3(A — p+ VA))! )
(%()\ - \/7)) f9(2 l)Hﬂf\))
whereA = (A — u)? — 4(u — |Q]).

Theorem 3.2. If f is a bent function with connected,,
thenG/ is a strongly regular graphlSRG (v, k, A, A) with
(v, k, \) is either

(2’I’L7 277,—1 + 2%—1, 2n—2 + 2%—1)
or

(27’7,, 277,71 _ 2%71’ 27172 _

and with spectrun®pec(G) either

2871

(2"~ 1+2@71)(1)7( )(2" 19517

b

n_q

(=23
or
((2n1 =28, @E—nH@E@ T -2E Y,
(_2;;—1)(2" 1+2T1—1))
respectively.

A table of all feasible parameters of strongly regular
graphs with at most 280 vertices and related information
is given in [4, pp671]. Those strongly regular graphs men-
tioned above with at most 280 vertices are included below
in table 1, 2 respectively for complete purpose.

Table 1. case 1

Parameters Spectrum Examples
4,3,2,2 (3,10 _10) K,
16,10, 6,6 (10,20 _200) " Clebsch graph;
two graph
64,36,20,20 (3610, 47 409y Two graph

256,136, 72,72 (13610, 80119 _8136)) Two graph

Table 2. case 2

Parameters Spectrum Examples

4,1,0,0 1™ 1™ 1) Ki

16,6,2,2 (6@, 200 2 Shirkhande; two
graph; projective
binary[6, 4] code

64,28,12,12 (281 4% _40%)  QA(4,8); two
graph; projective
binary  [28, 6]
code

256,120, 56,56 (12010, 801207 _g(135)) QA(8,16); two

graph; projective
binary [120, 8]
code




4. Strongly Regular GraphsSRG (v, k, A, \) Since = —7 as shown in Theoremd.l, a
SRG(v,k, A\, \) turns out to be a Ramanujan graph [7].
The Friendship theorem shows that a connected graphindeed, the above lemma paves a way for studying pos-
with a unique common neighbor for any pairs of distinct sible feasible paramete(s, k, A\, \) for a given\ with a
vertices has a vertex adjacent to all other vertices,/dnd  pair (hy, hy) either (6, %) or (%, 0). The trivial decom-
is the unique such regular graph. We now cor_mder thoseposition of A = 1-Awith (hy,hs) = (1) leads to
c_onnehctedc—regular graphs such _thr?l; any tr\:vo dlstlr)c:jve(rj— (v,k,A) = (A2(A+2), \(A+1), ) or (A2, A+1, ). An-
tices has a constant common neighbors, they are indee other extremal cases withy, h, closed tov/\ are consid-
strongly regular graphSRG (v, k, A, A). When\ = 1, then om mom X om
G = K3 as just mentioned. The Cayley graphs associ- er_ed forA = 2°™ and2™ (2™ + 1) respectively. If\ = 2
ated with bent functions provide a family of such graphs, With (A1, h2) = (2,2™), then

as shown in TheorerB.2.The symplectic graph§p(2m) (v, k, \) = (22mF2 _ 1 92m+L g2m)
[5] offer another family of such strongly regular graphs with B ’ ’
parameterg2®™ —1, 2?1, 22m=2 22m=2) for positive in-  which is identical with those of the symplectic graphs; if

tegersm, note thatk(s is the symplectic grapip(2); some A = 27(2™ 4 1) with (hy, ha) = (2™ + 1,2™), then
examples with small number of vertices are known already;,

for example: (v,k) = (22(2™ + 12, 2™+ 1)(2™T 4 1)) or
Table 3. Symplectic graphs (2m(2m+?), 2™ (2™ 4+ 1));
Parameters Spectrum Example . .

3211 20,10 1) and the former type is realized by a set23f MOLS of

15.8.4.4 (870,207, _2) Two graph-* order2™+1 4 2, calledLatin square graphs

63,32,16,16  (3217,4C7, —4B%)  Two  graph-*; Theorem 4.2. Suppose\ = p - ¢ for distinct primes with
S(2,4,28) p>q.

255,128, 64,64 (128,801 _8U35))Two  graph-*; ) )
S(2,8,120) 1 If g > 3, then(v,0) = (Here=btatd 4 and

where two graph-* is the graph with isolated point added p = 2cq + 1 for some integer c.

belongs to the switching class of a regular two graph, and 2. If g = 2, then(v, ) = (w,p) or (16, 2).

S(2, k,v) is the block graph of &@-(v, k,1) design. Some ) )

necessary conditions amongk, A and their spectrum is  Proof. Letv = M by Theoremi.1. Sincep,

given in the following theorems. g are primes and is an integer(p+ ¢ —1)(p+ ¢+ 1) =
2 = _

Theorem 4.1. Suppose there exists$RG (v, k, A, \) with 0(modp), and hence® = 1{modp), and hence = 1 or

A > 1, and with distinct eigenvalugs> 6 > 7, then 1(modp). Because is a prime, it follows thaty = cp +1
for some even integer.

1.0 = —7 = Vk— )\, 0r = —(k — \) are integers If 3 < q¢q < p, theng = 1 orp — 1, a contradiction.
with multiplicitiesmg = ((n — 1) — \/k’%), and Because andgq are odd primes angl = c¢q + 1 for some
me=1((n—1)+ \/%) respectively. even integer c ify = w It is easy to check

B thaté = p by theoremd.1.
2.0 xand(v, k) = (w’ 62 + \). Forq = 2, sincepis odd,(p + 1)(p + 3) is even, then ei-
, . o ther (v, 0) = (2ZEEE) p) or (v, ) = (2EEUEED 9)
Proof. 1. Omitted. 2. Lett = 7=, which is a pos-  the only choice forp in the later case is, and hence
itive integer by 1. Hencé = CELV/E-1X V1A poth ¢ and (v,0) = (16,2). 0O
b = /t2 — 4) are of the same parity; sin¢é— 4\ = v?, it
follows that4\ = (¢ + b)(t — b), References
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