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Summary

This article considers regression analysis for cure models in presence of competing risks.
The model is formulated by a mixture representation. The main interest is in the in-
cidence part, which measures the probability of a specific type of failure or cure rate.
Assuming a binary regression model, several inference methods for estimating the re-
gression parameters are proposed to handle the missing cure status due to censoring.
The latency distributions, despite of less interest, play an essential role to utilize the
partial but biased information provided by censored data. Alternatively a distribution-
free procedure is also developed given that the quality of the data is good enough in

terms of sufficient follow-up.
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1 Introduction

Cure models allow for the possibility of not developing the event of interest despite of
long-term follow-up. Several versions of cure models have appeared in the literature
which differ in how “cure is defined. Under the classical setting, cure is not clearly
specified in the sense that cured (or immune) individuals are not directly observed but
always mixed with temporarily censored but susceptible ones. The book by Maller and
Zhou (1996) is an excellent reference on the subject. Another type of the models assumes
that a patient is cured if he/she does not develop the event of interest within a pre-
specified time period. One can refer to Laska and Meinser (1992) for further references.
For the model considered in the article, cure is determined by the order of competing
events. Throughout the paper, we will use the severe acute respiratory syndrome (SARS)
as an illustrating example of such models. SARS is a life-threatening acute disease that
resulted in a global outbreak in 2003. The phenomenon can be described by a two-path
model, sometimes known as an illness-death model, depicted in Figure 1, where subjects
may follow two different paths, 1 — 2 — 3 or 1 — 3. For the SARS example, the
intermediate state refers to hospital discharge with recovery and the absorbing state is
death. Betensky and Schoenfled (2001) call the third type as cure models with random

cure times.

Cure models are often expressed by a mixture formulation that contains two compo-
nents: one component is related to long-term incidence and the other is related to the
latency distribution given the cure status. Covariates may have different influences on
the two parts and the mixture formulation provides a flexible way to study the effects
separately. For the classical type of model, Farewell (1982) assumed a logistic/Weibull
model. Several authors, including Kuk and Chen (1992), Sy and Taylor (2000) and Peng
and Dear (2000), have considered logistic/Cox regression model. Their methods differ
in handling the baseline hazard function in the estimation. Taylor (1995) proposed a
logistic/Kaplan-Meier approach to analyze the incidence model by leaving the latency
distribution un-specified. However his method imposes a rigid assumption that the la-
tency distribution does not depend on the covariates. For the cure model with fixed cure
time, the focus is on the incidence part since the latency time is a fixed constant. Jung
(1996) and Subramanian (2001) proposed inference methods to estimate parameters in

a binary regression model under censoring.



In this paper, we consider regression analysis for the third type of cure models in
which cure is determined by the order of competing risks. The primary goal is to assess
the effects of covariates on the cure rate. Using the SARS example, let 77 be the time to
hospital discharge and T5 be the time to death. Define A = I(T7 < T5) as the indicator
for failure type which is the indicator for the cure event. Given the value of A, two
latency distributions can be Defined, namely @Q(¢t) = Pr(Ty > t|T} < Ty) and Q»(t) =
Pr(Ty > t|Ty > Ty). Notice that Q;(¢) (j = 1,2) also represent the survival functions of
the sojourn times in the two-path model and the cause-specific survival functions in the
context of competing risks. We assume that Pr(7} < T3|Z) = Pr(A = 1|2) = n(4'Z2),
where Z : p x 1 denotes a vector of covariates, 7 '(+) is the link function which is

monotonic and differentiable. A common example is the logistic regression model

exp(3'Z
74) =1 +§X(§(ﬁ’)Z)'
In general, covariates also affect the latency distributions and thus we should write
Qh,z(t) = Pr(Thy > t|T1 < T3, Z) and Qo,7(t) = Pr(Ty > t|T) > Ty, Z). In the SARS
example, it seems more important to investigate what factors affect whether a patient
can be cured than to study how long it takes for them to recover. Therefore we prefer

not making rigid assumptions on the forms of Q; z(t) (j = 1, 2).

The major objective is to develop inference methods for estimating # when the cure
status, A, may be unknown due to censoring. In Section 2, we first review the inference
procedure which complete information of A is available and then discuss the likelihood
inference given censored data. In Section 3 several inference methods for estimating 3

are proposed. Section 4 contains concluding remarks.

2 Preliminary Analysis

Let {(T1s, T, A;) (i = 1,...,n)} beidentically and independently replications of (77, T, A).
When the observation period is long enough such that A; (i = 1,...,n) are completely
observed, standard techniques for generalized linear models can be applied to estimate
(. Based on complete data, {(A;,Z;) (1 = 1,...,n)}, where A; = I(T}; < Ty;), the



likelihood function becomes
L(B) = [[ n(8'Z)> {1 — m(8'Z;)} %, (1)
i=1
which gives the score equation

(' Z;)
(B Z)7 (B Z:)

- _z";{Az- (02} z @)

where 74(t) = On(t)/0t and 7(t) =1 — 7(¢t).

In practice it happens that subjects may drop out from the study or, at the end of
the follow-up, some patients still have not developed the events interest. Let C' be the
censoring variable and assume that it is independent of both T} and T,. Under competing
risks, one observes X; = T1; ATo; ANCy, 01, = I(T1; < Toi NCY), 8oy = I(To; < Ty AC;) for
i=1,...,n. Letting 03, = I(C; < Ty; ATy;), d1; + d2; + 03, = 1. Note that when dy; = 1,
A; = 1, while 65, = 1, A; = 0. However the value of 4A; is unknown if d3; = 1.

Without loss of generality, assume that 77, T, and C are all continuous variables.

Based on censored data, the likelihood function becomes

Le o H {[7(B'Zi) fr.z (@) [7(8 Z) foz (1)) [Sz(is B)]) } (3)

where f; 7(z) = —2Q; z(x) for j = 1,2 and
Sz(xi; 8) = (B Z)Q1,z(xi) + T(0'Z:) Qa2 ().

Notice that when censoring exists, the likelihood function of # contains nuisance parame-
ters related to @, z(t) (j = 1, 2) which implies that additional assumption on the latency
distributions is required if likelihood-based inference is pursued. Parametric regression
models may be assumed for @), z(t) (j = 1,2). Larsen and Dinse (1985) considered the
same framework as discussed here and assumed a logistic/piecewise-exponential model.
In the next section, we review maximum likelihood estimation and then propose other

inference methods under more flexible assumptions.



3 The Proposed Methods

3.1 EM algorithm for maximum likelihood estimation

Previous analysis implies that, when censoring is present, likelihood estimation of (3
requires additional knowledge on the latency distributions. Assume temporarily that a
parametric form is imposed on Q; #(t) (j = 1,2). Since direct maximization of L¢ in (3)
is difficult, the EM algorithm can be used to obtain the maximum likelihood estimator.
The likelihood based on pseudo-data, {(A;, 014,02, X3, Z;) (i =1,...,n)}, is

Ly =1 { (70 2) Iz @)™ [Qua @)™ (7820 hos @)™ [Qaz (@)}

where d3; = 1 — dy; — 09 and h; z(z) = [—B%Qj,z(x)]/Qj,Z(x) for j = 1,2. The E-step
takes the expectation of log Ly with respect to the distribution of the unobserved A;s,
given the observed data and the current parameter values. The expected log-likelihood,
denoted as I;(3, Q1, Qa, w™), becomes

> {Z (051 - In(hy z,(2:)] + w™ - In(x(8'Z) Q1 z,(x:)) + (1 — w™) - In(T(5'Z:)Qa.2, mﬂ} ’

i=1 (j=1
where

W(ﬁ(m)lzi)Qgtnz)i ()
m (B0 Z)QYY () + T(B Z) Q37 (1)
and 3™ Qg"Z (j = 1,2) denoted the current parameter values at the mth iteration.
Note that the last term in wgm) is the conditional probability that the ith patient will

wzgm) = 01+ (01, =02 =0)-

be eventually cured given that the cure event has not occurred by time z;.

Further, we can write

14(8,Q1,Q2,w™) = Lg, + Lo, + Lg

where

n

Lo, = > {0u-In(hiz (@) + w™ - in(Quz(x:))}

i=1

n

Lo, = Z {5% “In(ha,z, (7:)) + (1 - wz(m)) (@27, (Iz))}

i=1



and
n

Ly =3 {0 - in(x(32.)) + (1 - w{™) - n(7(5Z,))}

i=1
It is important to note that in the M-step of the algorithm, Lg,, Lg, and Lg can
(m)

be maximized separately by treating w, ~ as a fixed constant. The EM procedure is

iterative in a way that the estimates obtained previously are used to update the value

of w!™

in the current maximization step. Maximization of Lg is straightforward while
maximization of Lg; depends on the form of Q; z(x) (j = 1,2). For parametric analysis,

convergence and properties of the resulting estimates follow the standard results.

3.2 Imputation by Conditional Mean

One alternative to adjust for censoring is to directly modify the score equation in (2).
Based on the available data, we can impute the missing 4;, if d3; = 1, by its conditional

mean which equals

_ Q1,7 (x:)T(6'Z;)
Qu,z,(x:)7 (' Z;) + Qa,7, ()T (' Z;)

7 = E[Ai|Tyi N Ty > C;, C; = x;, Zj]

Here we propose two estimating functions of # which can avoid going through the
maximization procedure of Lg, 7 (j = 1,2). Both methods modify the results in Wang
(2003) by assuming that the covariates take finite number of values. By partitioning
the sample according to the value of Z, we can use Wangs method to obtain the non-
parametric estimators, Qm (t) (j =1,2) and p,, (x) for k =1,...,J, where pz(z) is an
estimator of

p.(r) =E(Alos=1,X =2,7Z = 2).

An estimating function by model-based imputation is given by

0(8) = 3 A, — n(9 2} — 20 2)

AL @

where Az =1 for 611’ = ]_, Az =0 for (522' = ]_, and if (531' = ]_, we set

A- - _ QLZi(lEz')WEﬁ'Zi) .
Z Q1,7 (X)) (0 Z;) + Qo,z, ()7 (' Z;)




An estimating function by model-free imputation is given by

Us(B) = Xn;{& B F(ﬁlzi)} ﬂ(ﬁTZE)ﬁ;TZ)’Zi)

where A; =1 for 6;; = 1; A; = 0 for dy; = 1; and if 85, = 1, we set A; = P2, (z;). Denote
Bj as the solution of U;() =0 for j =1, 2.

Zi, (5)

3.3 Inverse Probability Weighting

When censoring is present, there is higher chance of first observing an event associated
with smaller failure time. To see this, one can express 6; = AI(T; < C) which implies
that 0 is a biased proxy of A in the presence of censoring. The larger value of failure
time 717, the higher chance that A will be censored. When covariates exist, it can be

shown that
E[I((Sl == 1)|T1,T2,Z] - E[[(TI S T2 VAN C)|T1,T2,Z] - I(Tl S T2|Z)Gz(T1),

where Gz(t) = Pr(C > t|Z). It follows that

w1 (g]e) (A2

To simplify the analysis, we let Gz(t) = Pr(C > t) which is estimated by the Kaplan-

A S (X = u, 63, = 1)}
G(t) = 1-— .
() ul;[t{ ZZ:1I(XI~: > U)

Meier estimator

Replacing A; by 01,/ G (X;), one obtain the following estimating function

_ g 512_1) (87 ﬂ-tb(ﬁlzi)
_zzl{ G(X)) (6 Zl)}w(ﬁ'zmwfzi)

The estimator of 3 can be obtained as a solution of Us(8) = 0, denoted as (3. The
technique of inverse probability weighting has been widely used in recent literature of

survival analysis such as the papers by Jung (1996) and Lin, Sun and Ying (1999).

The proposed way of bias adjustment by inverse weighting implicitly assumes that

there is no information about A beyond the observational period. Specifically, define



ri=sup{t : Pr(Ty ATy > t) > 0} and 7.=sup{t : Pr(C > t) > 0}. If 7, > 7, which implies
that Pr(7y A Ty > 7.) > 0, we have

(51 . A lf Tl/\TQSTC
E(G(X)‘TI’T2> a {0 if TyAT > T,

= I(Tl/\TQSTC)A%A

The requirement of 7, < 7, is a condition of sufficient follow-up. We can show that,
when 7, < 7. and under some regularity conditions, (3 is consistent and \/5(33 — (o)
converges to a mean-zero normal random variable, where [3; is the true value of 3. The

asymptotic variance of 3 is also derived.

Alternatively, we can use (1, d2) jointly to construct an estimating equation. By the

same idea, we have the estimating function

Us(B) = il {55(;(5)22 — (n(8'Z;) — fr(ﬁ'Zi))} 7T(57:§E)ﬁ7;f;)lzi)2i.

The finite-sample comparison of U3(3) and Uy(3) could be explored in the simulation
study.

3.4 Imputation by unconditional mean

In the context of competing risks, Pr(A = 1) can be measured from the incidence
function. Specifically let Ty =T if T} < T and T} = oo if 71 > T5. It follows that

S*(t) = PI'(TI* > t) = PI"(Tl > 1, T < TQ) + PI'(T1 > TQ)

Hence
Jim Pr(T} > t) = Pr(Ty > Tz) = Pr(A = 0).

When a nonparametric estimator of S*(t) is available, denoted as Sy (t), we may consider

the estimating equation

n R ’Z)
U = 1-5; max)) — ,Zi 7%(5 - 7 6
5(0) = A= Sy (wman) = 78 2)} 0 s 2 (6)
where Z,,,, is the maximum value of X; (i =1,...,n) with d;; = 1. There exist several

nonparametric estimators of S*(t).



3.5 Comparison of the methods

The formulation of mixture models suggests that the incidence probability and the la-
tency distributions can be modeled separately. Due to the problem of identifiability as
discussed in Li et al. (2001), classical cure models rely on joint estimation of the two
components even if only one part is of major interest. For the cure model considered
here, the event of cure is explicitly defined and hence identifiability is not an issue. Con-
sequently the requirement on the lengthy of the follow-up period is less strict. In Section
2.1 we have seen that as long as C; > T1; ATy; foralli = 1,...,n, it is natural to estimate
the two components separately. The focus here is on the incidence part. When there
exist some observations with C; > T7; A T5;, additional information is needed beside the

binary regression model itself.

In the likelihood-based analysis, model specification on Q; #(t) (j = 1,2) is required.
Specifically for a censored observation with d;; = d9; = 0, the knowledge of the latency
distributions is used in w; or 7; for weight assignment since the observed sojourn time
as well as the covariate still reveal useful information. Ignoring such information would
lead to bias results. However making additional assumptions increases the possibility
of making mistakes. Parametric modeling on the latency distributions is usually the
standard approach. Flexibility of the imposed models is an important concern. In this
article, we discuss nonparametric analysis for the latency distributions. It is important
to note that although no distributional assumption is made, nonparametric analysis re-
quires that the subjects are independently and identically distributions or homogeneous
in some sense. Thats why we need to assume that Q; z(¢) (j = 1,2) do not depend on Z
or Z is discrete so that the sample can be partitioned into homogeneous subgroups. The
likelihood-based estimator of using logistic/Kaplan-Meier approach by Taylor (1995) is
computationally intensive since it involves back-and-forward iterations between (3 and
high dimensional parameters in @), z(t) ( = 1,2). The proposed estimators 3; and [,
that use the plug-in approach to handle the nuisance parameters separately, are easier

to implement. It is possible that finding the root of

Ui (B) = 0 is difficult since it is a complicated function of 5. One alternative is to



modify A, by X
A~ . Ql,Zi (xi)ﬂ-(ﬁzk—l)zi)

C Qual)n (B Z) + Qo ()T (B Z:)
where B(k,l) is the previously estimated value of 3 for £k > 1. A reasonable choice of 8(0)

is BQ.

Y

Now define 7, = sup{t : Pr(Ty ATy > t) > 0} and 7, = sup{t : Pr(C > t) > 0}.
The estimators, Bj (j = 1,2,3), all rely on the assumption of sufficient follow-up, that

is 73 < 7.. The validity of Bg, strongly depends on this condition since

5
E (WIX)‘TDTQ,Z> =I(T\ AT, < 1,)- A

In general,

01
E Z)=E(I(T) T, <71.)-A|Z) # E(A|Z).
(Go|7) = Ut <) 21 £ B012)

Since Wangs nonparametric estimators reply on the assumption of sufficient follow-
up, Bl and Bz are also affected via the imputed values. However Wang proposed a
modification when this condition is violated and can also be used here to correct the

problem to some degree.

4 Concluding Remarks

Literature on illness-death models is abundant. There have been increasing research
interests to analyze the problem in the framework of competing risks or mixture mod-
els. One advantage of the mixture formulation is that it allows Separate modeling for
incidence and latency distributions. ;From our analysis, the purpose of joint estimation
is for correctly utilizing partial information provided by censored data. One can avoid
making model assumption on the latency part if follow-up is sufficient. We see that there
is a tradeoff between making strong assumptions on the quality of data or on the model.
The techniques used to handle the effect of censoring can be viewed as applications of
the principles for handling missing data that are reviewed in the book by Little and
Rubin (2002).
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