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Abstract

The number of stable stationary solutions corresponds to the memory ca-
pacity for the neural networks. In this presentation, we address on multiple
stable stationary solutions for Hopfield-type neural networks. Our goal is to
formulate concrete parameter conditions to guarantee the existence of stable
equilibria, through a suitable geometrical setting. We shall also derive con-
ditions for the estimation of basins of attraction for these stable stationary
solutions.

1 Introduction

Hopfield-type neural networks and their various generalizations have attracted much
attention from the science community. The applications of these networks range
from classifications, associative memory, to parallel computation and its ability in
solving optimization problems. The theory on the dynamics of the networks has
been developed according to the purposes of the applications. When a neural net-
work is employed as an associative memory, the existence of many equilibria is a
necessary feature. On the other hand, in the application to parallel computation
and signal processing involving finding the solution of an optimization problem, the

existence of a computable solution for all possible initial states is the best situation.
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Mathematically, this means that the network needs to have a unique equilibrium
which is globally attractive. The theory on unique equilibrium for Hopfield-type
neural networks is relatively well-known, c¢f. [3, 4]. In this presentation, we address
on multiple stable equilibria for Hopfield-type neural networks.

In addition to the classical neural networks, we are also interested in the neural
networks with delay, c¢f. [5]. The stationary equations are identical for the these
systems with or without delays. Thus, confirmations for the existence of equilibrium
points are valid for both systems. However, stability of the equilibrium points and
dynamical behaviors can be very different for the systems with delay and without
delay. It is very interesting to explore such a kind of difference as well as a possible
coincidence of behaviors, say, as the delay is small. The comparisons for the dy-
namical behaviors will also be performed via numerical simulations, to justify our
theory as well as to reach the territory without theory.

We shall also derive conditions for the estimation of basins of attraction for
these stable stationary solutions. A methodology for such a derivation has been

developed in [2] for spatially discrete reaction-diffusion equations.

2 Existence of multiple equilibria and their sta-
bility

In this section, we shall formulate sufficient conditions for the existence of multiple
equilibrium points. Since our approach is geometrical, these conditions are concrete
and can be examined easily. We also derive stability criteria of these equilibria
through estimations for the eigenvalues of the linearized system.

The classical Hopfield-type neural networks is given by

dt

Recently, the Hopfield-type neural networks with delay has drawn much attention.

A typical form for the neural network with delay is:

dt

= —biwi(t) + Y _wijgi(ai(t — 7)) + Ji = Fy(xy), i=1,---,n, (2.2)
j=1

where 0 < 7;; < r, and x; € C([—r,0], R") is defined by x;(0) = x(t+6),6 € [—r,0].

The output functions g; usually have sigmoidal configuration. Herein, we take, for
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all g,

1
9;(&) = g(&) == Treoe &7 0.
For simplicity, we consider b = b;,w = wy; for ¢ = 1,--- . n. Notably, the stationary

equation for systems (2.1) and (2.2) are identical. Namely,
—bixi—i-Zwijgj(acj)—l—Ji :O, 7 = 1,2,"' , . (23)
j=1
Let f(z) = —bx 4+ wg(x) + I, where z € R. Assume that py, ps, p1 < p2, are
the two points such that f'(p1) = f'(p2) = 0. Since 0 < g;(¢) < 1 for all £ € R, we

have, for each 17,

> wigi(z) + <Y wil + 1

j#i J#
= k,’l
Let
ﬁ(ml) = —br; +wg(x;) + ki

Then fi(z;) < Fy(x) < fi(x;), for all x = (21, --- ,x,) and for each i =1,2,--- n.

Condition (I): fi(p1) <0, fi(ps) >0, fori=1,--- n.
Condition (II) —b+ i|w| + ]{,‘Z < 0, for 1 = 1,--- M.

Theorem 2.1: Under Condition (I), there exist 3" equilibria for system (2.1) and
(2.2). Under Conditions (I) and (II), there exist 2" asymptotically stable equilibria
for system (2.1).

Proof: The existence of equilibrium follows from the Brouwer’s fixed point theorem.
Indeed, under Condition (I), the function f;(z;) = —b;x;+wg(x;)+k; has three roots,
for every 7. A mapping, defined on suitable region in the phase space, derived from
solving (2.3) componentwise can be obtained. A fixed point of such a mapping gives
rise to an equilibrium of (2.1) and (2.2), c¢f. [1].

For the second assertion, we observe that

—b+ wg'(x7) wi2g' (72) e wing ()
DF(x) = w219./($1) —b+ u';g’(@) | w2ngf(fvn)
wn19' (1) Wnad'(z2) -+ —b+wg'(x,)
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Notably, max{g¢'({) | £ € R} = 4_15' Thus, under Condition (II), all the eigenvalues
of DF(X) for 2" equilibria X of system (2.1) have real parts less than zero, by the

Gerschgorin’s Theorem.

References

1]

[6]

CHEN, S.-S. AND SHIH, C.-W., Transversal homoclinic orbits in a transiently
chaotic neural network, Chaos, 12, 654-670 (2002).

CHENG, C.-Y., CHu, Y.-P. AND SHIiH, C.-W., Stationary patterns and spatial

entropy for spatially discrete reaction-diffusion equations, preprint, 2004.

Forrti, F., On global asymptotic stability of a class of nonlinear systems arising
in neural network theory, J. Diff. Equations, 113, 246-264 (1994).

MICHEL, A., Qualitative analysis of neural networks, IEEE Trans. Circuits Syst.,
36 (1989), 229-243.

VAN DEN DRIESSCHE, P. AND ZouU, X., Global attractivity in delayed hopfield
neural network models, Siam. J. Appl. Math., 58(6) (1998), 1878-1890.

ZHANG, Y1, Estimate of exponential convergence rate and exponential stability

for neural networks, IEEE Trans. Circuits Syst.



mEHS IR

=Y Pfab o A PR > = Ffifk??ﬁ?ﬂﬁ:?ﬁ‘j“‘pj e TRV IR S
ﬁﬁ;ﬁ’jﬁrﬁﬂ il 'F‘ REGIESS SR Vf*i‘iilfk I‘Ff w1 £ basin of attractions Ifji -
=5 M IW“%E URPTIASE - EEEJEE*PJZ# delays it “EA | IS5IFKHEFE 7 KL AVEYEE -
TP ﬁ‘jﬁrﬂ“ rirf“rﬂw“ﬂ‘ ° “Jﬁfmﬂ RN T T T S A S
TR AR kS 2 BEE ‘f@*ﬁ%ﬁﬁﬁ&w GRNGIERE- v
PSR 3 g 0 - RLES PP TV EIRG ) #l?ﬂﬁ%’fﬁvfﬁ«n’fﬁ“ A T
EEU%[FFU Fo IR elt E|- P AENE e df Jf“iﬂl[—l;{‘ﬁﬂﬂ; lﬂ[[—{ﬁiﬁ Jizlf_}éﬁ—?
Py '/pru (RIS R o

FF%—’F“ P RUERT G« SIF L RERVERE - S5 s -

E'Iaﬂ*fl I J’F'JIU'“% S PTG RRYPERE R S ORE S
F[fjégF '



