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BOUNDARY INFLUENCE ON THE ENTROPY OF A PROBLEM
IN CELLULAR NEURAL NETWORKS

YU-CHUAN CHANG AND JONG JUANG

ABSTRACT. The purpose of this paper is to shed some light on the open prob-
lem raised by Afraimovich and Hsu [2003]. Specifically, under some mild con-
ditions, we show that for any ¢; and n € N, except possibly a few piece of
T™¢1, T™¢; is contained in an N-shaped tunnel for which its boundary point
is an w-limit point of ¢; for T. Moreover, we show under a stronger con-
dition, see (3.3), that the entropy hg, ¢,(T), see Definition 1.1, of T with
respect to £1 and ¢2 is independent of the choice of ¢1. It is also shown that
h(T) = hp(T) = hn(T) = In3, where hp(T) and hn(T) are the entropy of T
with respect to Dirichlet and Neuman boundary conditions, respectively, see
Remark 1.1-(2), and that hy, 4, (T)(= he2(T)) takes on two distinct values In 3
and 0. The necessary and sufficient conditions on £ for which hg,(T) = 1n3

are also obtained.

Key words: Boundary influence, dynamics of intersection, entropy, cellular

neural networks.

1. Introduction
We consider one-dimensional Cellular Neural Networks (CNNs) of the form(e.g.,
[Ban et al., 2002, 2001; Hsu 2000]).

dx i
dt

= -z +z+af(@i-1) +af(z) + Bf(xiv1), i €Z, (1.1a)
where f(x) is a piecewise-linear output function defined by

re+1—r, ifx>1,
f@) =4 o if 2] <1, (L.1b)
lx+1—-1, ifx<-1.

where r and [ are positive constants. The quantity z is called threshold or bias
term. The constants «, a and § are the interaction weights between neighboring
cells. Such triple pair [a, a, 5] of the interaction weights is called the template of the
system (1). The complexity of the set of bounded stable (mosaic) stationary solu-

tions of (1.1) has been intensively studied by many authors ([Ban et al., 2002, 2001;
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Chua, 1998; Chua and Yang 1998a; Hsu 2000; Juang and Lin 2000; Thiran 1997;
Thiran et al., 1995]). Those steady-state solutions {x;};cz, satisfy the equation

f(zig1) = %(mi—z—af(xi_l)—af(xi)). (1.2)
Set u; = f(x;). Then (1.2) becomes
Ujp1 = %(—aui,l — 2+ N w) — auy), (1.3a)

or, equivalently,

1
T(ui_l,ui) = (ui,ui_H) = (U,i, B(—aui_1 —z+ f_l(ui) — aui)). (13b)
Clearly, (1.3b) such induced is a Lozi-type map T
(Tir1,Yir1) = T(wi, y:) = (Y, F(yi) — bxs). (1.4a)
Here
o
b= —, 1.4b
3 (1.4b)
and
a1y + apg — a1 + ap = a1y + a, ify>1,
F(y) =1 apy + ao, if [y| <1, (1.4c)
a1y+ta_1—ap+adg:=a1y+a_, ify<-1
where

alzé(%—a)>0, aozé(l—a) <0, (1.4d)
a Ll _a)>o0, ap = 5

Any bounded trajectory (zj41,y541) = T(x;,y;) corresponds to a bounded
steady-state solution of system (1.1).

Inspired by the open problems raised in [Arnold 1993], and [Afraimovich and
Hsu 2003], respectively, we are led to consider the following problems. Define the
line ¢y, as

o ={(z,y) :y =ma+k}. (1.5a)

Here

lso i is interpreted as {(z,y) : x = k}. (1.5b)

Denote by N (n, £y, kys by ks, T') the number of points on the intersection of

T™pny iy Ny iy~ Should no ambiguity arise, we will write £y, 1, as £;.

Definition 1.1. The entropy he, o,(T) of T with respect to lines {1 and ls is defined

as the limit

he, 0, (T) = Tim M (1.6)

n— oo n
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In case that the growth rate of N'(n,¢1,l2,T) is super exponential, hy, ¢, (1) is
defined to be co. For a local holomorphic mapping, preserving the origin, and two
lines ¢; and {5 passing the origin. Suppose all the images T™¢; are smooth [15] or
that everything is algebraic (see [11], [16]). Then hy, ¢,(T) exists and is finite. In
our case, N (n,{1,0>,T) < 3". We next recall the definition of the spatial entropy
of system (1.1).

Now, set I'y, 1, (T) to be the number of elements in the solution set Sy k, Sn.r =
{{u}mHF1 s {u;}2 L is a bounded steady-state solution of (1.1)}. Here k € Z.
Since the template of system (1.1) is space invariant, the steady-state solutions of
(1.1) are also space invariant. That is to say if {u;}$2_  is a steady state solution

of (1), so is {u4x}2_ for any k € Z. Hence, I'y, 1 (T) is independent of the choice
of k. Thus, we set I, x(T) =T, (T).

Definition 1.2. The spatial entropy h(T') of the system (1.1) is defined as the limit

W(T) = Tim D (T)

n— oo n

We next consider how the behavior of solutions of a large but finite lattice is

related to the behavior of steady-state solutions of (1.1). Let {u;}5°_ . be an orbit
sequence generated by T as given in (1.3b). The number of distinct orbit sequences

{u; 2 _ o of T satisfying
us = myuy + k1 (or equivalently y; = mixy + ki), (1.7a)

and

Upt1 = Mouy, + ko (or equivalently y, = maoxy, + ko), (1.7b)

be denoted by I, (n,mq, k1, ma, ke, T).

Remark 1.1.

(1) Tt is easy to see that 'y (n,mq, k1, ma, ko, T) = N(n — 1,£1,¢5,T), where
by =L,y s, and lo =l gy

(2) When (my, k1) = (00,0) and (ma, ko) = (0,0) (resp., (mq,k1) = (ma, ko) =
(1,0)), he,e,(T) is the so-called the spatial entropy of system (1.1) with
Dirichlet (resp., Neumann) boundary conditions. We write such entropy as
ho(T) (vesp., iy (T)).

(3) For other choices of ¢1 and fa2, hy¢, ¢, (T) is called the spatial entropy of
system (1.1) with Robbin’s boundary conditions.

In [Afraimovich and Hsu, 2003], the following open problems were raised.
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(P1): Is it true that, in general, h(T) = hp(T) = hn(T) = hey 0, (T)?

(P2): If it is not true, then which parameters m; and k;, i = 1,2, are respon-
sible for the values of h(T"). What kind of bifurcations occurs if the lines
lyy p move?

The purpose of this paper is to shed some light on those two problems. Specif-
ically, under some mild conditions, we show that for any ¢; and n € N, except
possibly a few piece of T™¢1, T™¢; is contained in an N-shaped tunnel for which its
boundary point is an w-limit point of #; for T. Moreover, we show under a stronger
condition, see (3.3), that the entropy hy, ¢, (T') of T' with respect to ¢; and ¢5 is in-
dependent of the choice of ¢;. It is also shown that h(T) = hp(T) = hy(T) = In 3,
and that he, ¢, (T)(= he, (T)) takes on two distinct values In 3 and 0. The necessary
and sufficient conditions on f2 for which he,(T) = In3 are also obtained. Those
main results are recorded in Section 3. In Section 2, we study the dynamics of a
certain two-dimensional map induced from T7¢;. We conclude this introductory
section by mentioning some related work. Shih [2000] studied the influence of pe-
riodic, Neumann and Dirichlet boundary conditions on a problem also arising in
two dimensional CNNs. Since their output function f, as given in (1.1b), is flat
at infinity, i.e. , r = [ = 0, the formulation of the problem is much different from
those in [Afraimovich and Hsu 2003]. Consequently, the techniques used in both
situations are also quite different.

We also remark that the problem of the asymptotic behavior of the number of
points on the intersection ka1 N L, where Ly, Ly are submanifolds of a smooth
manifold, and f is a smooth map, is said to be a problem of dynamics of the in-
tersection. These problems arise in various branches of analysis. There are some
general results (see, e.g., p.261 of [Arnold 1993]) obtained for such problems. How-

ever, no approaches are available to solve specific problems.

2. Dynamics of Certain Maps Induced From T"¢,,
We begin with the calculation of T™¢,, ;. Now, for m # 0,
T(z',ma +k) = (ma +k Fimz +k)—bx).

Set & = ma +k, y = F(ma' + k) — bz, we see immediately that

(a1 — L)z + (a; + &), ifx>1,
b(x — k) ) - " _
y="F@)-=—— =1 (a0~ e+ (@+5%), iflef<1, (2.1)
(a-y — L)z + (G- + %), ifz<-1.
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FIGURE 2.1

Using (2.1), we define two dimensional maps G;(x,y), i = 1,0, —1, of the form

Gi(z,y) = (a; — %(_li + gy) =:(9i,1(2), gi,2(2,y))- (2.2)

We call g; 1(x), ¢ = 1,0, —1, the slope maps of T'. For g; 1(x), 7 = 1,0, —1, denote,

respectively, the slopes of T/, , in the regions.
Ry ={(z,y) : 2 21}, Ro ={(z,y) : [2[ <1} and Ry = {(z,y) : 2 < —1}. (2.3)

Moreover, g; 2(x,y) are to be termed the intercept maps. We next consider the

dynamics of the slope and intercept maps g; 1 and g; ».

Proposition 2.1. Let b > 0, a; > 2vb, i = 1,—1 and —ag > 2vb. Then (i)
+ . aity/aZ—4b
2

m o = are two fized points of the slope maps g;1. (i) Moreover,

the attracting interval of m?:oo, i=1,-1,1is R—{m; }. That is to say if z €

R—{m;_}, then, fori=1,—1, lim g/ (z) =m]__. (ii) The attracting interval
’ n—oo "’ ’

of mg o, 1s R— {ma"oo}. (iv) Suppose a; = 2v/b. Then m;’?oo =m,

7,00

is the globally
attracting fived point of g; 1, ¢ =1,0,—1.

Proof. We illustrate only i = 1. Clearly, two fixed points of g;; are mfm. The
attracting interval of g;; can be easily concluded by using graphical analysis on

Figure 2.1. [
Proposition 2.2. Suppose

b>0,a;>1+0b,i=1,—1and —ag>1+0. (2.4)
5



+ .
(i) For fited x = m;__, i = 1,—1, then k; o = :;}r“i is a globally attracting

7,007 b

fized point of the intercept maps gig(mg':oo,y). Moreover, (ii) for fized x = mg .,

i 00

ko,co = % is also a globally attracting fized point of go2(Mmg o, Y)-

0,00

Proof. 1t suffices to show that 0 < mfl <1,i=1,-1,and -1 < —2— < 0.

7,00 0,00

We illustrate only ¢ = 1. Now,

b 2b a; —+/a? —4b
mioo a1+\/a%74b 2 ( )
The last inequality is justified by the fact that a; > 1+ b > 2vb > 0. O
Theorem 2.1. Suppose (2.4) holds. (i) The two dimensional map G;, as de-
’m,i a; ..
fined in (2.2), i = 1,0,—1, have two fixed points (mii’oo,ﬁ) =: Aii. (ii)
Moreover, the attracting regions of mj"oo, i=1,-1, and m&;o, are, respectively,

R2—{A7},i=1,-1, and R2 —{AT}. That is to say, for any (m,k) € R? —{A;},
i = 1,—1.(resp.,(m,k) € R? — {AF}), lim GI'(m,k) = Af, i = 1,—1,(resp.,
lim G§(m, k) = AT).

Proof. We only illustrate i = 1. The cases for i = 0,—1 are similar. Define
gi1(m) = myn and G} (m, k) = (M1, k1,n). If m # my  then given ¢ > 0, there

exists an N, € N such that for every n > N, we have

+

Mo =

e<miy < mfoo +e. (2.6)

It follows from (2.6) that for any k € R, and n sufficiently large,

e bk B bk B bk _ bk B bk
min{a;+ - , Q1+ — }<ai+ < maz{a;+ - ,G1+— }.
Lo — € my e+ € Ln loo — € M0 T€
(2.7)

It follows from (2.5) and Proposition 2.2 that for sufficiently small ¢ > 0,

lim g7, (mfOo + ¢, k) exist and that

n—oo
lim g7,(mi, £, k)= —"""——
et 91,2( 1,00 ) mfoo Te_1b
Using (2.7), we see inductively that

min{gy o(my o+, 5), 97 2(m1 oo =€, k) } < g1 2(man, k) < maz{gls(m] +e k), g7 o (mf o~ k) }.

However, it is easy to see that the single limits nh—{lgo 912 (mfOO + ¢e,k) and
lin%) gio(my . e, k) exist and the convergence of lim g, (mi  +¢,k) is uniform
e— ’ ? n—oo "~ )
for all sufficiently small ¢ > 0. So the double limits of gﬁz(mfoc +e,k) exist. Con-

sequently, the double limits of g{l’Q(mfoo +e, k) exist and equal. Hence, the double
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limit of g} o (M1 n, k) exists. Moreover, for each € > 0 the limit lim g{'o(m1 n, k) ex-
’ n—oo "’
ists. So the iterated limit lim ( lim g7 5(m1 n,k)) exists. And so lm g7 (M1 n, k)
e—0 n—oo ’ n—oo ’ ’

+ =
mlyocal

exists and is equal to = Itis then easy to see that, for (m,k) € R? — {A]},
1,00 + B
. n + M1 e0l1
lim G7(m,k) = (m{ , ——). We then complete the proof of theorem. [
n— oo ’ ml,oo —-b

We are now in a position to study 7"/, . To this end, we consider the lines
l

+ mj:oo(_h . _ m(;ooao .
(M s —F _b), for i =1,-1, and (mg ., - _b) for i = 0.
1,00 , 00

From here on, to same notations, we write

i = 1,0,—1, defined as follows. The (m,k)-pairs of ¢;  are, respectively,

Too )

/l 1= 1,0, —1, as Eioc N Ri. (28)

Too )
Here R; are given as in (2.3). For any line or line segment ¢, we also use the

following notation

61, lfy Z 1,
Tl=q lo, iflyl <1, (2.9a)
671, lfy < —1.

In case ¢ is a line segment or ¢ is a horizontal line, ¢;, i = 1,0, —1, could be
empty depending on the range of y in ¢. Likewise, we may define T'(¢;, iy.... i, _,)

inductively as follows.

Civigy sima1,  ify>1,
TC=1q liyigoin 10, |y <1, (2.9b)
¢ if y < -1

11,82, ,in—1,—1>

3. Main Results-Boundary Influence on the Spatial Entropy

The following lemma is very useful in determining how we number and order the

line segments and half-lines of 7"¢,, ;. The proof is trivial and, thus, skipped.

Lemma 3.1. For fized y, if x1 > xo, then the y-coordinate of T(x1,y) is no greater
than that of T'(x2,y).

Using lemma 3.1 and the fact that T is one-to-one, we have the following prin-

ciple.

Proposition 3.1. Let ¢ and k be lines or line segments, and £ Nk = 0. If k is to
the right of £. Then so are k; to £;, i = 1,—1. Howewver, £y is to the right of ko.

Here k;, £;, i =1,0,—1 are defined in (2.8).
7
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FIGURE 3.1

Note that the reverse of the ordering in kg and ¢; is due to the fact that, in Ry,
F(y) has a negative slope.

It follows from Proposition 3.1 that the construction of the N-shaped figure with
boundaries indicated as in Figure 3.1 makes sense. We shall call the region bounded
by two N-shaped lines the N-shaped tunnel of T.

The intersection of the lines/line segments ¢ and k will be denoted by
LN k. (3.1)

Lemma 3.2. Suppose ag and b > 0 are sufficiently small, and a; > 1+b, i =1, -1,
and —ag > 1+ b. Then the y-coordinate ({_1__ oNLl_1 1)y of (b—10Nl_1 1) is
less than -1, and (61 1Nl 0)y > 1.

Proof. We illustrate only (¢4 _1N¥i_ o)y > 1. The other assertion is similarly
obtained. Note that the equation of the line ¢;__ is y = m] @ + k1. Letting

1,00
y = —1, we see x = % Clearly, (¢1.,—1 N 41 0)y=the y-coordinate of
1,00
—k1,00—1 _
T(Wa -1)=
b(k 1
—a0+a0+@ =t>1, (3.2)
1,00
whenever ay and b are sufficiently small. |



FIGURE 3.2

Lemma 3.3. Suppose
a; >3 ,i=1,-1, —ag > 3 and that ap and b > 0 are sufficiently small. (3.3)

Let A be any point in the line segment for which its both endpoints are {_1_ N
010 and by 1Nt 0. Then the limit of both coordinates of T™(A) approaches
to +o0.

Proof. We first note that T" has a fixed point B = (“zl_folzgo , a;:f‘i:’zo ) for which its
Az 5
stable (resp., unstable) direction is (1, alfal%). (resp., (1, aﬁfal%)). Since

(b1 Nli0)y > (i, —1 Nl 0)y > 1, as showed in (3.2), it suffices to show

that T"(¢1_,—1 N {41 0) — (+00,4+00) as n — oo. To this end, we need to show
that T'(¢1_,—1 N¥1_0) =T(—1,t), t as given in (3.2), lies on the upper half of the

stable line

a1 —ag — ag a1 — ag — ap

e T e
or, equivalently,
a1—a0—do _ B al_ao_do B
Ft)+b— —— — t —— =:h(b )
()+ ap—1-b M0 +m1’oo ap—1-0 (aa0)>0
Now,
h(0,0) = —apa? + 2apa; — a? _ ai[(—ap — 1)(a; — 2) — 2] o,
ap —1 a1 —1
We thus complete the proof of the lemma. O

For any non horizontal line ¢, 1, m # 0, we have that T'0,, , = ¢_; Ufy U {q, see
Figure 3.2 and (2.9), is an N-shaped graph with (¢;N¢y), < —1 and (¢oNl_1), > 1
provided T satisfies the assumptions in Lemma 3.2.

Moreover, T%0,, , N Ry = €_11 U ¥y, ULy 1. Note that ¢; 1, i =1,0,—1, are ob-

tained by applying the action of T" on the portion of ¢; for which their y coordinates
9
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are greater or equal than 1. By Proposition 3.1, we see that the ordering of ¢; 1,
i =1,0,—1, going from left to right, is £_1 1,€o,1 and 1 ;.
Likewise, we define ¢; ; i = 1,0, -1, j = 0, —1, accordingly so that

T%lp 1N Ry ={1,0UlyoUl_1,

and
Tk NR_y =01 1 Uly 1 Ul 1.
Note that the ordering of ¢; ¢ (resp., ¢; _1), i = 1,0, —1, going from left to right
is 41,0, £o,0 and ¢_1 ¢ (rvesp., {_1,_1, £o,—1 and £1,_1).
In general, T™¢,, j, consists of 3" line segments/half lines that can be labelled as

¢ i =1,0,—-1,j=1,2,--- ,n. See Figure 3.3.

11,22, ,tn)

Our first main result is to characterize how T™¢;behaves for all n.

Theorem 3.1. Suppose (3.3) holds. Then for any n, all £;, ;, ... ;, lie in the N-

shaped tunnel of T' except possibly €1 1,... 1,¢—1,-1,...—1,b11,-.10andl_1 _1 .. _10.

3

Proof. Since T takes a horizontal line into a vertical line, we may assume that ¢, j
is a non horizontal line. Set T'0,, = £_1 UlyU¥y, see Figure 3.2. It is clear that ¢_;
and ¢y are to the left of /1 and ¢y and ¢; are to the right of /_; _. Using proposition
3.1 inductively, we conclude that all £;, ;5 ... i, 1 (vesp., i) iy i ,—1) €XCEPL
possibly ¢11.... 1 (resp.,(_1 _1,... —1) must lie in the region bounded by ¢_1__ 1, ¢1_
and ¢ =1 (resp., {_1_,¢1.,,—1 and x = —1). Since the above are true for all n, we

see immediately, via Proposition 3.1, that all £;, ;, ... ;,_, 0 except possibly £11.... 1,0
10
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and £_1 _1,... 1,0, must lie in the region bounded by x = -1, x =1, {;__ o and
6710070. O

We note that the boundary points of the N-shaped tunnel are w-limit points
w(ly;T) of £y for T. That is if y € w(f1;T), then there exists a € {1, and a
sequence {nx}7,, ny € N, such that 77 (z) — y as k — oo.

The second main results are stated in the following.

Theorem 3.2. Suppose (5.8) holds. (i) Then he, ¢,(T) is independent of the choice
of £1. We then write he, o, (T) as he,(T). (3) If a1 > a_1, (resp., a1 < a_1), let £o
be a line passing through 1, N1 o (resp.,l_1_ NL_1_ o) with slope m satisfying
a1 <m < ay (resp.,ar < m < a_i), then he,(T) = 0; otherwise, he,(T) = In3.
(iii) If a1 = a—_1, let €y be a line with slope m = a1 and y-intercept k satisfying
k>k_1,00 ork <kioco, then he,(T) = 0; otherwise, hy,(T) =1n3.

Proof. Let {5 = k be aline in between £_; __ ; and ¢ . Denote by k,, (resp., (1. )y)
the y-coordinate of kN {x = 1} (resp., £1,, N{z =1}). Since lim T"ly 1, = {1

oo ?

there exists an NV such that

ky > (T"1 0)y > ({1, )y whenever n > N. (3.4)
11



Using Theorem 3.1, we have that all
Zil’i%... GiN_1> where il,ig, v ,Z.N,Q S {1, 0, —1}, and Z.N,1 = 0, (35)
lie in between ¢1__ o and £_1__ o. It then follows from (3.4) and Proposition 3.1 that
forn > N
ky > (T7 o)y > Wirin,eina1)y > (G1)ys
where 41,12, ,in—_1 satisfy (3.5). Consequently, k¥ must intersect &;, i, ... i, .2,

where i1,149, - ,in_1 satisfy (3.5). See Figure 3.4.
Hence, for n > N, the number N (n, £1,k, T') of intersections of T"¢; Nk satisfies

3N < N(n, 01,k T) < 3"

Thus hy, ¢, (T) = In3. The cases that k lies between £_;__ ¢ and ¢1__ o or {_1__
and (1 _1 are similar. The other remaining nontrivial case is k = {(z,y) : y =
d,|d| is large}. However, using Lemma 3.3, we see similarly that there exists an

M € N, for all n sufficiently large, we have
3nM < N(n, by, k,T) < 3™

Hence, hy, ¢, (T) = In3. The remaining part of the theorem is trivial and thus
omitted. O

Proposition 3.2. Suppose (3.8) holds. Then there exists a p > 1 such that the
following holds.

F(p) —bp > p, (3.6a)
F(1) +bp < —p, (3.6b)
F(-1)—0bp>p, (3.6¢)
and
F(—p) +bp < —p. (3.6d)

Proof. Equations (3.6) are equivalent to
—ag +ag —ag — ao
1+b 7 1+0b
Letting b = ag = 0, (3.7) reduces to

1— 00— Qp G_1— Qo+ Qo
al—l—b ’ a_l—l—b

min{ Y>p> max{a

Lo (3

1— Gy -1 — Qo

a
—ao>p>max{a1_1,a1_1}. (3.8)

However, under condition (3.3), (2.3) holds and =% > 1, i =1,—1. We thus

complete the proof of proposition. O

12
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FIGURE 3.5. Here we denote by K; = T(K). We use similar

notations to denote points under the first iteration of 7'.

Let S be a square defined as
S ={(z,y) € R*: [z| < p, |y| < p}, where

p satisfies (3.6). Then T'(S) NS = S3U Sz U Sy. See Figure 3.5.
Inductively, we see that T (S) NS consists of 3" nested pieces of S;, iy, v
i; = 1,0,—1, j = 1,2,--- ,n. Likewise, backward iterations: T-"(S) N S will
produce 3" nested pieces of S, i, ... i, i; =1,0,-1,j=1,2,--- ,n with each piece
Siia, i, cross the east and west side of the rectangle S. Using Theorem 2.1, we

see that the size of Sj, i,.... s, and Si, i,.... i, shrinks to zero as n — oo. Thus,
o0

n T"(S)NS =: A is a cantor set of infinite points. Using standard argument
n=-—oo

in symbolic dynamics, one shows that the dynamics of T on the invariant set A is
conjugate to the shift map with three symbols. Thus, any trajectory of T in A is a

bounded steady state of (2). Hence, we have the following theorem.
13



Theorem 3.3. Suppose (3.8) holds. Then h(T) =In3 = hp(T) = hn(T).

1

2

(3]

(4]

(5]

[6]

[7]

(8]
(9]

We conclude this paper with the following remarks.

(1) We have shown that Dirichlet and Neuman boundary conditions have no
effect on the entropy of T' under the circumstances and that certain Robbin’s
boundary conditions do influence the entropy of T'.

(2) In the language of CNNs, condition (3.3) means that the slopes r and [
of the output function f are small and so is the bias term z. The self-
interaction weight a has to be strong. However, the right-side (forward)
interaction weight 8 has to be much stronger than that of the left-side
(backward) interaction weight a.

(3) The cases when 1 < ay, —ag,a—1 < 3 are complicated as well as interesting.

(4) It is also of interest to see if our techniques developed here can be applied
to the cases when F(y) is a cubic polynomial, such as those in p.163 of
Afraimovich and Hsu [2003] or a quadratic map for which the resulting T

is a Henon map.
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