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BOUNDARY INFLUENCE ON THE ENTROPY OF A PROBLEM
IN CELLULAR NEURAL NETWORKS

YU-CHUAN CHANG AND JONG JUANG

Abstract. The purpose of this paper is to shed some light on the open prob-

lem raised by Afraimovich and Hsu [2003]. Specifically, under some mild con-

ditions, we show that for any `1 and n ∈ N, except possibly a few piece of

T n`1, T n`1 is contained in an N -shaped tunnel for which its boundary point

is an ω-limit point of `1 for T . Moreover, we show under a stronger con-

dition, see (3.3), that the entropy h`1,`2 (T ), see Definition 1.1, of T with

respect to `1 and `2 is independent of the choice of `1. It is also shown that

h(T ) = hD(T ) = hN (T ) = ln 3, where hD(T ) and hN (T ) are the entropy of T

with respect to Dirichlet and Neuman boundary conditions, respectively, see

Remark 1.1-(2), and that h`1,`2 (T )(= h`2(T )) takes on two distinct values ln 3

and 0. The necessary and sufficient conditions on `2 for which h`2 (T ) = ln 3

are also obtained.

Key words: Boundary influence, dynamics of intersection, entropy, cellular

neural networks.

1. Introduction

We consider one-dimensional Cellular Neural Networks (CNNs) of the form(e.g.,

[Ban et al., 2002, 2001; Hsu 2000]).

dxi

dt
= −xi + z + αf(xi−1) + af(xi) + βf(xi+1), i ∈ Z, (1.1a)

where f(x) is a piecewise-linear output function defined by

f(x) =


rx + 1− r, if x ≥ 1,

x, if |x| 6 1,

lx + l − 1, if x ≤ −1.

(1.1b)

where r and l are positive constants. The quantity z is called threshold or bias

term. The constants α, a and β are the interaction weights between neighboring

cells. Such triple pair [α, a, β] of the interaction weights is called the template of the

system (1). The complexity of the set of bounded stable (mosaic) stationary solu-

tions of (1.1) has been intensively studied by many authors ([Ban et al., 2002, 2001;
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Chua, 1998; Chua and Yang 1998a; Hsu 2000; Juang and Lin 2000; Thiran 1997;

Thiran et al., 1995]). Those steady-state solutions {xi}i∈Z, satisfy the equation

f(xi+1) =
1
β

(xi − z − αf(xi−1)− af(xi)). (1.2)

Set ui = f(xi). Then (1.2) becomes

ui+1 =
1
β

(−αui−1 − z + f−1(ui)− aui), (1.3a)

or, equivalently,

T (ui−1, ui) = (ui, ui+1) = (ui,
1
β

(−αui−1 − z + f−1(ui)− aui)). (1.3b)

Clearly, (1.3b) such induced is a Lozi-type map T .

(xi+1, yi+1) = T (xi, yi) = (yi, F (yi)− bxi). (1.4a)

Here

b =
α

β
, (1.4b)

and

F (y) =


a1y + a0 − a1 + ā0 := a1y + ā1, if y ≥ 1,

a0y + ā0, if |y| 6 1,

a−1y + a−1 − a0 + ā0 := a−1y + ā−1, if y ≤ −1.

(1.4c)

where
a1 = 1

β ( 1
r − a) > 0, a0 = 1

β (1− a) < 0,

a−1 = 1
β ( 1

l − a) > 0, ā0 = −z
β .

(1.4d)

Any bounded trajectory (xj+1, yj+1) = T (xj , yj) corresponds to a bounded

steady-state solution of system (1.1).

Inspired by the open problems raised in [Arnold 1993], and [Afraimovich and

Hsu 2003], respectively, we are led to consider the following problems. Define the

line `m,k as

`m,k = {(x, y) : y = mx + k}. (1.5a)

Here

`∞,k is interpreted as {(x, y) : x = k}. (1.5b)

Denote by N (n, `m1,k1 , `m2,k2 , T ) the number of points on the intersection of

Tn`m1,k1 ∩ `m2,k2 . Should no ambiguity arise, we will write `mi,ki as `i.

Definition 1.1. The entropy h`1,`2(T ) of T with respect to lines `1 and `2 is defined

as the limit

h`1,`2(T ) = lim
n→∞

lnN (n, `1, `2, T )
n

. (1.6)
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In case that the growth rate of N (n, `1, `2, T ) is super exponential, h`1,`2(T ) is

defined to be ∞. For a local holomorphic mapping, preserving the origin, and two

lines `1 and `2 passing the origin. Suppose all the images Tn`1 are smooth [15] or

that everything is algebraic (see [11], [16]). Then h`1,`2(T ) exists and is finite. In

our case, N (n, `1, `2, T ) ≤ 3n. We next recall the definition of the spatial entropy

of system (1.1).

Now, set Γn,k(T ) to be the number of elements in the solution set Sn,k, Sn,k =

{{ui}n+k−1
i=k : {ui}∞i=−∞ is a bounded steady-state solution of (1.1)}. Here k ∈ Z.

Since the template of system (1.1) is space invariant, the steady-state solutions of

(1.1) are also space invariant. That is to say if {ui}∞i=−∞ is a steady state solution

of (1), so is {ui+k}∞i=−∞ for any k ∈ Z. Hence, Γn,k(T ) is independent of the choice

of k. Thus, we set Γn,k(T ) = Γn(T ).

Definition 1.2. The spatial entropy h(T ) of the system (1.1) is defined as the limit

h(T ) = lim
n→∞

ln Γn(T )
n

.

We next consider how the behavior of solutions of a large but finite lattice is

related to the behavior of steady-state solutions of (1.1). Let {ui}∞i=−∞ be an orbit

sequence generated by T as given in (1.3b). The number of distinct orbit sequences

{ui}∞i=−∞ of T satisfying

u2 = m1u1 + k1 (or equivalently y1 = m1x1 + k1), (1.7a)

and

un+1 = m2un + k2 (or equivalently yn = m2xn + k2), (1.7b)

be denoted by Γn(n, m1, k1,m2, k2, T ).

Remark 1.1.

(1) It is easy to see that Γn(n, m1, k1,m2, k2, T ) = N (n − 1, `1, `2, T ), where

`1 = `m1,k1 and `2 = `m2,k2 .

(2) When (m1, k1) = (∞, 0) and (m2, k2) = (0, 0) (resp., (m1, k1) = (m2, k2) =

(1, 0)), h`1,`2(T ) is the so-called the spatial entropy of system (1.1) with

Dirichlet (resp., Neumann) boundary conditions. We write such entropy as

hD(T ) (resp., hN (T )).

(3) For other choices of `1 and `2, h`1,`2(T ) is called the spatial entropy of

system (1.1) with Robbin’s boundary conditions.

In [Afraimovich and Hsu, 2003], the following open problems were raised.
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(P1): Is it true that, in general, h(T ) = hD(T ) = hN (T ) = h`1,`2(T )?

(P2): If it is not true, then which parameters mi and ki, i = 1, 2, are respon-

sible for the values of h(T ). What kind of bifurcations occurs if the lines

`m,b move?

The purpose of this paper is to shed some light on those two problems. Specif-

ically, under some mild conditions, we show that for any `1 and n ∈ N, except

possibly a few piece of Tn`1, Tn`1 is contained in an N -shaped tunnel for which its

boundary point is an ω-limit point of `1 for T . Moreover, we show under a stronger

condition, see (3.3), that the entropy h`1,`2(T ) of T with respect to `1 and `2 is in-

dependent of the choice of `1. It is also shown that h(T ) = hD(T ) = hN (T ) = ln 3,

and that h`1,`2(T )(= h`2(T )) takes on two distinct values ln 3 and 0. The necessary

and sufficient conditions on `2 for which h`2(T ) = ln 3 are also obtained. Those

main results are recorded in Section 3. In Section 2, we study the dynamics of a

certain two-dimensional map induced from Tn`1. We conclude this introductory

section by mentioning some related work. Shih [2000] studied the influence of pe-

riodic, Neumann and Dirichlet boundary conditions on a problem also arising in

two dimensional CNNs. Since their output function f , as given in (1.1b), is flat

at infinity, i.e. , r = l = 0, the formulation of the problem is much different from

those in [Afraimovich and Hsu 2003]. Consequently, the techniques used in both

situations are also quite different.

We also remark that the problem of the asymptotic behavior of the number of

points on the intersection fkL1 ∩ L2, where L1, L2 are submanifolds of a smooth

manifold, and f is a smooth map, is said to be a problem of dynamics of the in-

tersection. These problems arise in various branches of analysis. There are some

general results (see, e.g., p.261 of [Arnold 1993]) obtained for such problems. How-

ever, no approaches are available to solve specific problems.

2. Dynamics of Certain Maps Induced From Tn`m,k

We begin with the calculation of Tn`m,k. Now, for m 6= 0,

T (x
′
,mx

′
+ k) = (mx

′
+ k, F (mx

′
+ k)− bx

′
).

Set x = mx
′
+ k, y = F (mx

′
+ k)− bx

′
, we see immediately that

y = F (x)− b(x− k)
m

=


(a1 − b

m )x + (ā1 + bk
m ), if x ≥ 1,

(a0 − b
m )x + (ā0 + bk

m ), if |x| 6 1,

(a−1 − b
m )x + (ā−1 + bk

m ), if x ≤ −1.

(2.1)
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Figure 2.1

Using (2.1), we define two dimensional maps Gi(x, y), i = 1, 0,−1, of the form

Gi(x, y) = (ai −
b

x
, āi +

b

x
y) =: (gi,1(x), gi,2(x, y)). (2.2)

We call gi,1(x), i = 1, 0,−1, the slope maps of T . For gi,1(x), i = 1, 0,−1, denote,

respectively, the slopes of T`x,y in the regions.

R1 = {(x, y) : x ≥ 1}, R0 = {(x, y) : |x| ≤ 1} and R−1 = {(x, y) : x ≤ −1}. (2.3)

Moreover, gi,2(x, y) are to be termed the intercept maps. We next consider the

dynamics of the slope and intercept maps gi,1 and gi,2.

Proposition 2.1. Let b > 0, ai > 2
√

b, i = 1,−1 and −a0 > 2
√

b. Then (i)

m±
i,∞ := ai±

√
a2

i−4b

2 are two fixed points of the slope maps gi,1. (ii) Moreover,

the attracting interval of m+
i,∞, i = 1,−1, is R − {m−

i,∞}. That is to say if x ∈
R − {m−

i,∞}, then, for i = 1,−1, lim
n→∞

gn
i,1(x) = m+

i,∞. (iii) The attracting interval

of m−
0,∞ is R−{m+

0,∞}. (iv) Suppose ai = 2
√

b. Then m+
i,∞ = m−

i,∞ is the globally

attracting fixed point of gi,1, i = 1, 0,−1.

Proof. We illustrate only i = 1. Clearly, two fixed points of g1,1 are m±
1,∞. The

attracting interval of g1,1 can be easily concluded by using graphical analysis on

Figure 2.1. �

Proposition 2.2. Suppose

b > 0, ai > 1 + b, i = 1,−1 and − a0 > 1 + b. (2.4)
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(i) For fixed x = m+
i,∞, i = 1,−1, then ki,∞ :=

m+
i,∞āi

m+
i,∞−b

is a globally attracting

fixed point of the intercept maps gi,2(m+
i,∞, y). Moreover, (ii) for fixed x = m−

0,∞,

k0,∞ =
m−

0,∞ā0

m−
0,∞−b

is also a globally attracting fixed point of g0,2(m−
0,∞, y).

Proof. It suffices to show that 0 < b
m+

i,∞
< 1, i = 1,−1, and −1 < b

m−
0,∞

< 0.

We illustrate only i = 1. Now,

0 <
b

m+
1,∞

=
2b

a1 +
√

a2
1 − 4b

=
a1 −

√
a2
1 − 4b

2
< 1. (2.5)

The last inequality is justified by the fact that a1 > 1 + b ≥ 2
√

b > 0. �

Theorem 2.1. Suppose (2.4) holds. (i) The two dimensional map Gi, as de-

fined in (2.2), i = 1, 0,−1, have two fixed points (m±
i,∞,

m±
i,∞āi

m±
i,∞−b

) =: A±i . (ii)

Moreover, the attracting regions of m+
i,∞, i = 1,−1, and m−

0,∞, are, respectively,

R2−{A−i }, i = 1,−1, and R2−{A+
0 }. That is to say, for any (m, k) ∈ R2−{A−i },

i = 1,−1.(resp.,(m, k) ∈ R2 − {A+
0 }), lim

n→∞
Gn

i (m, k) = A+
i , i = 1,−1,(resp.,

lim
n→∞

Gn
0 (m, k) = A+

0 ).

Proof. We only illustrate i = 1. The cases for i = 0,−1 are similar. Define

gn
1,1(m) = m1,n and Gn

1 (m, k) = (m1,n, k1,n). If m 6= m−
1,∞,then given ε > 0, there

exists an Nε ∈ N such that for every n ≥ Nε, we have

m+
1,∞ − ε < m1,n < m+

1,∞ + ε. (2.6)

It follows from (2.6) that for any k ∈ R, and n sufficiently large,

min{ā1+
bk

m+
1,∞ − ε

, ā1+
bk

m+
1,∞ + ε

} < ā1+
bk

m1,n
< max{ā1+

bk

m+
1,∞ − ε

, ā1+
bk

m+
1,∞ + ε

}.

(2.7)

It follows from (2.5) and Proposition 2.2 that for sufficiently small ε > 0,

lim
n→∞

gn
1,2(m

+
1,∞ ± ε, k) exist and that

lim
n→∞

gn
1,2(m

+
1,∞ ± ε, k) =

ā1(m+
1,∞ ± ε)

m+
1,∞ ± ε− b

=: k1±ε.

Using (2.7), we see inductively that

min{gn
1,2(m

+
1,∞+ε, k), gn

1,2(m
+
1,∞−ε, k)} < gn

1,2(m1,n, k) < max{gn
1,2(m

+
1,∞+ε, k), gn

1,2(m
+
1,∞−ε, k)}.

However, it is easy to see that the single limits lim
n→∞

gn
1,2(m

+
1,∞ ± ε, k) and

lim
ε→0

gn
1,2(m

+
1,∞± ε, k) exist and the convergence of lim

n→∞
gn
1,2(m

+
1,∞± ε, k) is uniform

for all sufficiently small ε > 0. So the double limits of gn
1,2(m

+
1,∞± ε, k) exist. Con-

sequently, the double limits of gn
1,2(m

+
1,∞± ε, k) exist and equal. Hence, the double
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limit of gn
1,2(m1,n, k) exists. Moreover, for each ε > 0 the limit lim

n→∞
gn
1,2(m1,n, k) ex-

ists. So the iterated limit lim
ε→0

( lim
n→∞

gn
1,2(m1,n, k)) exists. And so lim

n→∞
gn
1,2(m1,n, k)

exists and is equal to
m+

1,∞ā1

m+
1,∞−b

. It is then easy to see that, for (m, k) ∈ R2 − {A+
1 },

lim
n→∞

Gn
1 (m, k) = (m+

1,∞,
m+

1,∞ā1

m+
1,∞ − b

). We then complete the proof of theorem. �

We are now in a position to study Tn`m,k. To this end, we consider the lines

`i∞ , i = 1, 0,−1, defined as follows. The (m, k)-pairs of `i∞ are, respectively,

(m+
i,∞,

m+
i,∞āi

m+
i,∞−b

), for i = 1,−1, and (m−
0,∞,

m−
0,∞ā0

m−
0,∞−b

) for i = 0.

From here on, to same notations, we write

`i∞ , i = 1, 0,−1, as `i∞ ∩Ri. (2.8)

Here Ri are given as in (2.3). For any line or line segment `, we also use the

following notation

T` =


`1, if y ≥ 1,

`0, if |y| ≤ 1,

`−1, if y ≤ −1.

(2.9a)

In case ` is a line segment or ` is a horizontal line, `i, i = 1, 0,−1, could be

empty depending on the range of y in `. Likewise, we may define T (`i1,i2,··· ,in−1)

inductively as follows.

T` =


`i1,i2,··· ,in−1,1, if y ≥ 1,

`i1,i2,··· ,in−1,0, if |y| ≤ 1,

`i1,i2,··· ,in−1,−1, if y ≤ −1.

(2.9b)

3. Main Results-Boundary Influence on the Spatial Entropy

The following lemma is very useful in determining how we number and order the

line segments and half-lines of Tn`m,k. The proof is trivial and, thus, skipped.

Lemma 3.1. For fixed y, if x1 ≥ x2, then the y-coordinate of T (x1, y) is no greater

than that of T (x2, y).

Using lemma 3.1 and the fact that T is one-to-one, we have the following prin-

ciple.

Proposition 3.1. Let ` and k be lines or line segments, and ` ∩ k = ∅. If k is to

the right of `. Then so are ki to `i, i = 1,−1. However, `0 is to the right of k0.

Here ki, `i, i = 1, 0,−1 are defined in (2.8).
7



Figure 3.1

Note that the reverse of the ordering in k0 and `0 is due to the fact that, in R0,

F (y) has a negative slope.

It follows from Proposition 3.1 that the construction of the N -shaped figure with

boundaries indicated as in Figure 3.1 makes sense. We shall call the region bounded

by two N -shaped lines the N -shaped tunnel of T.

The intersection of the lines/line segments ` and k will be denoted by

` ∩ k. (3.1)

Lemma 3.2. Suppose ā0 and b > 0 are sufficiently small, and ai > 1+b, i = 1,−1,

and −a0 > 1 + b. Then the y-coordinate (`−1∞,0 ∩ `−1∞,1)y of (`−1∞,0 ∩ `−1∞,1) is

less than -1, and (`1∞,−1 ∩ `1∞,0)y > 1.

Proof. We illustrate only (`1∞,−1 ∩ `1∞,0)y > 1. The other assertion is similarly

obtained. Note that the equation of the line `1∞ is y = m+
1,∞x + k1,∞. Letting

y = −1, we see x = −k1,∞−1

m+
1,∞

. Clearly, (`1∞,−1 ∩ `1∞,0)y=the y-coordinate of

T (−k1,∞−1

m+
1,∞

,−1) =

−a0 + ā0 +
b(k1,∞ + 1)

m+
1,∞

=: t > 1, (3.2)

whenever a0 and b are sufficiently small. �
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Figure 3.2

Lemma 3.3. Suppose

ai > 3 , i = 1,−1, − a0 > 3 and that ā0 and b > 0 are sufficiently small. (3.3)

Let A be any point in the line segment for which its both endpoints are `−1∞ ∩
`−1∞,0 and `1∞,−1 ∩ `1∞,0. Then the limit of both coordinates of Tn(A) approaches

to +∞.

Proof. We first note that T has a fixed point B = (a1−a0−ā0
a1−1−b , a1−a0−ā0

a1−1−b ) for which its

stable (resp., unstable) direction is (1,
a1−

√
a2
1−4b

2 ). (resp., (1,
a1+

√
a2
1−4b

2 )). Since

(`−1∞ ∩ `−1∞,0)y > (`1∞,−1 ∩ `1∞,0)y > 1, as showed in (3.2), it suffices to show

that Tn(`1∞,−1 ∩ `1∞,0) → (+∞,+∞) as n → ∞. To this end, we need to show

that T (`1∞,−1 ∩ `1∞,0) = T (−1, t), t as given in (3.2), lies on the upper half of the

stable line

(y − a1 − a0 − ā0

a1 − 1− b
) = m−

1,∞(x− a1 − a0 − ā0

a1 − 1− b
),

or, equivalently,

F (t) + b− a1 − a0 − ā0

a1 − 1− b
−m−

1,∞t + m−
1,∞

a1 − a0 − ā0

a1 − 1− b
=: h(b, ā0) > 0.

Now,

h(0, 0) =
−a0a

2
1 + 2a0a1 − a2

1

a1 − 1
=

a1[(−a0 − 1)(a1 − 2)− 2]
a1 − 1

> 0.

We thus complete the proof of the lemma. �

For any non horizontal line `m,k, m 6= 0, we have that T`m,k = `−1 ∪ `0 ∪ `1, see

Figure 3.2 and (2.9), is an N -shaped graph with (`1∩`0)y < −1 and (`0∩`−1)y > 1

provided T satisfies the assumptions in Lemma 3.2.

Moreover, T 2`m,k ∩ R1 = `−1,1 ∪ `0,1 ∪ `1,1. Note that `i,1, i = 1, 0,−1, are ob-

tained by applying the action of T on the portion of `i for which their y coordinates
9



Figure 3.3

are greater or equal than 1. By Proposition 3.1, we see that the ordering of `i,1,

i = 1, 0,−1, going from left to right, is `−1,1, `0,1 and `1,1.

Likewise, we define `i,j i = 1, 0,−1, j = 0,−1, accordingly so that

T 2`m,k ∩R0 = `1,0 ∪ `0,0 ∪ `−1,0,

and

T 2`m,k ∩R−1 = `−1,−1 ∪ `0,−1 ∪ `1,−1.

Note that the ordering of `i,0 (resp., `i,−1), i = 1, 0,−1, going from left to right

is `1,0, `0,0 and `−1,0 (resp., `−1,−1, `0,−1 and `1,−1).

In general, Tn`m,k consists of 3n line segments/half lines that can be labelled as

`i1,i2,··· ,in
, ij = 1, 0,−1, j = 1, 2, · · · , n. See Figure 3.3.

Our first main result is to characterize how Tn`1behaves for all n.

Theorem 3.1. Suppose (3.3) holds. Then for any n, all `i1,i2,··· ,in
lie in the N -

shaped tunnel of T except possibly `1,1,··· ,1, `−1,−1,··· ,−1, `1,1,··· ,1,0 and `−1,−1,··· ,−1,0.

Proof. Since T takes a horizontal line into a vertical line, we may assume that `m,k

is a non horizontal line. Set T`m,k = `−1∪`0∪`1, see Figure 3.2. It is clear that `−1

and `0 are to the left of `1∞ and `0 and `1 are to the right of `−1∞ . Using proposition

3.1 inductively, we conclude that all `i1,i2,··· ,in−11 (resp., `i1,i2,··· ,in−1−1) except

possibly `1,1,··· ,1 (resp.,`−1,−1,··· ,−1) must lie in the region bounded by `−1∞,1, `1∞

and x = 1 (resp., `−1∞ , `1∞,−1 and x = −1). Since the above are true for all n, we

see immediately, via Proposition 3.1, that all `i1,i2,··· ,in−1,0 except possibly `1,1,··· ,1,0

10



Figure 3.4

and `−1,−1,··· ,−1,0, must lie in the region bounded by x = −1, x = 1, `1∞,0 and

`−1∞,0. �

We note that the boundary points of the N -shaped tunnel are ω-limit points

ω(`1;T ) of `1 for T . That is if y ∈ ω(`1;T ), then there exists a x ∈ `1, and a

sequence {nk}∞k=1, nk ∈ N, such that Tnk(x) → y as k →∞.

The second main results are stated in the following.

Theorem 3.2. Suppose (3.3) holds. (i) Then h`1,`2(T ) is independent of the choice

of `1. We then write h`1,`2(T ) as h`2(T ). (ii) If a1 > a−1, (resp., a1 < a−1), let `2

be a line passing through `1∞ ∩ `1∞,0 (resp.,`−1∞ ∩ `−1∞,0) with slope m satisfying

a−1 ≤ m ≤ a1 (resp.,a1 ≤ m ≤ a−1), then h`2(T ) = 0; otherwise, h`2(T ) = ln 3.

(iii) If a1 = a−1, let `2 be a line with slope m = a1 and y-intercept k satisfying

k ≥ k−1,∞ or k ≤ k1,∞, then h`2(T ) = 0; otherwise, h`2(T ) = ln 3.

Proof. Let `2 = k be a line in between `−1∞,1 and `1∞ . Denote by ky (resp., (`1∞)y)

the y-coordinate of k ∩ {x = 1} (resp., `1∞ ∩ {x = 1}). Since lim
n→∞

Tn`0,1∞ = `1∞ ,

there exists an N such that

ky > (Tn`1∞,0)y > (`1∞)y whenever n ≥ N. (3.4)
11



Using Theorem 3.1, we have that all

`i1,i2,··· ,iN−1 , where i1, i2, · · · , iN−2 ∈ {1, 0,−1}, and iN−1 = 0, (3.5)

lie in between `1∞,0 and `−1∞,0. It then follows from (3.4) and Proposition 3.1 that

for n ≥ N

ky > (Tn
`1∞ ,0)y > (`i1,i2,··· ,in−1,1)y > (`1∞)y,

where i1, i2, · · · , iN−1 satisfy (3.5). Consequently, k must intersect `i1,i2,··· ,in−1,2,

where i1, i2, · · · , iN−1 satisfy (3.5). See Figure 3.4.

Hence, for n ≥ N , the number N (n, `1, k, T ) of intersections of Tn`1 ∩k satisfies

3n−N ≤ N (n, `1, k, T ) ≤ 3n.

Thus h`1,`2(T ) = ln 3. The cases that k lies between `−1∞,0 and `1∞,0 or `−1∞

and `1∞,−1 are similar. The other remaining nontrivial case is k = {(x, y) : y =

d, |d| is large}. However, using Lemma 3.3, we see similarly that there exists an

M ∈ N, for all n sufficiently large, we have

3n−M ≤ N (n, `1, k, T ) ≤ 3n.

Hence, h`1,`2(T ) = ln 3. The remaining part of the theorem is trivial and thus

omitted. �

Proposition 3.2. Suppose (3.3) holds. Then there exists a p > 1 such that the

following holds.

F (p)− bp > p, (3.6a)

F (1) + bp < −p, (3.6b)

F (−1)− bp > p, (3.6c)

and

F (−p) + bp < −p. (3.6d)

Proof. Equations (3.6) are equivalent to

min{−a0 + ā0

1 + b
,
−a0 − ā0

1 + b
} > p > max{a1 − a0 − ā0

a1 − 1− b
,
a−1 − a0 + ā0

a−1 − 1− b
}. (3.7)

Letting b = ā0 = 0, (3.7) reduces to

−a0 > p > max{a1 − a0

a1 − 1
,
a−1 − a0

a−1 − 1
}. (3.8)

However, under condition (3.3), (2.3) holds and ai−a0
ai−1 > 1, i = 1,−1. We thus

complete the proof of proposition. �
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Figure 3.5. Here we denote by K1 = T (K). We use similar

notations to denote points under the first iteration of T .

Let S be a square defined as

S = {(x, y) ∈ R2 : |x| ≤ p, |y| ≤ p}, where

p satisfies (3.6). Then T (S) ∩ S = S3 ∪ S2 ∪ S1. See Figure 3.5.

Inductively, we see that Tn(S) ∩ S consists of 3n nested pieces of Si1,i2,··· ,in ,

ij = 1, 0,−1, j = 1, 2, · · · , n. Likewise, backward iterations: T−n(S) ∩ S will

produce 3n nested pieces of S̄i1,i2,··· ,in , ij = 1, 0,−1, j = 1, 2, · · · , n with each piece

S̄i1,i2,··· ,in cross the east and west side of the rectangle S. Using Theorem 2.1, we

see that the size of S̄i1,i2,··· ,in and Si1,i2,··· ,in shrinks to zero as n → ∞. Thus,
∞⋂

n=−∞
Tn(S) ∩ S =: Λ is a cantor set of infinite points. Using standard argument

in symbolic dynamics, one shows that the dynamics of T on the invariant set Λ is

conjugate to the shift map with three symbols. Thus, any trajectory of T in Λ is a

bounded steady state of (2). Hence, we have the following theorem.
13



Theorem 3.3. Suppose (3.3) holds. Then h(T ) = ln 3 = hD(T ) = hN (T ).

We conclude this paper with the following remarks.

(1) We have shown that Dirichlet and Neuman boundary conditions have no

effect on the entropy of T under the circumstances and that certain Robbin’s

boundary conditions do influence the entropy of T .

(2) In the language of CNNs, condition (3.3) means that the slopes r and l

of the output function f are small and so is the bias term z. The self-

interaction weight a has to be strong. However, the right-side (forward)

interaction weight β has to be much stronger than that of the left-side

(backward) interaction weight α.

(3) The cases when 1 ≤ a1,−a0, a−1 ≤ 3 are complicated as well as interesting.

(4) It is also of interest to see if our techniques developed here can be applied

to the cases when F (y) is a cubic polynomial, such as those in p.163 of

Afraimovich and Hsu [2003] or a quadratic map for which the resulting T

is a Henon map.
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