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Abstract

The screening of data sets for ”positive data objects” is essential
to modern technology. A (group) test that indicates whether or not a
positive data object is in a specific subset or pool of the data set can
greatly facilitate the identification of all the positive data objects. A
collection of tested pools is called a pooling design. Pooling designs
are standard experimental tools in many biotechnical applications. In
this paper, we use the (linear) subspace relation coupled with gen-
eral concept of a ”containment matrix” to construct pooling designs
with surprisingly high degrees of error-correction (detection.) Error-
correcting pooling designs are important to biotechnical applications
where error rates often are as high as 15%. What is also surprising is
that the rank of the pooling design containment matrix is independent
of the number of positive data objects in the data set.
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1 Introduction

The screening of biological sets of objects, e.g., blood samples, cells, clones,
macromolecules, is an essential but often laborious aspect of modern biotech-
nology. In a few instances, the screening of large libraries, e.g., peptide,
cDNA, monoclonal antibody, for a relatively few number of positive objects
has become a routine experimental procedure. See [2]. Similar approaches
have also been proposed for contig sequencing [8], determination of exon
boundaries in eukaryotic genes [17], detecting gene complex[18], micro-array
quality control [3] and disease gene mapping [7].

Whenever the objective is to find "needles in a haystack” a test indicating
whether at least one needle is in a specific part of the haystack can greatly
facilitate the isolation of the "needles”. Such tests are called binary group
tests and the general mathematical method behind the identification of the
"needles” using such tests is called group testing [6]. If we have a finite ground
set or population containing elements that can be uniquely characterized as
positive or negative, we refer to the collection of positive elements as the
positive subset P. In the abstract group testing problem, P must be identified
by performing 0, 1 tests on subsets of the population.

One applied aim is to consider screening situations where we have a bio-
logical set of objects containing a relatively small number data points (e.g.,
clones) which have a measurable attribute or function that can characterize
them as "positive”. This subcollection is initially unknown to the experi-
menter and it is the object of the search. A group of biological objects taken
from a larger set of objects is called a pool. A pool assay is a 0, 1 test to
determine if at least one member of the pool is positive. The practical goal
here is to determine a large portion of P from the pool assays. The collection
of pools taken from a biological set of objects is called a pooling design.

The following comes from [2].

"Much of the current effort of the Human Genome project involves the
screening of a large recombinant DNA libraries to isolate clones containing
a particular DNA sequence.” ”This screening is important for disease-gene
mapping and also for large-scale clone mapping.” "More generally, efficient
screening techniques can facilitate a broad range of basic and applied biolog-
ical research.”



For example, using probes to screen DNA libraries of clones fits the group
testing paradigm in the following way: The population is the DNA library
which consists of thousands of separate recombinant DNA clones each of
which represents some contiguous piece of a contiguous superpiece of DNA. A
unique, identifiable, predetermined, and contiguous DNA subpiece is called a
sequenced tagged site (STS). A clone is called positive for an STS if it contains
that STS. A pool is a subset of the clones that are mixed together and tested
by exposing the entire group to a chemical probe. A pool is labeled positive
for an STS if the probe chemically indicates its presence. In other words, if
the tests are error-free, then a pool is labeled positive for an STS if and only
if that pool contains at least one clone that contains that ST'S.

Generally because bioinformatic applications are often automated, par-
allel rather than sequential screening methods are generally preferred. See
6] for other screening cost factors. Long before the advent of bioinformat-
ics, consideration of analogous factors in other testing, screening, or coding
situations lead to the development of nonadaptive group testing. See [4]. In
NGT, one must decide exactly which pools to test before any testing occurs.
A NGT algorithm is sometimes referred to as a one-stage algorithm. A two-
stage algorithm is a nearly nonadaptive algorithm. In a trivial two-stage
algorithm, all non-trivial pools occur in the first stage. After the first stage
is complete, one has a set the candidate positives. In the second stage, each
candidate positive is individually tested to see whether or not it is an actual
positive.

When screening biological sets errors almost always occur during the test-
ing procedure. This paper addresses a new class of pooling designs that can
cope with large numbers of errors.

2 d-disjunct matrices as nonadaptive pooling
design models

We will use the terminology of clone library screening for convenience. Sup-
pose there are n clones including at most d positive ones (others are negative).
A pooling design M can be represented by a binary incidence matrix where
the columns represent clones, the rows represent tests, and m;; = 1 if and
only if clone j is contained in the subset of test .



Suppose there are n clones including at most d positive ones (others are
negative). A (group) test is applicable to an arbitrary subset of clones with
two possible outcomes: a negative outcome indicates all clones in the subset
are negative, and a positive outcome indicates otherwise. A pooling design
is a specification of all tests so that they can be performed simultaneously
with the goal to identify all positive clones with a small number of tests. A
pooling design M can be represented by a binary incidence matrix where the
columns represent clones, the rows represent tests, and m;; = 1 if and only
if clone j is contained in the subset of test i.

Suppose M has t rows. Then the ¢ outcomes can also be represented by
a t-vector V = (v, -+ ,v;)", where v; = 1 if and only if the outcome of test
i is positive (v; = 0 otherwise). Note that V is the boolean sum of the set
of positive clones. Therefore it is convenient to view a column vector C' as
a subset S of the base set {1,2,--- ,t}, where ¢ € S if and only if C' has an
l-entry in row ¢. Then we can say that V' is the union of the set of positive
clones.

M is called d-disjunct if no union of any d columns covers another column.
A d-disjunct matrix not only identifies the up-to-d positive clones, but with
a simple decoding. Namely, a clone is positive if and only if it (as a column)
is contained by V. This is because a negative clone (column) has at least
one row not covered by the union of the up-to-d positive clones; such a row
then has a negative outcome which identifies the clone as negative. The
notion of d-disjunctness was first raised by Kautz and Singleton[11] in the
study of superimposed codes. It was also studied by Erdos, Frankl and
Fiiredi[5] under the name of d-cover-free family in extremal set theory. d-
disjunct matrices have become the most important tool in the construction
of deterministic pooling designs. Although many constructions have been
proposed, the existence of d-disjunct matrices is still sparse.

Macula [13] proposed a novel way of constructing d-disjunct matrices
which uses the containment relation in a structure. More specifically, let
[m] :={1,2,--- ,;m} be the base set. Then each of the n columns is labeled

TZ > , and each of the

( TZZ >rows is labeled by a (distinct) d-subset of [m|, where d < k < m.

by a (distinct) k£ subset of [m], assuming n < (



m;; = 1 if and only if the label of row ¢ is contained in the label of column
J. He proved that M is d-disjunct.

Huang and Weng [9] generalized the construction to arbitrary atomic
semi-lattice where the elements can be ranked. Again, label the columns by
a subset of the rank k elements and label the rows by all rank d elements,
d < k, then M is d-disjunct.

Ngo and Du [16] further extended the construction to some geometric
structures like simplicial complexes, and some graph properties like match-
ings. It is safe to say the ”containment matrix” method has opened a new
door for constructing d-disjunct matrices from many mathematical struc-
tures. However, the basic result in all these constructions is invariably that,
to obtain a d-disjunct matrix, use all rank d elements for rows.

One practical problem with this type of construction is that a large n
forces S to be large. Then the number of tests could be too large as there are
too many rank d elements. This led Macula [15] to propose using the rank
2 elements for rows, regardless of the real d. He showed that while there is
no guarantee to identify all positive clones, the probability of success is still
satisfactory when d does not deviate too much from 2. Ngo and Du made a
similar comment.

In this paper, we show that the containment matrix which use rank r
of elements for rows has the degree d of disjunctness, where r can be much
less than d. In fact r can be any number from 1 to & — 1 (k is the lever for
columns), while d < ¢" for some constant g. This is the first happy surprise.
Since we can choose r = 1, we also have better control on the number of
tests.

3 The error-correcting capability

Biological experiments are notorious for producing erroneous outcomes. There-
fore it would be wise for pooling designs to allow some outcomes to be af-
fected by errors. Macula[l4] proposed the notion of d°-disjunct to reflect
the error-correcting capability of a d-disjunct matrix. A d-disjunct matrix is
d°-disjunct if a column has at least e + 1 1-entries not covered by the union
of any other d columns. d°-disjunct would then be the regular d-disjunct.



In [10] it was misclaimed that a d°-disjunct matrix can correct e errors.
The argument was that if we try all subsets F of up to e columns as the
candidate set of errors and adjust the outcome set V to VU E, then when E
is the true error set, a positive clone C' must be contained in V' U E. On the
other hand, a negative clone C' has at least e+ 1 1-entries not covered by the
set of up to d positive clones, i.e., C' has at least e + 1 negative outcomes.
At most e of them can be converted to positive by errors, thus at least one
negative outcome is not covered by V. The problem of this argument is that
we need to show that C' has at least one negative outcome not covered by
V U E. The following is a counterexample.

Example 3.1. d =2, e = 1. Column 1 is the only positive clone while vs is
an error.

1 00 1
1 00 1
010 1
M=10910 V=10
0 01 0
0 01 0
When E = {4}, VUE = (1,1,1,1,0,0)" covers column 1 and 2.

Thus the correct version should be
Theorem 3.2. A d**-disjunct matriz is e-error-correcting.

Proof. For a positive clone C' the argument is as before that there exists a
candidate set E such that C CV U E.

A negative clone C has at least 2e + 1 1-entries not covered by the set D
of up to d positive clones, hence at least 2e 4+ 1 negative outcomes. e of them
may be converted to positive by errors and another e of them by E, but at
least one negative outcome is not covered by V U E. O

For the reason that a d°-disjunct matrix is not really e-correcting, and
also that d°-disjunct= d-disjunct, is kind of uncustomary, we propose to use
the term d*-disjunct while z is the minimum (over C') number of 1-entries in
C not covered by the union of any other d columns. Theorem 3.2 then can
be restated as



Theorem 3.3. A d*-disjunct matriz can detect z — 1 errors and correct
z—1
|

| errors.

In particular, a d-disjunct matrix has no error-tolerance.

If an extra round of confirmatory tests is allowed, then a d*-disjunct
matrix can indeed correct z — 1 errors. First, we need a lemma. Let H(X,Y)
denote the Hamming distance between two binary vectors X,Y of the same
length.

Lemma 3.4. Let M be a d*-disjunct matrix and let S; Ss be two distinct
subsets of columns with |S1| < d,|S2| < d. Let U; be the union of the set S;
for each 1 =1,2. Then

1. H{Uy,Us) > z if either S C Sy or Sy C Sy;

2. H(Uy,Us) > 2z if otherwise.
Proof. These are trivial by using the d*-disjunct property. O

Theorem 3.5. A d*-disjunct matriz corrects z—1 errors with an extra round
of at most d confirmatory tests.

Proof. Take all subsets S of columns of M with |S| < dand H(U,V) < z—1,
where U is the union of S. Let Sy, Sy be two such sets. The H(U;,Usy) <
2(z — 1) < 2z. By Lemma 3.4, either S; C Sy or Sy C ;. Therefore the set
{S} is a chain. Hence {S} has at most d members. Since H(D,V) <z —1,
D € {S}, D can be identified by testing at most d columns in the maximal
chain of {S}. O

Not many constructions of d*-disjunct matrices have been known. Macula
[14], and also see [10], gave a construction for d*, and recently Ngo and Du
gave a construction for d®'. We will show that the construction delivering
the first happy surprise mentioned in section 1 not only yields d-disjunct
matrices, but also d*-disjunct matrices with the z-value much greater than 4
or d + 1. This is the second happy surprise.

4 The construction

Consider the m-dimensional space, or simply m-space, of GF(q) where ¢ is

a prime or a prime power. Let { ZL } denote the number of k-dimensional

q
subspaces, or simply k-space. It is well known [12, p. 291]
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Lemma 4.1.

k (¢F =)(¢F1=1)---(¢—1)

KR

Definition 4.2. Fix integers 1 < r < k < m. Let M(m,k,r) be the 01-
matrix by taking all k-spaces (from an underlying m-space) as columns and
all r-spaces as rows. M(m, k,r) has a 1 in row ¢ and column j if and only if
7 is contained in j.

{ m } _ @ =D =D (g )

and

M(m, k,r) was first studied in [19] from a linear algebra point of view
and in [16] from a pooling design point of view. M (m, k,r) is easily checked
to be a ranked atomic semi-lattice, thus the matrix is r-disjunct, hence [9]
d?-disjunct for some 1 < d < r and

L { k—d }
| r—d
q
Note that the construction still requires the row rank r being at least as

large as the upper bound d of the number of positive clones. We now show
that r can be much less than d. First, we give a lemma.

Lemma 4.3.

R e R A e

iy

Proof.

_ (¢* — 1>(qk—1 —1)--- (qk;—r+1 —-1) B (qk—l _ 1>(qk—2 —1)--- (qk—T —1)
(@ =Dl =1 (¢=1) (¢ —D(g1=1)---(¢g—1)
(qk _ 1) o (qk—r o 1) . (qk—l o 1) . (qk—r—H o 1)

7 =1 a1

k—1

_ k—r

-4 {r—l}'
q



q(¢" ' —1)

Theorem 4.4. Suppose k—r > 2 and set p := ——
q T

1s d*-disjunct for 1 < d < p and

k—1 k—2
_ k—r o o k—r—1
== {r—lL (d—1)g {r—lL’

Proof. Let C,Cy,---,Cy be d + 1 distinct columns (k-spaces) of M. By

. Then M(m,k,r)

Lemma 3.1, C' contains [ , } r-spaces. To obtain the maximum coverage

q
of these r-spaces, we may assume that each C; intersects C' at a (k — 1)-space

by the observation
d

cnlJa=Jena).

i=1
Lk —
Then each C; covers . r-spaces of C'. However, the coverage of

q
each pair of C; and C; overlaps at a (k — 2)-space. Therefore only C covers

the full [ K ; 1 } r-spaces, while each of Cs,--- ,Cy; can cover a maximum
q

of [ k ;1 ] B [ k ; 2 ] r-spaces not covered by (). Consequently the
q q

number of r-spaces of C' not covered by C1,--- ,Cy is at least
k k—1 kE—1 k—2
Sl £ el e LU e e
q q q q
kE—1 k—2
_ k—r _ o k—r—1
- 4 {r—lL (d—1)q {r—lL'

Note that for M(m,k,r) to be d*-disjunct, z must be positive, which

implies
k—1
k—r
o]
q

k—2
k—r—1
q {r—l}
q

or d <p. O

d <

+ 1,

Suppose d < g+ 1. The following corollary shows the above z is optimal.

9



Corollary 4.5. Suppose k —r > 2 and 1 < d < q+ 1. Then M(m,k,r) is
not d*-disjunct, where z is as in Theorem 4.4.

Proof. We prove this by showing that a maximum coverage of r-spaces in
the proof of Theorem 4.4 is obtained. We reverse the arguments. Let U be
a (k — 2)-space contained in C. Then the number of (k — 1)-spaces between

U and C is
k—(k—2)

k—1-(k—2)| 9Tt

q

We choose d distinct ones among them, say T; (1 < i < d). For each T}, we
choose a k-space C; such that C N C; = T;. Hence each pair of C; and C}
overlaps at the same (k — 2)-space U. O

k
Lemma 4.6. Suppose r < 5 Then with referring to the definition of p in

Theorem 4.4, d = q" is the largest integer less or equal to p.

Proof. Note that ¢" ™' < ¢" < ¢*~". Hence

. (-1

P=¢ = “p=_7 ¢
_ ¢ —q—d"+d
qkfr_l
_ q(qr—l_l)
qk—r_l
r—1
o
q '
< 1.
Then p—1<q" <p. ]

Corollary 4.7. Suppose k—r > 2 andd = q". Then M(m, k,r) is d*-disjunct

with
k—1 , k—2
[,
q q

10



Proof. Setting d = ¢" in Theorem 4.4 and referring to Lemma 4.1, Lemma 4.3,

kE—1 k—2
_ k—r (T k—r—1
z =9 {T_l}q (¢" = 1g [ ]q

r—1
LA A e L i et
k

=[]l e

- ko]  h—(k—r) k—1 v k—2
o k—r q r +(¢" = 1) r
L dq L dq q
(k-1 . [k —2 ]
- k—r +(@ 1) r
L q L 449
k—1 - [ k—2 ]
- r—1 +{¢" = 1) T
L dq q

When r = 1, the z in Theorem 4.4 is in a neater form.

Corollary 4.8. Suppose k > 3, d < q and z = ¢*%(q — d + 1). Then
M(m, k,1) is d*-disjunct, but is not d***-disjunct.

Proof. Setting r = 1 in the z formula of Theorem 4.4, we obtain

IS S IR
2 = q l 0 q (d—1)q 0 q
= ¢ qg—d+1).

The second statement follows from Corollary 4.5. O

Example 4.9. Fiz ¢ = 5. Then M(8,4,1) is a 5**-disjunct matriz with
97656 rows and 200525284806 columns. This means that we can use around
10° pools with 25 errors allowed to determine the positives when the number
of items is around 2 x 10" with at most 5 positives.

11
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EQUIVALENCE OF THE ONE-RATE MODEL TO THE CLASSICAL
MODEL ON STRICTLY NONBLOCKING SWITCHING NETWORKS

W.R.CHEN AND F.K.HWANG* AND XUDING ZHUt

Abstract. In the one-rate(f) network, each link can carry up to f messages for some integer f.
The classical model is the special case when f = 1. We show that a network is strictly nonblocking
under the one-rate(f) model if and only if it is strictly nonblocking under the classical model.

Key words. Switching network, one-rate network, multirate network, graph coloring, flow,
strictly nonblocking

AMS subject classifications. 68M10, 15C15, 90B18

1. Introduction. A switching network consists of a set of nodes and a set of
(directed) links. Typically, an outlink of a node is the inlink of another node, and vice
versa. There are two special types of nodes: the inputs and the outputs. Each input
(output) is a node which has no inlink (outlink) and exactly one outlink (inlink).

We view a network as a directed graph G = (V, E), where each vertex is a node
and each edge is a link. The inputs and outputs are subsets I, O of V. To emphasize
the special roles of the inputs and outputs, we denote a network as G = (V, E,I,0). A
network is called acyclic if the directed graph G is acyclic, i.e., G contains no directed
cycles.

Let G = (V,E,I,0) and f a positive integer. The 1-rate(f) network, denoted by
(G, f), is a network G together with the capacity constraint that each edge can carry
up to f messages. If f = 1, then the 1-rate network (G, 1) is the classical model. In
other words, a classical model is a network in which each edge can carry at most 1
message. In this paper, we only consider 1-rate networks.

A traffic of (G, f) is a sequence of input-output pairs (Z,j), where i € I and
j € O. There are two types of traffics: requests and cancellations. A request is a pair
(i, ) neither of 7, has appeared in more than f — 1 previous uncancelled requests.
Namely, the pair requests a connection in the network. A cancellation is a previous
request whose connection in the network is to be removed. A request (i,75) is routed
if a directed i-j-path is chosen, without exceeding the capacity of the edges. So a
request (7,7) can be routed in the network (which has already routed many previous
requests) if and only if there exists a directed i-j-path each of whose edges has not
been used more than f — 1 times.

A state S of (G, f) is a collection of (not necessarily distinct) directed paths of
G joining vertices of I to vertices of O, such that each edge e is contained in at most
f directed paths. Given a state S, let S(e) denote the number of directed paths
containing e. Then 0 < S(e) < f. A state is blocking if there exists a vertex i € I and
j € O such that both ¢ and j are contained in fewer than f directed paths in S, and
every directed i-j-path of G contains an edge e with S(e) = f. We say that (G, f) is
strictly nonblocking if there is no blocking state.

*Department of Applied Mathematics, National Chiao Tung University, Research partially sup-
ported by ROC National science council grant NSC 91-2115-M-009-010 and the National Chiao Tung
University Lee-MTT center.

tDepartment of Applied Mathematics, National Sun Yat-sen University, Taiwan,
zhu@math.nsysu.edu.tw, Research partially supported by ROC National science council grant
NSC 91-2115-M-110-003.



2 W.R.CHEN, F.K.HWANG AND X. ZHU

The classical model is of course the dominating model in the study of switching
networks. Recently, the multirate network has received increasing attention due to
the popular attempt to integrate multimedia service into one network. Since the
theory of the classical model is well established, it is profitable to ask how much of it
can be extended to the multirate model. The 1-rate model is the simplest multirate
model, but also has its own application. It is used in the digital symmetrical matrices
in time-space switching [7, 10]. The principle of providing more links between two
nodes, known as statistical line grouping in [8], was promoted as a major technique
to cut down network blocking. On the other hand, strict nonblockingness is one of
the most fundamental property of a switching network. Therefore, asking whether
one model implies the other on this property can serve as a natural start to explore
the relation between the classical model and the multirate model. In this paper we
prove that if G = (V, E,I,0) is an acyclic network, then the strict nonblockingness
of a 1-rate network (G, f) is equivalent to that of the classical model (G,1).

2. Strictly nonblocking for (G, f) implies the same for (G,1). We first
prove the implication in one direction.

THEOREM 2.1. If (G, f) is strictly nonblocking for some positive integer f, then
(G, 1) is strictly nonblocking.

Proof. Tt suffices to prove that if (G, 1) has a blocking state, then (G, f) has a
blocking state. Suppose S is a blocking state of (G,1). Let S’ be the collection of
directed paths of G which is obtained by duplicating f times each directed path of
S. Then S’ is a state of (G, f) and for each edge e of G, S’(e) = f x S(e). As S'is a
blocking state of (G, 1), there is an input 4 € I and an output j € O such that none
of i,7 is contained in any directed path of S, and any directed i-j-path of G contains
an edge e with S(e) = 1. Then both of 7 and j are contained in no directed paths of
S', and every directed i-j-path of G contains an edge e with S’(e) = f. Therefore S’
is a blocking state of (G, f). O

In the remainder, we shall prove the other direction, i.e., if for some integer f > 1,
(G, f) has a blocking state, then (G, 1) has a blocking state. Let S be a blocking state
of (G, f). Then there exist i € I and j € O such that both 7, j are contained in at
most f — 1 directed path of S, and any directed i-j-path contains an edge e with
S(e) = f. We need to construct a blocking state S’ for (G,1). One may attempt to
partition the directed paths in S into f classes such that
(i) Directed paths which share an edge belong to different classes.

(ii) There exists a class C not containing any directed path with end vertex i or j.

If such a partition exists, then it is easy to verify that the class C' is a blocking
state of (G,1). However, such a partition may not exist. Consider the following
network: Fig. 1 shows an example of (G,2), where G is a simple digraph (a pair
of double links indicates a link carrying two paths). The collection of directed paths
S ={P., P, P3, Py} in Figure 1 is a blocking state for (G, 2), where input ¢ and output
j each has generated one path and hence a new request (4, 7) is legitimate. However,
it is impossible to partition the paths into 2 classes in such a way that directed paths
sharing an edge belong to different classes, because every two directed paths share
an edge. Thus to construct the blocking state S’ for (G, 1), we need to use directed
paths not contained in the collection S.

3. Strictly nonblocking for (G,1) implies the same for (G,2). In this
section, we consider the case f = 2.

THEOREM 3.1. Suppose G is acyclic. If (G,1) is nonblocking, then (G,2) is
nonblocking.



ONE-RATE MODEL SWITCHING NETWROK 3

. ~P
e
e e

Fic. 2.1. An ezample

Proof. Let S be a blocking state for (G,2). Thus there exist ¢ € [ and j € O
such that both ¢,j are contained in at most 1 directed path of S, and any directed
i-j-path contains an edge e with S(e) = 2.

We shall construct a blocking state for (G, 1). For each vertex v of G, denote by
E*(v) the outlinks of v, and by E~(v) the inlinks of v. Let E(v) = E*(v) U E~ (v).
Let

st)= Y Sle)=) IPNE* (),

e€E+(v) Pes

sw= 3 Se=3IPnE ()

e€E—(v) PesS

and

s(v) = st (v) + 57 (v) = Z |P N E(v)|.

PeS

Since each directed path P € S connects a vertex of I to a vertex of O, we conclude
that for each vertex v ¢ TU O, |[P N E*(v)| = |PN E~(v)|]. Hence s*(v) = s (v)
and s(v) = 2sT(v). Let By, ={e € E: S(e) = 1} and let E; = {e € E: S(e) = 2}.
Then s(v) = |E1 N E(v)| +2|E: N E(v)|. If v € (I U O), then s(v) is even, and hence
|Ey N E(v)| is even. Let G; = (V, Ey) be the subgraph of G induced by the edge set
E;. As each vertex of V — (I U O) has even degree in G, we can decompose G into
edge-disjoint union of (not necessarily directed) cycles and paths, say

E,=(P,UP,U---UP)U(CLUCU---UCy),

where each path Py connects two vertices of I UO. We color the edges of each Py, and
C} by two colors, a and b, as described below.

Given an undirected cycle (or a path), there are two choices for the positive
direction of the cycle (or path). If the cycle is drawn on the plane, then either
the clockwise direction, or the anticlockwise direction can be chosen as the positive
direction. For a path with end vertices ¢ and j, one can traverse the path from ¢ to
j, or from j to i. Once a positive direction is chosen, then those directed edges agree
with the positive direction of the cycle (or path) are called forward edges, and those
directed edges oppose the positive direction are called backward edges. Arbitrarily
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choose a positive direction of C; (or Py), and color the forward edges of C; (or Py) by
color a, and backward edges by color b.

Let E, C E; be the edges of color a and E, C E; be the edges of color b. Let
B, = E,UE; and By = Ey U Ey. Suppose v ¢ (I UO). Let i,(v) (respectively,
04(v)) be the number of inlinks (respectively, outlinks) of v of color a, and let i,(v)
(respectively, op(v)) be the number of inlinks (respectively, outlinks) of v of color b.

If Py (or C;) contains v, then either Py, (or C;) contains two inlinks or two outlinks
of v which are colored by distinct colors, or one outlink and one inlink of v which are
colored by the same color. Therefore

ia (V) + 04 (1) = 04 (V) + iy (v).
Let i(v) = |B> N E~(v)] and 05(v) = | B N E*(v)|. Then
5™ (1) = ia(v) + i5(v) + 2is(v)
and
st (v) = 04 (V) + 05(v) + 205(v).

As sT(v) = s7(v), we conclude that i,(v) +i2(v) = 0,(v) + 02(v) and ip(v) + i2(v) =
op(v) + 02(v).

Let H; be the directed subgraph of G induced by the edge set E, U Ey and Hs
the directed subgraph of G induced by the edge set Ey U E>. Then for each vertex
v & (I'UO), the number of inlinks of v in Hy is iq(v) + i2(v) and the number of
outlinks of v in Hj is 04(v) + 02(v). So the number of inlinks of v is equal to the
number of outlinks of v. As G is acyclic, H; is acyclic. Therefore H;, and similarly
H,, can be decomposed into directed paths joining vertices of I to vertices of O. For
k = 1,2, denote by Si the collection of directed paths which form a decomposition of
Hj,. For each edge e of G, 0 < Si(e) <1 and S(e) = Si(e) + S2(e). Moreover, both
i and j are not contained in any directed paths of Ss. As any directed i-j-path of G
contains an edge e with S(e) = 2, and hence Sy(e) = 1. Therefore S is a blocking
state of (G, 1). O

4. Strictly nonblocking for (G,1) implies the same for (G, f). In this
section, we prove that the strict nonblocking of the classical model implies the strict
nonblocking of the 1-rate(f) model for any f > 1. Our proof needs a result concerning
integer flows of graphs.

Let G be a directed graph. An integer flow of G is a mapping ¢ : E — Z which
assigns to each edge e € E an integer ¢(e) such that for each vertex v of G,

Yo osl= D dle).
)

ecE+(v) e€eE~ (v

An integer flow ¢ is called a non-negative k-flow if for each edge e, 0 < ¢(e) < k — 1.
Lemma 4.1 below is due to Little, Tutte and Younger [9].

LEMMA 4.1. For each nonnegative k-flow f of G, there exist k — 1 nonnegative
2-flows ¢ (t=1,2,---,k—1) such that ¢ = Zf;ll o

LEMMA 4.2. Suppose G is acyclic. If S is a state of (G, f), then there are f
states S1,Sa2,- -+, Sy of (G,1) such that for each edge e of G, S(e) = Ele Si(e).

Proof. Let S be a state of (G, f). Let G’ be the directed graph obtained from G
by identifying all the inputs and outputs, i.e., identifying all the vertices of I U O into
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a single vertex v*. We view S as a weight assignment to the edges of G'. It is easy to
see that for each vertex v of G',

Y. Se)= > S,
)

ecE+(v) e€eE~ (v
and for each edge of G',
0<S(e) < f.

Therefore S is a nonnegative (f + 1)-flow of G'. By Lemma 4.1, G’ has f nonnegative
2-flows S; (t = 1,2,---,f) such that S = f;ll S¢. Each nonnegative 2-flows S;
corresponds to a directed cycle, say Ci, of G'. As G is acyclic, each C; contains the
vertex v*. In other words, Each C} corresponds to a directed path of G joining a
vertex of I to a vertex of O. Thus each S; is indeed a state of (G, 1). O

THEOREM 4.3. If (G, 1) is strictly nonblocking then (G, f) is strictly nonblocking
for any f > 1.

Proof. Assume (G, f) is not strictly nonblocking and S is a blocking state of
(G, f). Then there exist i € I and j € O such that both 7 and j are contained in
fewer than f directed paths in S, and every directed i-j-path of G contains an edge
e with S(e) = f. By Lemma 4.2, there exists f states, S1,S2,---,Sy, of (G, 1) such
that for every edge e,

f
S(e) =) Sk(e).
k=1

As both ¢ and j are contained in fewer than f directed paths in S, there exists
1 < a,b < f such that ¢ is not contained in any path of S,, and j is not contained in
any path of Sp. If a = b, then S, is a blocking state of (S,1). Assume a # b. Then
Sa U Sp is a blocking state of (G, 2). By Theorem 3.1, (G, 1) has a blocking state. O

COROLLARY 4.4. Suppose G = (V,E,O,I) is an acyclic network. Then for any
positive integers f, f', (G, f) is strictly nonblocking is and only if (G, f') is strictly
nonblocking.

Proof. The strictly nonblocking of (G, f) is equivalent to strictly nonblocking of
(G, 1), for any integer f. Hence strictly nonblocking of (G, f) is equivalent to strictly
nonblocking of (G, f'). O

5. Some concluding remarks. Some other implications between the classical
model and the multirate model are available from the literature. These involve some
other notions of nonblockingness. A network is wide-sense nonblocking if every request
can be routed provided all routing follows a given algorithm. A network is rearrange-
ably nonblocking if all requests can be routed if they are given at once (instead of the
usual “sequential” model).

Let C(n1,ri,m,ns, ) denote the 3-stage clos network whose nodes are parti-
tioned into three stages (parts):

the first stage consists of r; nodes each with n; inlinks and m outlinks,

the second stage consists of m nodes each with r; inlinks and 7o outlinks,

the third stage consists of ro nodes each with m inlinks and ns outlinks ,
such that there exists a link from each stage-i node to each stage-(i + 1) node, but no
other links between two nodes.

Clos [4] proved
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LeEMMA 5.1. C(ni1,71, m,na,r2) is strictly nonblocking under the classical model
if and only if

m > min{n1 + no — 1,”17’1,”27’2}.

Hwang and Yeh, as reported in [6], proved a similar result under a model slightly
more general than the 1-rate(f) model, suppose each input has capacity fo, each
output has capacity f[;, each link between stage 1 and stage 2 has capacity f;, and
each link between stage 2 and stage 3 has capacity fs.

LeEmMA 5.2. C(ny,ri,m,ns, r2; fo, f[;, f1, f2) is strictly nonblocking if and only if

m> Lmin{nlfl,ngrng} — 1J N Lmin{nlrlfl,ngrg} -1

fo fo

]+1

By setting fo = f(’) = f1 = fo = f, we obtain
COROLLARY 5.3. C(ny,r;,m,na,rs) is strictly nonblocking under the 1-rate(f)
model if and only if

m > min{n; + ns — 1,n1ry,ners}.

Note that the conditions in Lemmas 5.1 and Corollary 5.3 are the same. Hence

THEOREM 5.4. For C(ni,r1,m,na,r2), strictly nonblocking under the classical
model implies the same for the 1-rate(f) model, and vice versa.

Benes [1] proved

LeEmMMA 5.5. C(n,2,m,n,2) is wide-sense nonblocking under the classical model
if and only if m > |22].

On the other hand, Fishburn et al. [5] proved

LEMMA 5.6. C(n,2,m,n,2) is wide-sense nonblocking under the 1-rate(f) model
if and only if m > [32].

By comparing Lemmas 5.5 and 5.6, we obtain

THEOREM 5.7. For C(n,2,m,n,2), wide-sense nonblocking under the classical
model does not imply the same for the 1-rate model.

Finally, Chung and Ross [3] proved

LEMMA 5.8. Rearrangeably nonblocking under the classical model implies the
same for the 1-rate(f) model.

For the other direction, only special cases have been proved. Slepian (see [1])
proved the following result (he ignored the terms mi7; and nsre which reflect the
boundary effects):

LEMMA 5.9. C(ny,r1,m,ne,rs) is rearrangeably nonblocking under the classical
model if and only if m > max{min{ny,nors}, min{n,ry,n2}}.

On the other hand, Hwang and Yeh, as reported in [6], proved

LeEmMA 5.10. C(ny,r1,m,ne,r2; fo, f[;, f1, f2) is rearrangeably nonblocking if and

only if

min{nlfl, n27“2f2} min{n1r1f1, anQ} }

fo ’ fo

m > max{

By setting fo = f(; = fi1 = f2, we obtain
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COROLLARY 5.11. C(ny,r1,m,na,r2) is rearrangeably nonblocking under the 1-
rate(f) model if and only if m > max{min{ny,nars}, min{nir;,na}}.

By comparing Lemma 5.9 and Corollary 5.11, we obtain

THEOREM 5.12. For the 3-stage Clos network, rearrangeably nonblocking under
the 1-rate(f) model implies the same for the classical model.

Note that all these results deal with the very special 3-stage Clos networks. Chung
and Ross, and us, are the only exceptions to attack the much harder general networks.

To Summarize, we have

classical l-rate(f) remark
proved
proved
not true
possible
proved
possible

strict
wide sense

rearrangeable

fenind
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