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Abstract

This project has proposed a recurrent
fuzzy neural network (RFNN) for identifying
and controlling nonlinear dynamic system.
The RFNN is inherently a recurrent
multi-layered connectionist network for
realizing the fuzzy inference and constructing
the dynamic fuzzy rules. The temporal

relations embedded in the network are
developed by adding feedback connections in
the 2" layer of the fuzzy neural network
(FNN). This modification results a smaller
network structure in applications. The RFNN
expands the basic ability of the FNN to cope
with tempora problems. In addition, results
for the FNN-fuzzy inference engine,
universal approximation, and convergence
analysis are extended to the RFNN. For the
control problem, we also presented the direct
and indirect adaptive control approaches
using the RFNN. Based on the Lyapunov
stability approach, rigorous proofs were
presented to guarantee the convergence of the
RFNN by choosing appropriate learning
rates.
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