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Robot Vision Servo Control and Calibration of the Camera System
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1 Abstract

This project presents a camera calibration
method and a novel visual servo control
scheme. The camera calibration method takes
into account the lens distortion and can reach
the reconstruction errors of about 0.2 mm. We
propose a criterion to measure the performance
of the depth estimation. which turns out to be a
control objective function. The proposed visu-
al servo control scheme has good performance
in both the depth estimation and the visual con-
trol.

Keywords: Robot Control, Visual Servo Con-
trol, Camera Calibration
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2 Introduction

In the literature, there are two types of the visu-
al servo controller: one isfeature-based method
[3, 4, 5, 9, 6, 8, 11] the other isposition-based
method[10]. The main distinction is the input.
The unknown depths are in the feature Jacobian

matrix of feature-based control, the depth esti-
mation is needed in visual servo control. Al-
though there have been several methods pro-
posed for the depth estimation, the popular one
is the extended Kalman filter (EKF) [10, 7, 12].

However, little attention has been paid to the
effect of the velocity of the camera on the depth
observability. Dayawansaet al. [1] proposed a
necessary and sufficient condition for the per-
spective observability problem.

In this project, we propose a criterion to mea-
sure the performance of the depth estimation.
which turns out to be a control objective func-
tion. We suggest to use the variance as an in-
dex for the performance of the depth estima-
tion. This index is also verified by simulations
and experiments as a rule of thumb for the per-
formance evaluation of the EKF, especially for
slow camera velocity. We then try to develop
a new visual servo control scheme by making
the index as small as possible while having lit-
tle effect on the control performance, so that the
depth estimation is improved. Finally, a simu-
lation example shows that the resulting control
scheme reaches this goal.

3 Performance Index for Depth
Estimation

Consider a pointP with coordinates(X,Y, Z)
with respect to the camera frameEXY Z . The
image of pointP projected onto the image
plane is denoted byp with coordinates(x, y, 0)
with respect toExyz. Let γx = fe/Sx and
γy = fe/Sy, whereSx, Sy are, respectively, the
horizontal and vertical lengths per pixel on the
camera sensing array.

Assume that the linear velocity and the an-
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gular velocity of the camera arev andω, re-
spectively, with respect toEXY Z . Let ξ ≡
[x, y, Z]T andu ≡ [vT , ωT ]T . The present
system is the nonlinear system of equations

ξ̇ = f(ξ,u) ≡ G(ξ)u (1)

ψ = h(ξ) ≡
[

1 0 0
0 1 0

]
ξ (2)

where

G(ξ) =

 J̄(ξ)

0 0 −1 −yZγy
xZ
γx 0


(3)

J̄(ξ) =−
γx
Z 0 x

Z
xy
γy −γ

2
x + x2

γx
γx
γy y

0 −γyZ
y
Z

γ2
y + y2

γy −xyγx −γyγxx


(4)

In the state vectorξ, x andy are the visual mea-
surements, so the only unknown is the depthZ.
Therefore, the state estimation of the system of
(1) and (2) is equivalent to thedepth estimation
for the given camera velocity.

Let the linear velocity of the camera be de-
composed into

v(t) = α1(t)v1(ξ) + α2(t)v2(ξ) + α3(t)v3(ξ)
(5)

where α1(t), α2(t), and α3(t) are bounded
functions oft, and

v1(ξ)=

−γx0
x

 , v2(ξ)=

 0
−γy
y

 , v3(ξ)=


x
γx
y
γy
1


(6)

Proposition 1: Consider the system of(1) and
(2) with inputu = [vT , ωT ]T . Suppose that the
variation rate of the depth is small enough that
the nonlinear depth estimator (such as the ex-
tended Kalman filter) can be approximated as
a linear least squares estimator. When the nor-
m of the linear velocity of the camera‖v(t)‖
is fixed, a largerJo(ξ,v) guarantees a faster
convergent rate of the depth estimation, where

Jo(ξ,v) = vTA(ξ)v (7)

in which

A(ξ) =
v1(ξ)vT1 (ξ)

q11
+

v2(ξ)vT2 (ξ)
q22

(8)

Sincev3 is orthogonal tov1 andv2, v3 is then
in the null space ofA(ξ).

4 Visual Servo Control

The results of the last section will be used to
design a visual servo control scheme. The con-
cept is to correct the linear velocityv of the
camera by increasingJo(ξ,v) as possible.

4.1 Control Scheme

First, we introduce the visual servo control
scheme with the damped least-squares method
(DLSM). Suppose that there aren feature
points (xi, yi). Applying (??) to n feature
points, we obtain

ḟ = Ju (9)

where the feature vectorf and the visual Jaco-
bian matrixJ are

f =



x1

y1
...
xn
yn

 , J =


J̄(ξ1)

...
J̄(ξn)

 (10)

Note thatJ ∈ R2n×6. The control purpose is to
design the velocity of the camerau, so that the
rate of change of the feature points in the image
of the camera follows the desired one.

The damped least-squares control scheme is
to minimize||Ju− ḟ∗||2 + ρ2

s||u||2, whereḟ∗ is
the feature velocity command andρs ∈ R is the
damping factor which represents the weighting
of ‖u‖2 with respect to the feature velocity er-
ror ‖ḟ − ḟ∗‖. The control commandu∗ is the
optimal solution

u∗ = (JTJ + ρ2
sI)−1JT ḟ∗ (11)

whereI is the identity matrix. A nonzeroρs
makes(JTJ+ρ2

sI) positive definite, even ifJTJ
is singular. Although this control scheme can
alleviate the singularity problem, the input ve-
locity u∗ may not help the performance of the
depth estimationZi, which is required by (4).
To compensate for this drawback, Proposition
?? motivates us to minimize the following ob-
jective functionJ (u):

J (u) = ‖Ju−ḟ∗‖2+ρ2
s‖u‖2−ρ

2
s

n

n∑
i=1

ρ2
oiJo(xi, yi,u)

(12)
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where
Jo(xi, yi,u) = uT Āiu (13)

Āi =
[

A(ξi) 0
0 0

]
∈ R6×6 (14)

in which A(ξi) is a matrix function defined in
(8) for theith point. The first two terms on the
right-hand side of (12) are those in the damped
least-squares method. The term ofJo(ξ,v) in
(12) is for improving the depth estimation. The
factorρoi is a weighting factor to compromise
the control error and the performance of the
depth estimation.

Since matrixA(ξi) is symmetric,Āi is or-
thogonally diagonalizable:Āi = UT

i ΛiUi,
whereΛi = diag(σi1, σi2, 0, 0, 0, 0) ∈ R6×6,
σi1 and σi2 are the positive eigenvalues of
A(ξi), andUi is an orthogonal matrix. Thus,
(13) is rewritten as

Jo(xi, yi,u) = uT (UT
i ΛiUi)u (15)

By calculus, we set∂J (u)/∂u = 0 to obtain
the optimal solutionu∗ to (12) as

u∗ = W−1JT ḟ∗ (16)

where

W = JTJ + ρ2
s

[
I− 1

n

n∑
i=1

ρ2
oi(U

T
i ΛiUi)

]
(17)

which is a positive definite symmetrical matrix
if ρ2

oi max{σi1, σi2} ≤ 1, ∀i = 1, · · · , n. We
shall call the control law (16) theobservabi-
lized damped least-squares method(abbreviat-
ed as ODLSM). Whenρ2

oi < 1/max{σi1, σi2},
∀i = 1, · · · , n, it follows from (12) thatJ (u) is
always positive.

Suppose the true values of depths can be ob-
tained by a depth estimator like the extended
Kalman filter in a few seconds. Thereafter,J
in (10) is approximately calculated by the esti-
mated values of depths. We can then expect that
the overall system is asymptotically convergen-
t. It is verified by the simulation described in
the following.

4.2 Simulation Example

The simulation example considers three image
points of the corners of a triangle pattern. The

initial image coordinates of three corners are lo-
cated at(10, 63), (90, 51), and(29, 153) in pix-
els and their real initial depths are all550 mm
but unknown in this simulation. The desired
image has three corner images at(−50,−68),
(50,−68), and(−50, 43) in pixels. Note that
the final depths are all450 mm correspond-
ing to the desired image feature. Suppose that
the estimates of the initial depths arêZ1 =
595 mm, Ẑ2 = 599 mm, andẐ3 = 596 m-
m, i.e., the initial estimation errors are about
50 mm. The intrinsic parameters of the cam-
era are as follows: the effective focal length
fe = 16.53 mm, the horizontal length per pix-
el Sx = 0.0161 mm/pixel, and the vertical
length per pixelSy = 0.0189 mm/pixel. The
noise covariance matrices in EKF areR =
diag(0.25 pixel2, 0.25 pixel2), and Q =
diag(0.25 pixel2, 0.25 pixel2, 252 mm2).
Both DLSM and ODLSM controllers (see (11)
and (16)) have the same following data: the
sampling periodTs = 200 ms, the propor-
tional gainKp = 0.65, the damping factor
ρs = 0.003, and the weighting factorρoi =
0.9/max{σi1, σi2}, i = 1, 2, 3, for each corner.

The history of the error norm of the estimat-

ed depths, i.e.,
√∑3

i=1(Zi − Ẑi)2/3, in Fig. 1(a)
reveals that the depth estimation in ODLSM
controller is superior to that in DLSM con-
troller. The steady-state error of the depth es-
timate in DLSM is about7 mm, while that in
ODLSM nearly vanishes for the same EKF es-
timator.

The feature errors in both the ODLSM and
DLSM are almost the same and converge to ze-
ro as is shown in Fig. 1(b). That means using
a moderate smallρoi in ODLSM affects little
the convergence performance of the visual ser-
vo control.

Consequently, the advantage of the ODLSM
is that a good depth estimate can be achieved
while the convergence performance is retained.

5 Conclusion

This project presents a depth estimation criete-
rion and a novel visual servo control scheme. A
simulation shows that using the proposed con-
trol scheme the improvement of the depth es-
timation is achieved without any sacrifice of
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Fig. 1: (a) The norm of the depth estimation
errors, (b) The norm of the feature feedback er-
rors by DLSM and ODLSM.

the convergence performance. Due to limit
of space, the result of the camera calibration
method is omitted.
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