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Robot Vision Servo Control and Calibration of the Camera System

& 4% NSC89-2213-E-009-216

AT HA

8948AH18 29047AH31H

EFAD HRGHEHIKR RBAZEREEN A

HESHEANR
1 Abstract
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matrix of feature-based control, the depth esti-
mation is needed in visual servo control. Al-

This project presents a camera calibrationhough there have been several methods pro-
method and a novel visual servo controlposed for the depth estimation, the popular one
scheme. The camera calibration method takes the extended Kalman filter (EKF) [10, 7, 12].
into account the lens distortion and can reach Howeuver, little attention has been paid to the
the reconstruction errors of about 0.2 mm. Weeffect of the velocity of the camera on the depth
propose a criterion to measure the performancgbservability. Dayawanset al. [1] proposed a

of the depth estimation. which turns out to be enecessary and sufficient condition for the per-
control objective function. The proposed visu-spective observability problem.

al servo control scheme has good performance |n this project, we propose a criterion to mea-
in both the depth estimation and the visual consure the performance of the depth estimation.

trol.

Keywords: Robot Control, Visual Servo Con-

trol, Camera Calibration
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2 Introduction

In the literature, there are two types of the visuwith respect toE,,..

which turns out to be a control objective func-
tion. We suggest to use the variance as an in-
dex for the performance of the depth estima-
tion. This index is also verified by simulations
and experiments as a rule of thumb for the per-
formance evaluation of the EKF, especially for
slow camera velocity. We then try to develop
a new visual servo control scheme by making
the index as small as possible while having lit-
tle effect on the control performance, so that the
depth estimation is improved. Finally, a simu-
lation example shows that the resulting control
scheme reaches this goal.

3 Performance Index for Depth
Estimation

Consider a poinf® with coordinateg X, Y, Z)
with respect to the camera franiey, ;. The
image of point P projected onto the image
plane is denoted by with coordinategz, y, 0)
Let v, = f./S. and

al servo controller: one igature-based method ~, = f./S,, whereS,, S, are, respectively, the
[3,4,5,9, 6, 8, 11] the other gosition-based horizontal and vertical lengths per pixel on the
method[10]. The main distinction is the input. camera sensing array.

The unknown depths are in the feature Jacobian Assume that the linear velocity and the an-



gular velocity of the camera areandw, re- 4 Visual Servo Control
spectively, with respect td&’yy . Let & =
[z, y, Z]7 andu = [v7, w7]T. The present The results of the last section will be used to

system is the nonlinear system of equations design a visual servo control scheme. The con-
- cept is to correct the linear velocity of the

§=1£(&u) = G(Eu (1) camera by increasing, (¢, v) as possible.
1 00
v-n@=], ) e @
4.1 Control Scheme
h : : .
where _ First, we introduce the visual servo control
G(¢) = J(f)Z scheme with the damped least-squares method
00 —1 —%—y % 0 (DLSM). Suppose that there are feature
(3) points (z;,;). Applying (??) to n feature
J(¢) = points, we obtain
2 2
L r Ty T % P
7 0 7 Vs 7 7Y f=Ju 9)
2 2
0 Y oy WTY  _xy .| where the feature vectdrand the visual Jaco-
Z Z Yy Yz Va

(4) bian matrixJ are

In the state vectf, » andy are the visual mea- [z ]

surements, so the only unknown is the depth J
. . Y1 (&)
Therefore, the state estimation of the system of

(1) and (2) is equivalent to thaepth estimation f= R v (10)
for the given camera velocity. Ln J(&,)
Let the linear velocity of the camera be de- N

composed into Note that] € R2"*¢. The control purpose is to

v(t) = ai(t)vi(€) + aa(t)va(€) + as(t)vs(§)  design the velocity of the cameta so that the
(5) rate of change of the feature points in the image

where a4 (t), as(t), and as(t) are bounded of the camera follows the desired one.

functions oft, and The damped least-squares control scheme is
4 tominimize||Ju — £*||? + p?||u||?, wheref* is

“a 0 Tz the feature velocity command apd € R is the
Vi€ { 0 ] » V2(€)= {7@/] » Va(€)= % damping factor which represents the weighting
L Yy 1 of ||[u|? with respect to the feature velocity er-

(6) ror ||f — f*||. The control commana* is the

Proposition 1: Consider the system ¢f) and  optimal solution

(2) withinputu = [vT, wT]T. Suppose that the ,

variation rate of the depth is small enough that ut = (J'T+ p21) 1 (11)

the nonlinear depth estimator (such as the ex- _ _ _ )

tended Kalman filter) can be approximated agVNerel is the identity matrix. A nonzerg,

g Y - s
a linear least squares estimator. When the norMakes(J™ J+,.1) positive definite, evenif™ J

m of the linear velocity of the cametty(t)]| is singular. Although this control scheme can

is fixed, a larger.7, (€, v) guarantees a faster alleviate the singularity problem, the input ve-

convergent rate of the depth estimation, wherelOC1y u" may not help the performance of the
depth estimatior;, which is required by (4).

To(&,v) =vIA(E)v (7)  To compensate for this drawback, Proposition
in which ?? motivates us to minimize the following ob-
T T jective function7 (u):

2 n
% Ps
J(u) = [[Ju—f H2+prUHQ—gZpiijo(%yi,U)

Sincevs is orthogonal tov, andvs, vs is then —
in the null space oA (&). | (12)



where initial image coordinates of three corners are lo-
To(xi,yi,u) = ul Au (13) cated at10, 63), (90,51), and(29, 153) in pix-
) A(£) O els and their real initial depths are 460 mm
A = [ i 1 e R (14) but unknown in this simulation. The desired
0 0 image has three corner images(at;0, —68),
in which A(¢,) is a matrix function defined in (50, —68), and(—50,43) in pixels. Note that
(8) for theith point. The first two terms on the the final depths are all50 mm correspond-
right-hand side of (12) are those in the dampedhg to the desired image feature. Suppose that
least-squares method. The termpf¢,v) in  the estimates of the initial depths afg =
(12) is for improving the depth estimation. The595 mm, Z; = 599 mm, andZ; = 596 m-
factor p,; is a weighting factor to compromise m, i.e., the initial estimation errors are about
the control error and the performance of the’0 mm. The intrinsic parameters of the cam-
depth estimation. era are as follows: the effective focal length
Since matrixA (¢,) is symmetric,A; is or-  f. = 16.53 mm, the horizontal length per pix-
thogonally diagonalizable:A; = UTA;U;, el S, = 0.0161 mm/pixel, and the vertical
where A; = diag(o;1,0:2,0,0,0,0) € R%6, length per pixelS, = 0.0189 mm/pixel. The
o4 and o, are the positive eigenvalues ofnoise covariance matrices in EKF aRe =
A(¢,), andU; is an orthogonal matrix. Thus, diag(0.25 pixel®, 0.25 pixel’), and Q =
(13) is rewritten as diag(0.25 pixel?, 0.25 pixel?, 25 mm?).
Both DLSM and ODLSM controllers (see (11)
To(wi,y5,u) = u’ (U A, Uju (15) and (16)) have the same following data: the
sampling period7; = 200 ms, the propor-
By calculus, we se?7 (u)/0u = Otoobtain  tional gain K, = 0.65, the damping factor

the optimal solutioru™ to (12) as ps = 0.003, and the weighting factop,; =
i} T 0.9/ max{o;1,0}, i = 1,2, 3, for each corner.
u=WoJf (16) The history of the error norm of the estimat-

ed depths, i.e/S"3 | (Z; — Z:)?/3,inFig. 1(a)
reveals that the depth estimation in ODLSM
T 9 1SN 5 o controller is superior to that in DLSM con-

W=J 4+ 1= n ;poi(Ui AiU) troller. The steady-state error of the depth es-
- (17) timate in DLSM is abou” mm, while that in

which is a positive definite symmetrical matrix ODLSM nearly vanishes for the same EKF es-

if p%, max{o;,00} < 1,Vi = 1,---,n. We timator.

shall call the control law (16) thebservabi- The feature errors in both the ODLSM and

lized damped least-squares meti{allbreviat- DLSM are almost the same and converge to ze-

ed as ODLSM). Whep?, < 1/ max{c;1,0:2}, ro as is shown in Fig. 1(b). That means using

Vi=1,--- n,itfollows from (12) that7(u) is a moderate smal,; in ODLSM affects little

always positive. the convergence performance of the visual ser-

Suppose the true values of depths can be olyo control.

tained by a depth estimator like the extended Consequently, the advantage of the ODLSM

Kalman filter in a few seconds. Thereaftdr, is that a good depth estimate can be achieved

in (10) is approximately calculated by the esti-while the convergence performance is retained.

mated values of depths. We can then expect that

the overall system is asymptotically convergen- ]

t. It is verified by the simulation described in 5 Conclusion

the following.

where

This project presents a depth estimation criete-
rion and a novel visual servo control scheme. A
simulation shows that using the proposed con-
The simulation example considers three imagé&ol scheme the improvement of the depth es-
points of the corners of a triangle pattern. Theaimation is achieved without any sacrifice of

4.2 Simulation Example
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