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Simulations of an Internal 
Model-Based Active Noise 
Control System for Suppressing 
Periodic Disturbances 
This study proposes an active noise control algorithm using the internal model princi­
ple. The structure of the noise is built in the transfer function of the controller in the 
unity feedback configuration. This method is particularly effective in suppressing 
periodic disturbance in .ipite of its simplicity. Perfect disturbance rejection at selected 
frequencies is achieved by the infinite loop gain of the system. A simulation was 
performed to investigate the internal model-based algorithm. The guidelines of choos­
ing the control parameters with reference to a robust stabilization theory are summa­
rized. 

Introduction 
Many kinds of noises fall into the category of periodic distur­

bances because a great majority of machinery is either rotary 
or reciprocating. Examples are the low-frequency noises from 
internal combustion engines, compressors, blowers, air condi­
tioners, electrical motors, and so forth. Traditional means of 
noise control such as sound-absorbing materials and mufflers 
are effective in only moderate and high frequency ranges (say 
above 500 Hz). The inability of traditional methods in attenuat­
ing low-frequency noises is what makes the active noise control 
(ANC) techniques attractive (Nelson and Elliot, 1992). In 
viewing the control algorithms, the LtVIS method and its variants 
have been prevailing in ANC community (Elliot and Nelson, 
1993). Some state-of-art feedback ANC methods have been 
developed for dealing with periodic disturbances (Forsythe et 
al., 1991; Eriksson, 1991; Elliott and Nelson, 1993). This study 
proposes an alternative active noise control algorithm by using 
the internal model principle. The structure of the noise is built 
in the transfer function of the controller in the unity feedback 
configuration. This method is particularly effective in sup­
pressing periodic disturbance in spite of its simplicity. 

The internal model principle has been successfully applied 
to many areas. To name a few, Francis and Wonham (1975) 
developed a control algorithm on the basis of the internal model 
principle for multivariable regulators. This algorithm was im­
plemented on a repetitive controller to suppress the vibration 
of the read/write head of a disk drive (Chew and Tomizuka, 
1990a). Yamamoto et al. (1988) applied the internal model 
principle to servo control design and obtained excellent asymp­
totic tracking performance. Shaw and Srinivasan (1993) found 
the possibility of a simplified controller tuning procedure by 
using the internal model principle. Chew and Tomizuka 
(1990b) solved the infinite gain problem in the repetitive control 
design. 

In this study, the internal model principle is applied to control 
the one-dimensional plane wave field in a duct. The optimal 
controller coefficients are determined by the sequential qua­
dratic programming method. In addition, the effects of control 
parameters are analyzed by using the theory of robust stabiliza­
tion. Simulations are conducted to validate the developed 
method. 
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1995. Associate Technical Editor: G. Koopmann. 

The Internal Model-based ANC Algorithm 
Consider a duct driven at one end with an acoustic source, 

as shown in Fig. 1. A loudspeaker is used as an actuator to 
attenuate the noise at the microphone position. The residual field 
detected by the microphone is then fed back to the controller to 
drive the loudspeaker. The entire ANC system forms a unity 
feedback regulator system, as shown in Fig. 2. The plant that 
consists of the loudspeaker, the secondary acoustic path, and 
the microphone is described by the transfer function G{s) = 
N(s)/D(s) between the input signal to the loudspeaker and the 
output signal from the microphone, where the polynomials N(s) 
and D(s) are coprime. That is, G(s) completely characterizes 
the plant and is irreducible (Chen, 1984). On the other hand, 
the controller is described by the transfer function C(,y) = 
Nei,'i)lD,.(s), where the polynomials Nds) and D,.(,?) are co-
prime. The signals r(t), e{t), u{t), y(t), and w(t) represent 
the reference input, the error, the actuator input, the measured 
output, and the primary noise, respectively. Our goal is to cancel 
the primary noise such that the residual field y(t) at the micro­
phone position is zero below the cutoff frequency of the duct 
(Pierce, 1981). This is essentially a one-dimensional ANC 
problem since only the plane wave modes are of concern. 

First, a brief review following the same line of Chen (1984) 
on the internal model principle is given. Assume that the La­
place transform of the primary disturbance w(t) is 

W(.i) = Llw(t)] = 
D..(s) 

(1) 

where the polynomial D„(s) is known and the polynomial 
N,^(s) is arbitrary so long as W(.^) is proper. That is, the struc­
ture of the disturbance is assumed to be known a priori. Let 
(fi(s) be a polynomial containing the unstable poles of W{s). 
As the name of the internal model principle suggests, we incor­
porate ip(s) into the controller transfer function such that D^is) 
= Do{s)ip{s). With some manipulations, it can be shown that 

F(5) = 
Do(.^)D(.'!)NM) ip(s) 

Do(s)^(s)D(s) + NAs)N(s) DM) 
(2) 

If no root of ip(s) is a zero of the plant G(s), the system can 
be proved to be controllable and observable, i.e., the polynomi­
als N{s) and D(s)(p(s) are coprime. Consequently, there exists 
a compensator C(s) = Nc(s)/Dc(.^) such that the unity feedback 
system is asymptotically stable or, equivalently, all roots of 
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Fig. 1 Schematic diagram of the internal model-based ANC system for 
a duct 

Df(s) A Do(s)ip{s)D(s) + NAs)N(s) (3) 

have negative real parts. In Eq. (2), all the poles of l'(j') have 
negative real parts since all unstable poles of D„(i) have been 
canceled by (p(s). Hence, the employment of the internal model 
is to create the required numerator to cancel the undesired 
modes, provided the structure of the disturbance is known. 
Then, we have y(t) = -e(t) -» 0 as f -> oo. We see that even 
though w(t) does not go to zero as ?-><», its effect on y(t) 
diminishes as f -> <». The internal model-based controller has 
thus achieved asymptotic stability and disturbance rejection. 
Alternatively, we can arrive at the same conclusion by noticing 
that the loop gain is infinite at the frequency of the disturbance 
and perfect noise rejection results. 

Some cautions regarding the use of the internal model princi­
ple are in order (Chen, 1984). First, if we have no knowledge 
whatsoever about the nature of the noise, then it impossible to 
achieve disturbance rejection. Second, the internal model design 
is robust with respect to parameter perturbation, while the per­
turbation of ip{s) is not permitted. Finally, the condition that 
no root of ip(s) is a zero of the plant G(s) is crucial. Otherwise, 
if any unstable root of ip{s) is a zero of G{s), then the root 
becomes a hidden mode and will not be affected by any compen­
sation. Hence, the unity feedback system can never be asymptot­
ically stable because of unstable pole-zero cancellation. 

The internal model principle is readily applied to the problem 
of rejecting periodic noises which are the major concern of this 
study. Since every period noise can be treated as the superposi­
tion of sinusoids, we begin with the analysis of only a single-
frequency component. The Laplace transform of a sinusoid of 
frequency UJ„ is 

W(s) = ^l 
+ OJI 

(4) 

By the internal model principle, the controller can be chosen 
to be 

C(s) = 
DAs) S^ + Ull 

(5) 

such that the unstable poles s = ±juj„ on the imaginary axis can 
be canceled to reject the sinusoidal disturbance. In the controller 
formulation, the polynomial Dois) is chosen to be unity for 
convenience. In addition, the poles of the closed-loop systems, 
or the roots of Df(s) in Eq. (3) , must be in the left-half i-plane 
to ensure stability. This imposes a constraint on the polynomial 
N,{s). 

For an arbitrary periodic noise containing the Fourier compo­
nents at the frequencies to,, uij, •••, uj„, the. above-mentioned 
internal model-based controller for a single frequency can be 
generalized into 

C(s) = ^ = KNA^) i 
1 

where K is the controller gain 

s' + uji 
(6) 

On the other hand, the discrete-time version of the controller 
in Eq. (6) would be useful if we are interested in digital imple­
mentation. 

C(z) = 
K(z) 

Iz COS (a;„r) + 1 
(7) 

where T is the sampling period. For an arbitrary periodic noise 
containing the Fourier components at the frequencies u)\, u^, 
. . . , Wm, the digital controller takes the form 

C{z) = KNXz) S — 
1 

iz cos (w„r) -I-1 
(8) 

It should be noted that the gain parameter K and the polynomial 
A'c(z) must be chosen so that the resulting closed-loop system 
is stable. That is, the discrete version of Eq. (3) 

D / 2 ) = D ( z ) n 
1 

z^-2zcos(a;„7 ' )+ 1 
+ KNXz)N{z) (9) 

must have all of the roots inside the unit circle. 

| \ , | < 1, i = 1,2, . . . , p . (10) 

where p is the degree of Df(z). 
In addition to stability, performance is another important in­

gredient of the controller design. Although the internal model-
based controller provides perfect steady-state disturbance rejec­
tion, one might be concerned with the settling time of the con­
troller, especially in the cases of frequency-tracking. This leads 
to a min-max problem in which the farthest closed-loop pole 
to the origin (in z-plane) is to be minimized: 

min max | \ , | 

St. max I \, I < 1 (11) 

To solve the above constrained optimization problem, the 
sequential quadratic programming (SQP) method was em­
ployed in this study. In this method, a quadratic programming 
subproblem is solved at each iteration by incorporating not 
only the gradient but also the second order information (the 
Hessian). An estimate of the Hessian of the Lagrangian is then 
updated at each iteration, followed by a line search using a 
merit function. The details of the algorithm can be found in the 
text by Aurora (1989). Since the optimization procedure is 
based on the dominant pole criterion of a second order system, 
it is sometimes possible to fine-tune K and Ndz) by the root 
locus method (FrankUn, 1994). 

Numerical Simulation 

A numerical simulation was carried out to validate the inter­
nal model-based ANC algorithm. The synthetic plant is chosen 
to be 

internal model-
based controller 

w(t) 

plant 

r(t) = 0^ e(t) 

+ i i 
C(s)= 

Nc(s) 
Dc(s) 

u(t). 
G(s)= 

N(s) 
D{s) a ->-y(t) 

Fig. 2 Blocl( diagram of the internal model-based control system with 
unity feedbacl( 
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Table 1 The closed-loop poles and zeros of a digital internal model-
based controller (without damping) 

: pole 

-0.3010±j0.9272 

0.2405±j0.9253 

0.8198±i0.5308 

0.6067±j0.3651 

0.8202 

-0.1924 

zero 

0 

0 

-0.3090±j0.9511 

0.3090±j0.9511 

0.8090+J0.5878 

0.8619±j0.1896 

G{s) = 
Q' 

+ 2;ni- + a 
•exp(-Tjs), (12) 

where the second order term is used to model the loudspeaker 
and the pure time delay term is used to model the plane wave 
propagation in an infinite-length duct. Let Q = 250 rad/sec, ^ 
= 0.5, and T,, = 0.002 sec, then Eq. (12) becomes 

Gis) 
62500 

s^ + 250i + 62500 
exp(-0.002i) , (13) 

which is then discretized by zero-order-hold operation to obtain 
a digital equivalent. 

Suppose that the periodic noise contains three sinusoids of 
unity amplitude at the frequencies 100, 200, and 300 Hz. The 
first step consists of choosing a controller in the form of Eq. 
(9) with the internal model of the disturbance built in. Next, 
the polynomial Ndz) can be arbitrarily set to be, for example, 

1.5 2 
frequency (rad/sec) 

Fig. 3 Magnitude of the sensitivity function of the closed-loop system 
when the damping factor has not been Introduced into the internal 
model-based controller 

There is always discrepancy between the physical plant and 
the mathematical model because of some unmodeled dynamics 
in the system. The question regarding the robustness of the 
internal model-based controller will naturally arise. Namely, 
what is the ability of the controller in coping with plant uncer­
tainty? This question can be answered by the following robust 
stability theorem (Doyle et al., 1992). 

N,(z) = a,z^ + a^z'' + flsz' + a2Z^ + UiZ + ao. (14) Theorem 

The sampling period is chosen to be 1 msec for the digital 
controller. Solving the constrained optimization problem in Eq. 
(11) yields the following digital controller: 

C{z) = 0.371 

z' + 4.0367Z'' - 8.7648z^ + 2.7239z' + 7.6618z - 6.5555 
^ z"- 1.618z' + 2.618^" - 2.618z' + 2.618z' - 1.618z + 1" 

(15) 
The closed-loop poles and zeros corresponding to the controller 
in Eq. (15) are shown in Table 1. All the poles are stable and 
the farthest one to the origin is 0.8198 ± ;'0.5308. 

For the controller in Eq. (15), it is informative to calculate 
the sensitivity function which equals the frequency response 
from the disturbance to the output of the unity feedback system 
(Franklin, 1994). 

Sie''^') A 
1 

1 + G{e''^')C(e''^') ~ WieJ'^') 
(16) 

The result of the sensitivity function of the closed-loop ANC 
system is shown in Fig. 3. Three sharp dips can be seen at the 
selected frequencies 100, 200, and 300 Hz. Perfect disturbance 
rejection is achieved owing to nearly zero sensitivity values at 
these three frequencies. 

It can be verified by, for example, the root locus method, 
that the system is stable for 0 s A" < 0.577, where all the 
closed-loop poles stay inside the unit circle. Beyond K = 0.577, 
the system will become unstable. 

Let Go(s} be the transfer function of a stable nominal plant 
and Gpis) be the transfer function of the perturbed plant. As­
sume that the plant uncertainty can be described by Gp(s) = 
[1 + AW2is)]GQis), | A | s 1. The controller in the unity 
feedback system will provide robust stability, i.e., it will stabi­
lize every perturbed plant Gpis), if and only if ||W2r|| < 1, 
where T{s) = 1 - S(s) being the complementary sensitivity 
function. 

Note that the above condition is not only a sufficient but also 
a necessary one. In the simulation, the perturbation of the pure 
time delay is used as the major type of plant uncertainty. Other 
types of uncertainty can be similarly discussed. For the control­
ler in Eq. (15), the allowable range of pure time delay in the 
plant predicted by the above robust stability theorem is 0.00140 
< T„ < 0.00251. 

Next, a technical adjustment concerning the implementability 
of the controller should be addressed. The internal model-based 
controller is essentially an unstable controller with the poles 
on the imaginary axis. An unstable controller is typically not 
acceptable because of the difficulty in testing either the control­
ler by its-self or the system in open-loop during a bench check­
out. To alleviate the problem, a damping factor is introduced 
into the controller. That is. 

CAz) = K,NUz) n 
1 

z^-2e-"'^zcos{ui„T) + e-
(17) 

With this modification and employment of the previous optimi­
zation procedure, the digital controller becomes 

CAz) = 0.3124-
z ' + 4.0367?" - 8.7648z' + 2.7239z' + 7.6618z - 6.5555 
1.6108z' + 2.5946Z* - 2.5829z' + 2.5713z' - 1.5820z -t- 0.9734 

(18) 
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Fig. 4 Magnitude of the sensitivity function of the closed-loop system 
wiien tile damping factor has been introduced into the internal model-
based controller 

200 250 300 
frequency (Hz) 

Fig. 5 The pressure power spectrum of the noise field at the microphone 
position before and after active control has been activated for Case 1. 
Before control: -.-; after control: —. 

The sensitivity function of the closed-loop system using the 
controller in Eq. (18) is shown in Fig. 4. The major difference 
after the introduction of the damping factor, as one may com­
pare the sensitivity functions in Figs. (3) and (5), is that the 
sensitivity value is no longer ideally zero at the frequencies of 
the exciting sinusoids. This implies that the ability of the ANC 
system in rejecting periodic disturbance will not be as good as 
before when the damping factor is not incorporated into the 
controller. Nevertheless, the tolerance against plant uncertainty 
is improved. In light of the robust stability theorem, the allow­
able range of pure time delay in the plant for the controller in 
Eq. (18) can be found to be 0.00116 < T,, < 0.00261 which 
is wider than the one without the damping factor. In addition, 
the range of the gain parameter can be shown to be 0 < ^ < 
0.5891 for the ANC system with the damping factor to remain 
stable. This is an improvement over the controller without the 
damping factor. This analysis of robust stability reveals a classi­
cal tradeoff between the performance and the stability of control 
systems. 

To justify the internal model-based controllers in Eqs. (15) 
and (18), simulation cases of different operating conditions are 
employed in a numerical experiment. Five simulation cases are 
shown in Table 2. Case 1 is the reference case, where no pertur­
bation is present in the plant and the internal model. The result 
obtained by using the controller in Eq. (15) is shown in Fig. 
5. This case represents the ideal situation of noise rejection, 
where the attenuation is approximately 200-300 dB for the 
tones, by using the internal model-based controller. In practical 
applications, reasonable deviation from the ideal case such as 
the perturbation of the plant, the inaccuracy of the internal 

Table 2 Simulation case design 

case 

1 

2 

3 

4 

5 

frequencies 6f 

siiiusoids (Hit)-

100+200+300 

101+202+303 

100+200+300 

100+200+300 

110+220+330 

plant time delay 

(second) 

0.002 

0.002 

0.00253 

0.00253 

0.002 

sampling rate 

(kHz) 

1 

1 

1 

1 

1 

digital 

controller 

Eq.(15) 

Eq. (15) 

Eq. (15) 

Eq. (18) 

Eq, (15) 

model, and the implementability of the controller should be 
accommodated. 

In Case 2, the effect of the inaccuracy of the internal model 
is investigated. Suppose that 1 percent perturbation of the exci­
tation frequencies is present in the internal model. As can be 
seen in the result of Fig. 6, the performance of noise rejection 
is degraded, where the attenuation is within 30 dB for the tones. 
This confirms the remark made previously that the internal 
model must be perfect for robust design. However, this does 
not mean the internal model principle is only of theoretical 
interest. In the practical design, if the internal model is not 
employed, the result will be even worse. 

Case 3 shows the effect of plant uncertainty. Assume that 
the pure time delay of the plant is 0.00253 seconds in stead of 
0.002 seconds as in the reference Case 1. In this case, the ANC 
system is driven into the unstable state. The perturbed pure time 
delay in the plant is not in the range of stability as predicted by 
the robust stability theorem: 0.00140 seconds < T,, < 0.00251 
seconds. 

100 150 200 250 300 350 400 450 500 
frequency (Hz) 

Fig. 6 The pressure power spectrum of the noise field at the microphone 
position before and after active control has been activated for Case 2. 
Before control: -.-; after control: —. 
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Fig. 7 The pressure power spectrum of the noise field at the microphone 
position before and after active control has been activated for Case 4. 
Before control: -.-; after control: —. 

100 150 200 260 300 350 400 450 500 
frequency (Hz) 

Fig. 8 The pressure power spectrum of the noise field at the microphone 
position before and after active control has been activated for Case 5. 
Before control: -.-; after control: —. 

The internal model-based controller is essentially unstable 
because of its purely imaginary poles. In order to avoid the 
difficulty during the implementation stage, a damping factor 
can be introduced into the controller. Case 4 explores the effect 
of plant uncertainty when the damping factor is incorporated 
into the controller. Similar to Case 3, assume that the pure time 
delay of the plant is 0.00253 seconds in stead of 0.002 seconds 
as in the reference Case 1. The response after the ANC system 
is activated is shown in Fig. 7. Stability has been improved by 
introducing the damping factor. This result confirms what we 
have found via the robust stability theorem that the introduction 
of the damping factor into the controller would produce wider 
stability range of the pure time delay: 0.00116 seconds < T,i 
< 0.00261 seconds. Nevertheless, some residual noise can still 
be found because the perturbed internal model is not able to 
accurately cancel the undesirable modes in the periodic excita­
tion. In conclusion, good stability margin can only be achieved 
at the expense of degradation of performance (Doyle, 1992). 
On the other hand, care must be assumed when dealing with 
tones corrupted by random noises. For random noises, where 
we have no knowledge whatsoever about its nature but its statis­
tics, the internal model-based ANC controller will not achieve 
disturbance rejection. 

In some practical applications, frequency tracking may be of 
interest. The fact that the frequency of disturbance has to be 
known a priori may appear as a limitation in using the internal-
model-based controller. To cope with the problem, reference 
signals from frequency sensors such as tachometers can be uti­
lized to synchronously adjust the poles of the filter, which is 
technically not difficult to accompUsh in DSP-based controllers. 
Furthermore, the optimality of the compensation filter Ndz) 
seems not critical with respect to the frequency change of distur­
bances. The robustness of Ndz) is evidenced from the result 
of Case 5, where the frequencies of the tones have been shifted 
from those in Case 1 by 10 percent (Fig. 8). Approximately 
200-300 dB attenuation can still be obtained by the controller 
with new poles, but Ndz) remains the same as Case 1. 

Conclusion 
In this study, an ANC algorithm using the internal model 

principle has been developed. The method is effective in 
suppressing periodic disturbances. The simplicity of the 
method lies in the fact that the resulting controller is generally 
a low-order digital filter, although the off-line search process 

for the optimal Ndz) in Eq. (8) may look somewhat in­
volved. Since this method is based on feedback configuration, 
one does not have to be concerned with the acoustic feedback 
problem which often complicates the controller design in 
many conventional feedforward ANC systems. In addition, 
the internal model-based controller exhibits robustness with 
parameter variations, e.g., pure time delay, after a small 
amount of damping is introduced into the controller. The 
proposed ANC system requires an accurate internal model to 
match the structure of disturbance. Optimization methods are 
then employed to determine the coefficients of the controller. 
It may happen that numerous local minima exist in the prob­
lem of interest. Thus, care must be taken to select appropriate 
initial guesses. In addition, frequency tracking that represents 
a large class of practical application might become an issue 
for the internal model control. Although the frequency of the 
disturbance has to be known a priori, reference signals from 
frequency sensors such as tachometers can be utilized to syn­
chronously adjust the poles of the filter. The optimality of 
the compensation filter is generally not critical with respect 
to the frequency change of disturbances. Experimental inves­
tigations based on DSP controllers are currently under way 
to further explore the effectiveness and practicality of the 
internal model-based ANC technique. 
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