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1. Abstract

Plates are widely used components in engineering applications for civil engineering,
mechanical engineering, and aerospace engineering. The Mindlin plate theory is often applied to
describe the behaviors of plates. It is well known that stress singularities arise in the mathematical
solutions of plate problems, which can be due to concentrated forces and moments,
discontinuities in edge conditions or sharp corner. It has been pointed out and numerically shown
that if singularities due to discontinuities in edge conditions or sharp corners are not properly
considered in numerical solutions, significant errors will occur in the calculated global behavior
of plates, such as static deflection, free vibration frequencies, forced dynamic response, and
critical buckling load. However, there is no comprehensive study in the stress singularities for the
Mindlin plate theory. Consequently, it is also short of accurate numerical solutions for the plates
with stress singularities. It is the main purpose of the three-year proposal to investigate the stress
singularity behaviors of Mindlin plates due to discontinuities in edge conditions or sharp corner
and apply these results to some well known numerical solution techniques to solve some
complicate vibration problems involving stress singularities.

In the first year, eigenfunction expansion approach was applied to find the asymptotic
solution for stress singularity behavior in the Mindlin plate theory. The singularity orders
corresponding to various combinations of edge conditions were determined and expressed in
graphic form. The results will be compared with those for thin plate theory.

In the second year, the obtained asymptotic solutions were used in the Ritz method and to
solve the vibration problems such as sectorial plates and cantilevered skewed plates (including
skewed triangular, parallelogram, and trapezoidal plates). We carried out the investigation on the
effects of some geometric parameters, such as vertex angles and skewed angle et al., on the
vibrations of such plates. Furthermore, the effects of the asymptotic solutions on the Ritz
approach were also investigated.

In the third year, the obtained asymptotic solutions will be further used in conventional
finite element approach. A new way to incorporate the asymptotic solutions into the finite
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element approach will be proposed, so that the proposed approach can be broadly applied to solve
a variety of vibration problems with complicated geometry and stress singularities. The analyses
will also be performed on the vibrations of sectorial plates and cantilevered skewed or rectangular
plates with a rectangular cutout or crack.

Keywords: Mindlin plate theory, stress singularities, eigenfunction expansion, Ritz Method,
Finite Element Approach, Thick Plate, Vibration Analysis

2. Motive and Goal

In the second year of this project, the asymptotic solutions obtained in the first year of this
project were used in the Ritz method and to solve the vibration problems such as sectorial plates
and cantilevered skewed plates (including skewed triangular, parallelogram, and trapezoidal
plates). Since this report is for mid-term report, the work on analyzing the vibrations of
cantilevered skewed plates will be emphasized, while the work on sectorial plates will be
included in the final report.

A cantilevered skewed trapezoidal plate, as depicted in Fig.1, has been found in numerous
engineering applications, including aircraft and guided missiles. A cantilevered skewed triangular
plate or parallelogram plate can be treated as a special case of a trapezoidal plate. In Fig.1, c/b=0
represents a skewed triangular plate while ¢/b=1 specifies a parallelogram plate. Because of the
complexity of the geometrical shape and the boundary conditions, no exact solution is tractable
for the free vibrations of such plates. Many numerical solutions, based on classical thin plate
theories, have been published for such plates. Leissa [1-4] reviewed much of the earlier work in
this field, while more recent work was mentioned in references 5 and 6.

Shear deformation and rotary inertia are well known to be important to any analysis of
moderately thick plates or in determining the higher vibration frequencies of thin plates.
Nevertheless, rather few results have been published on the vibration frequencies of skewed
triangular, trapezoidal and parallelogram plates as derived using plate theories including the
effects of shear deformation and rotary inertia. McGee and Butalia [7] presented a higher-order
finite element plate formulation for analyzing the vibrations of skewed trapezoidal and triangular
thick plates. Karunasena et al. [8] applied the pb-2 Rayleigh-Ritz method to elucidate the
vibrations of cantilevered skewed triangular Mindlin plates.

To investigate vibrations of parallelogram plates, Kanaka Raju and Hinton [9] and Liew et
al. [10] employed Mindlin plate theory, and used a finite element approach and pb-2
Rayleigh-Ritz method, respectively, while McGee and Leissa [11] used the Ritz method and
three-dimensional elasticity theory. McGee and Butalia [12] thoroughly studied the vibrations
of skew plates using nine-node Lagrangian isoparametric quadrilateral plate elements, based on
three shear deformable thick plate theories.

Recently, Huang [13 and 14] showed that corner stress singularities arise in Mindlin plate
theory and Reddy’s refined plate theory when the vertex angle of a wedge with clamped and free
boundary conditions along its radial edges exceeds approximately 60°. As shown in [5, 6] for
cantilevered skewed thin plates, corner stress singularity behaviors have to be considered in
numerical approaches in order to obtain accurate vibration frequencies. Nevertheless, in the
aforementioned publications on cantilevered skewed triangular, trapezoidal and parallelogram
Mindlin plates, numerical approaches have not numerical approaches stress singularities. In [12],
finite element convergence studies of cantilevered skewed thick plates reveal that the accuracy of
the results obtained using a specified mesh size declines as the skew angle is increased.
Furthermore, Karunasena et al. [8] admitted that their results, obtained by the pb-2 Rayleigh-Ritz
method, are not accurate for cantilevered skewed triangular Mindlin plates with large skew angles
because their approach did not incorporate the effects of stress singularities. Accordingly, the
vibrations of cantilevered trapezoidal plates must be reexamined, considering corner stress
singularities.

The aim of this work is to present an accurate numerical solution for the free vibrations of



skewed cantilevered triangular, trapezoidal and parallelogram Mindlin plates using the Ritz
method and considering the corner stress singularities. The Ritz method has been popularly
applied to investigate the vibrations of structural components. For simplicity, polynomial
functions are commonly selected as the admissible functions in the Ritz method. However, the
Ritz method, involving a large number of polynomial functions, is well known to yield easily a
generalized eigenvalue problem with an ill-conditioned matrix. In this work, “corner functions”
are introduced into the admissible functions, which also include polynomial functions, to
accelerate the convergence of solutions. The corner functions are established from the asymptotic
solutions provided by Huang [13] for both moment and shear force singularities at a corner of a
thick plate. Hence, the corner functions not only appropriately describe the singular behaviors at
the clamped re-entrant corner of a skewed cantilevered plate, but also meet the clamped boundary
conditions and free moment conditions around the re-entrant corner. Convergence studies are
herein conducted for various skew angles to demonstrate the effects of corner functions on the
accuracy of the numerical results. Accurate vibration frequencies of skewed cantilevered
trapezoidal plates with various skew angles, aspect ratios (a/b), chord ratios (c/b) and thickness
ratios (h/b) are reported and compared to the published results obtained by other researchers to
improve the currently available data base.

3. Contentsof the Research
3.1 Methodology

For the free vibration of a plate in Cartesian coordinates (X, Y¥), the maximum strain energy
(Vmax) and the maximum kinetic energy (Tmax) are (cf. [8]),
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where W is the transverse displacement of the mid-plane; ¢/yand ¢ are the bending rotations
of the mid-plane normal in the X and Yy directions, respectively; h is the thickness of the plate;

D = Eh?/12(1-0v?) is the flexural rigidity; E is the modulus of elasticity; ¢ is Poisson’s
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ratio ; K~ is the shear correction factor; G is the shear modulus, and « is the vibration

frequency.
The use of skew coordinates (¢, 77) (Fig.1) and oblique rotations, ¢/¢ and Yy is normally

convenient in analyzing skew plates. They are related to orthogonal coordinates, X and Yy, and
orthogonal rotations, (/yand ¢y, by

E=x/cosfB, n=y—-xtan S, 3)
and

¢g=<//x+¢/ytan,5’, quf//y/cosﬁa )
where [3 is the skew angle ( Fig. 1). Equations (1-4) can be used to redefine Vmax and Tmax in
the skew coordinates as

D . .
Vinax = JJ {3{56"2 BWe, s ~sin B, =sin By s+ 7)° -
A

2 -0)y e ¢ —i(wg,,, sy )11+



k2Gh
2

2
Tax = 0; ” { phw
A

where dA=cosdédn.

In the Ritz method, the energy functional is defined as

M =Vmax ~ Tmax - (7
W(S,77), e, and ¢p(S,77) in egs. (6 and 7) are approximated by finite series of
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admissible functions, which satisfy the geometric boundary conditions under consideration, and
expressed as

We (&) =Ws o (E1) + W5 c(ED). (8a)
W (&) =Yy o (&) + % o(E), (8b)
WE,17) =Wy (£,7) +We (&,77). (8c)

where ¥g,, ¥, and Wpconsist of algebraic polynomials, and ¥z, %, and Wconsist

of corner functions, which account for the singular behaviors of moments and shear forces at
re-entrant corner [JABCin Fig.1. The polynomials in terms of skew co-ordinates are used;
hence,
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where Aj, Bjj andCjj are coefficients to be determined by minimizing /7 .

Although the polynomials given in eq.(9) constitute a mathematically complete set of
admissible functions and theoretically yield accurate values of the frequencies when | and J are
large enough, numerical difficulties are very likely to occur when | and J are large. It is desirable
to supplement the polynomial admissible functions with the corner functions, which properly
represent the singularities, to accelerate the convergence of the solution.

The sets of corner functions are
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where Ay, By and C,,are arbitrary coefficients, and wgk,% « and W}, are established from the

asymptotic solutions presented in [13]. The asymptotic solutions [13] are expressed in terms of
polar co-ordinates (r,8) as shown in Fig.1, the displacement components in polar co-ordinates
have to transform into those in skew co-ordinates, yielding,
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and o is the re-entrant angle (Fig. 1). The characteristic values Ay and /Tn are, respectively,

the roots of the following equations:
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and
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Using the Ritz method, the free vibration problem is solved by substituting egs. (9) and (11)
into eqs.(5) and (6) and minimizing [1 in eq.(7). Minimizing [1 with respect to the
undetermined coefficients Aj, Bjj, Cjj, A, By, and C, yields 31J+2K+N homogeneous,

linear algebraic equations in terms of the undetermined coefficients, which results in the matrix
form of a generalized eigenvalue problem. The eigenvalues correspond to the natural vibration
frequencies.

3.2 Results and discussion

The frequencies obtained by the Ritz method should monotonically converge to the exact
frequencies as upper bounds when a sufficient number of admissible functions are used, if the
admissible functions are taken from a complete set of functions. This section addresses
convergence studies which were carried out for cantilevered skewed triangular plates. All
numerical results are presented in terms of the nondimensional frequency parameter Q defined

as wa21/ ph/D . The results are for materials with a Poisson ratio (¢) of 0.3.
Tables 1-2 present a convergence study of the non-dimensional frequency parameters of five

skewed triangular plates (a/b=1; h/b=0.001 or 0.2; B =60°%r 75°). The shear correction factors

were set equal to 5/6 to allow the present results to be compared with published data. The
frequencies were obtained by increasing the number of polynomial terms in eq. (9) (e.g.
(LI)=(4,4), (5,5), ...,(9,9)) and the number of corner functions in eq. (10) (e.g. K=N=0, 5, 10, and

15 for B=60°).
Tables 1-2 show that the frequencies monotonically converge to the exact ones from above as
the number of polynomial terms or the number of corner functions increases. The results obtained

using only polynomial terms (K=N=0) do not converge well for large skew angles ( 8= 60° or

75%). The convergence of the frequencies is significantly enhanced by augmenting the
polynomial sets with an increasing number of corner functions, especially for a large skew angle.
The improvement in the convergence of frequencies obtained by adding corner functions does not
considerably change for different values of h/b. The results obtained using 1=J=8 and K=N=10
are exact to at least three significant figures.

Some of the published results obtained by others are also given in Tables 1-2. Based on
classical thin plate theory, McGee et al. [6] applied the Ritz method and added thin plate theory
corner functions to the algebraic polynomial admissible displacement functions. Based on
Mindlin plate theory, Karunasena et al. [8] obtained the natural frequencies of skewed triangular
plates by using the Ritz method and 120 admissible polynomial functions for each of w, ¢z and

Yy . Comparing the presented results with those of McGee et al. [6] reveals that the present
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converged results demonstrate the theoretical fact that the frequencies determined from Mindlin
plate theory are less than those obtained from thin plate theory. However, the results of
Karunasena et al. [8] violate this, indicating these results not accurate enough. Indeed, their

frequencies are seen to be much too high for large skew angles (£ =60° and 75°). Karunasena

et al. [8] acknowledged that the accuracy of their results become worse as the skewed angle
increases because stress singularity effects at the re-entrant corner were not considered. Notably,
the present solution does not show the shear locking phenomenon that is often found in a finite
element approach when the Mindlin plate theory is applied to a thin plate.

The results of McGee and Butalia [7] in Table 3 were obtained using higher-order shear
deformable plate theory and the finite element approach. No shear correction factor is involved.
These results were obtained using 64 Lagrangian isoparametric plate elements with a total of
2448 degrees of freedom, whereas the present method used, at most, 222 degrees of freedom. The
convergence studies in [7] indicate that these results may converge to only two significant figures.
Generally reasonably good agreement is observed between the present results and those of

McGee and Butalia [7], except in the cases of plates with B = 75° . Notably, McGee and Butalia
[7] conceded that the stress singularity at the re-entrant corner should be incorporated into their
finite element modeling of highly skewed plates, when they found that their results for thin plates
exceeded those obtained by applying thin plate theory [6] using the Ritz method.

Figure 2 shows the nodal patterns for parallelogram plates with S = 45°and 75° and h/b=0.1.

The nodal patterns for B =75° are first shown in the literature. One can find that the nodal
patterns strongly depend on the skew angle, especially for higher modes.

4. Concluding Remarks

This work has demonstrated a novel Ritz procedure to determine accurately the natural
frequencies of skewed cantilevered triangular, trapezoidal and parallelogram plates based on
Mindlin plate theory. The proposed procedure incorporates a mathematically complete set of
admissible polynomials in conjunction with admissible corner functions that not only properly
describe the singular behaviors of moments and shear forces at the re-entrant clamped corner, but
also satisfy the free moment conditions along the free edge of the re-entrant corner.

The effects of adding corner functions to the admissible set of polynomials in the Ritz method
on the determination of the frequencies of a plate were investigated through convergence studies
for various plates with different shapes. It was shown there that use of corner functions
accelerates the convergence of the solutions significantly, thereby permitting one to obtain
accurate frequencies from smaller eigenvalue determinants, and reducing numerical
ill-conditioning.

The highly accurate results obtained from the present solution were demonstrated through
comparison with previously published data for cantilevered triangular, trapezoidal and
parallelogram plates. Significant improvement (closer upper bounds) was seen especially for the

thick plates with a large skewed angle ( 5= 45°).

Because of the limitation in the number of pages in this report, only a part of the results from
this project were shown. However, we have achieved the goals of the project given in the
proposal. We are preparing a paper, which will be submitted to International Journal of
Mechanical Science. In this paper, a complete set of results for accurate vibration frequencies of
skewed cantilevered trapezoidal plates with various skew angles, aspect ratios (a/b), chord ratios
(c/b) and thickness ratios (h/b) will be reported and compared to the published results obtained by
other researchers to improve the currently available data base.
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Table 1 Convergence of frequency parameter Q for a thin triangular plate
(@b=1, B=75°, h/b=0.001)

Kand N in eq. (10) (1,J) ineq.(9)
Mode McGee
(No. of corner
No. (4,4) (5.5) (6,6) (7.7) (8.8) 9.9) etal. [6]
functions)

0 8.251 7.835 7.677 7.272 6.721 6.651
5 7.792 6.689 6.484 6.436 6.435 6.435

1 6.437
10 6.882 6.457 6.435 6.434 6.434 6.433
15 6.450 6.435 6.434 6.433 6.433 6.432
0 32.56 31.13 30.37 29.47 28.84 27.92
5 30.87 29.44 28.27 27.74 27.74 27.73

2 27.75
10 29.95 28.01 27.74 27.73 27.73 27.72
15 27.85 27.73 27.73 27.73 27.72 27.72
0 76.20 72.32 71.22 69.86 68.28 67.69
5 73.10 68.11 66.90 66.81 66.81 66.30

3 66.85
10 68.01 66.87 66.81 66.80 66.79 66.79
15 66.86 66.81 66.80 66.79 66.79 66.78
0 139.2 131.6 128.5 123.2 120.4 118.3
5 133.0 118.5 117.9 117.9 117.8 117.8

4 117.9
10 120.2 117.9 117.8 117.8 117.8 117.8
15 117.9 117.8 117.8 117.7 117.7 117.7
0 209.8 179.3 165.5 154.1 151.0 146.4
5 185.7 148.5 144.7 144.3 144.3 144.2

5 144.3
10 154.4 144.5 144.3 144.2 144.2 144.1
15 144.4 144.3 144.3 144.2 144.1 144.1




Table 2 Convergence of frequency parameter Q for a thick triangular plate

(ab=1, £=60°, hib=0.2)
Kand N in egs. (1,J) ineqgs.(9a)-(9c)
Mode (10a)-(10c) Karunasena
No. (No. of corner 44 5,5 (6,6) 7,7 (8,8) 9,9 et al. [8]
functions)

0 6.314 5.747 5.624 5.500 5.483 5.424

| 5 5.622 5.534 5.458 5.410 5.410 5.409 5517
10 5.509 5.449 5.409 5.409 5.409 5.408 '
15 5.432 5.409 5.409 5.408 5.408 5.408
0 25.16 21.26 20.49 20.14 19.95 19.94
5 20.98 20.42 20.00 19.93 19.93 19.92

2 20.32
10 20.29 20.20 19.93 19.93 19.92 19.92
15 19.99 19.93 19.92 19.92 19.92 19.91
0 40.79 29.38 25.27 24.49 23.33 23.22
5 27.39 24.64 23.98 23.20 23.19 23.19

3 23.65
10 24.56 23.41 23.19 23.19 23.19 23.19
15 23.28 23.19 23.19 23.19 23.18 23.18
0 87.98 66.92 46.68 40.92 34.89 34.80
5 69.74 44.60 38.92 34.75 34.75 34.75

4 35.43
10 41.03 38.01 34.75 34.75 34.75 34.74
15 35.66 34.75 34.74 34.74 34.74 34.73
0 101.7 76.13 47.29 43.74 42.16 41.74
5 80.46 46.95 42.45 41.27 41.27 41.27

5 41.90
10 47.37 41.75 41.27 41.27 41.26 41.26
15 41.66 41.27 41.26 41.26 41.25 41.25

10




Table 3 Comparison of frequency parameters € for trapezoidal thick plates

(h/b=0.2)
b | ob B Mode Number
(degrees) 1 2 3 4
s 3.508 7.602 12.71 14.43
<3.521> <7.674> <12.86> </>
30 3.551 7.882 12.97 14.52
<3.565> <7.947> <13.06> <14.65>
025 45 3.724 8.823 13.25 15.77
<3.747> <8.897> <13.27> </>
60 4.017 10.03 13.26 18.40
<4.026> <10.05> <13.29> </>
75 4.448 7.244 12.33 15.05
0.5 <4.455> <7.633> <14.63> </>
s 3.314 6.087 11.36 12.00
<3.330> <6.147> <11.40> <12.00>
30 3.461 6.396 11.82 12.34
<3.472> <6.451> <11.90> <12.47>
0.5 45 3.736 7.407 12.41 13.49
<3.759> <7.410> <12.53> <13.52>
60 4.126 9.701 12.92 15.71
<4.135> <9.764> <12.88> </>
75 4.674 7.780 12.85 13.54
<4.653> <8.139> <13.93> </>
15 4.168 14.26 19.42 3091
<4.170> <14.32> <19.52> </>
30 4.152 14.43 20.11 30.43
<4.153> <14.49> <20.22> </>
025 45 4.275 15.73 21.17 32.31
<4.278> <15.80> <21.27> </>
60 4.475 17.99 22.16 36.72
<4.494> <18.08> <22.18> </>
75 4.803 17.90 20.43 34.60
10 <4.817> <18.19> <20.54> </>
s 3.772 11.40 18.42 27.55
<3.774> <11.44> <18.53> </>
30 3.858 11.76 19.39 27.16
<3.864> <11.81> <19.52> </>
0.5 45 3.858 11.76 19.39 27.16
<3.864> <11.81> <19.52> </>
60 4.243 16.06 22.31 34.60
<4.444> <16.25> <22.50> </>
75 4.718 19.21 21.59 35.56
<4.887> <19.61> <21.68> </>

Note: < > denotes values from McGee and Butalia [7];
/ denotes no data available.
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Fig. 1 Geometry and coordinate systems of skewed cantilevered trapezoidal plate.
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Mode

B | ab
1 2 3 4 5
(4.236) (7.359) (11.38) (18.29) (21.22)
45°
(4.384) (10.52) (24.72) (28.24) (44.97)
y 7 7 y
¢ Z 7 ¢
(4.009) (17.14) (28.49) (47.35) (78.85)
(5.693) (21.19) (25.12) (36.22) (39.67)
75° A
(5.295) (22.95) (44.78) (64.09) (85.48)
2.0
(5.018) (25.51) (59.77) (64.91) (107.4)

Fig. 2 Nodal pattern for parallelogram plates (h/b=0.1)
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