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中文摘要 
板是工程設計上(土木工程、機械工程、航空工程⋯..等)之主要構件之一。Mindlin 板
理論亦經常被使用於板相關問題分析上。由於外力點荷重、點彎矩及邊界之不連續性與尖

角之存在，應力奇異點常發生於板相關問題。該奇異點須準確地處理，方能使得相關之數

值分析解得到準確的答案。但依文獻回顧，目前對 Mindlin 板理論，由於邊界不連續或尖
角之存在而引致之應力奇異階數，並未有一完整之探討。更不用論將其應用於含有應力奇

異點且幾何較複雜問題之數值分析解。故本研究擬以三年之時間，深入探討此相關問題。 

於第一年，本研究將以特徵函數展開法(eigenfunction expansion)，求解由於邊界不連續
或尖角之存在所引致 Mindlin 板應力奇異之解析漸近解，以求得各種不同條件下之應力奇
異階數及其對應漸近解函數。 

於第二年（92年 8月∼93年 7月），本研究將把於第一年所得之漸近解函數融合於 Ritz
數值分析法中，分析扇形板及懸臂斜板(cantilevered skewed plates)(含平行四邊形、三角
形、及梯形板)之振動問題。並進行此等板幾何參數探討，以了解該等參數對板振動之影響。

並從 Ritz法之收斂性分析中，探討漸近解函數於數值分析法中之效益。 

於第三年（93年 8月∼94年 7月），本研究擬將第一年所得之漸近解函數，進一步融合

於有限元素法中 。並提出新融合方式，以使得該漸近解函數能被更廣泛地應用於分析含有

應力奇異點之厚板問題。同樣地，本年度所提解題程序將被應用於解扇形板及具矩形開口

或裂縫矩形板與斜形板之振動問題，並進行相關幾何參數探討。 

 

關鍵詞：Mindlin 板理論；應力奇異；特徵函數展開法；Ritz 法；有限元素法；厚板；振

動分析 
 

1. Abstract 
Plates are widely used components in engineering applications for civil engineering, 

mechanical engineering, and aerospace engineering. The Mindlin plate theory is often applied to 
describe the behaviors of plates. It is well known that stress singularities arise in the mathematical 
solutions of plate problems, which can be due to concentrated forces and moments, 
discontinuities in edge conditions or sharp corner. It has been pointed out and numerically shown 
that if singularities due to discontinuities in edge conditions or sharp corners are not properly 
considered in numerical solutions, significant errors will occur in the calculated global behavior 
of plates, such as static deflection, free vibration frequencies, forced dynamic response, and 
critical buckling load. However, there is no comprehensive study in the stress singularities for the 
Mindlin plate theory. Consequently, it is also short of accurate numerical solutions for the plates 
with stress singularities. It is the main purpose of the three-year proposal to investigate the stress 
singularity behaviors of Mindlin plates due to discontinuities in edge conditions or sharp corner 
and apply these results to some well known numerical solution techniques to solve some 
complicate vibration problems involving stress singularities.  

In the first year, eigenfunction expansion approach was applied to find the asymptotic 
solution for stress singularity behavior in the Mindlin plate theory. The singularity orders 
corresponding to various combinations of edge conditions were determined and expressed in 
graphic form. The results will be compared with those for thin plate theory. 

In the second year, the obtained asymptotic solutions were used in the Ritz method and to 
solve the vibration problems such as sectorial plates and cantilevered skewed plates (including 
skewed triangular, parallelogram, and trapezoidal plates). We carried out the investigation on the 
effects of some geometric parameters, such as vertex angles and skewed angle et al., on the 
vibrations of such plates. Furthermore, the effects of the asymptotic solutions on the Ritz 
approach were also investigated. 

In the third year, the obtained asymptotic solutions will be further used in conventional 
finite element approach. A new way to incorporate the asymptotic solutions into the finite 
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element approach will be proposed, so that the proposed approach can be broadly applied to solve 
a variety of vibration problems with complicated geometry and stress singularities. The analyses 
will also be performed on the vibrations of sectorial plates and cantilevered skewed or rectangular 
plates with a rectangular cutout or crack. 

 
Keywords: Mindlin plate theory, stress singularities, eigenfunction expansion, Ritz Method, 

Finite Element Approach, Thick Plate, Vibration Analysis 
 

2. Motive and Goal 
In the second year of this project, the asymptotic solutions obtained in the first year of this 

project were used in the Ritz method and to solve the vibration problems such as sectorial plates 
and cantilevered skewed plates (including skewed triangular, parallelogram, and trapezoidal 
plates). Since this report is for mid-term report, the work on analyzing the vibrations of 
cantilevered skewed plates will be emphasized, while the work on sectorial plates will be 
included in the final report.  

A cantilevered skewed trapezoidal plate, as depicted in Fig.1, has been found in numerous 
engineering applications, including aircraft and guided missiles. A cantilevered skewed triangular 
plate or parallelogram plate can be treated as a special case of a trapezoidal plate. In Fig.1, c/b=0 
represents a skewed triangular plate while c/b=1 specifies a parallelogram plate. Because of the 
complexity of the geometrical shape and the boundary conditions, no exact solution is tractable 
for the free vibrations of such plates. Many numerical solutions, based on classical thin plate 
theories, have been published for such plates. Leissa [1-4] reviewed much of the earlier work in 
this field, while more recent work was mentioned in references 5 and 6.  

Shear deformation and rotary inertia are well known to be important to any analysis of 
moderately thick plates or in determining the higher vibration frequencies of thin plates. 
Nevertheless, rather few results have been published on the vibration frequencies of skewed 
triangular, trapezoidal and parallelogram plates as derived using plate theories including the 
effects of shear deformation and rotary inertia. McGee and Butalia [7] presented a higher-order 
finite element plate formulation for analyzing the vibrations of skewed trapezoidal and triangular 
thick plates.  Karunasena et al. [8] applied the pb-2 Rayleigh-Ritz method to elucidate the 
vibrations of cantilevered skewed triangular Mindlin plates.  

To investigate vibrations of parallelogram plates, Kanaka Raju and Hinton [9] and Liew et 
al. [10] employed Mindlin plate theory, and used a finite element approach and pb-2 
Rayleigh-Ritz method, respectively, while McGee and Leissa [11] used the Ritz method and 
three-dimensional elasticity theory.  McGee and Butalia [12] thoroughly studied the vibrations 
of skew plates using nine-node Lagrangian isoparametric quadrilateral plate elements, based on 
three shear deformable thick plate theories.   

Recently, Huang [13 and 14] showed that corner stress singularities arise in Mindlin plate 
theory and Reddy’s refined plate theory when the vertex angle of a wedge with clamped and free 
boundary conditions along its radial edges exceeds approximately 60o. As shown in [5, 6] for 
cantilevered skewed thin plates, corner stress singularity behaviors have to be considered in 
numerical approaches in order to obtain accurate vibration frequencies. Nevertheless, in the 
aforementioned publications on cantilevered skewed triangular, trapezoidal and parallelogram 
Mindlin plates, numerical approaches have not numerical approaches stress singularities. In [12], 
finite element convergence studies of cantilevered skewed thick plates reveal that the accuracy of 
the results obtained using a specified mesh size declines as the skew angle is increased. 
Furthermore, Karunasena et al. [8] admitted that their results, obtained by the pb-2 Rayleigh-Ritz 
method, are not accurate for cantilevered skewed triangular Mindlin plates with large skew angles 
because their approach did not incorporate the effects of stress singularities. Accordingly,  the 
vibrations of cantilevered trapezoidal plates must be reexamined, considering corner stress 
singularities.  

The aim of this work is to present an accurate numerical solution for the free vibrations of 
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skewed cantilevered triangular, trapezoidal and parallelogram Mindlin plates using the Ritz 
method and considering the corner stress singularities.  The Ritz method has been popularly 
applied to investigate the vibrations of structural components. For simplicity, polynomial 
functions are commonly selected as the admissible functions in the Ritz method. However, the 
Ritz method, involving a large number of polynomial functions, is well known to yield easily a 
generalized eigenvalue problem with an ill-conditioned matrix. In this work, “corner functions” 
are introduced into the admissible functions, which also include polynomial functions, to 
accelerate the convergence of solutions. The corner functions are established from the asymptotic 
solutions provided by Huang [13] for both moment and shear force singularities at a corner of a 
thick plate. Hence, the corner functions not only appropriately describe the singular behaviors at 
the clamped re-entrant corner of a skewed cantilevered plate, but also meet the clamped boundary 
conditions and free moment conditions around the re-entrant corner. Convergence studies are 
herein conducted for various skew angles to demonstrate the effects of corner functions on the 
accuracy of the numerical results. Accurate vibration frequencies of skewed cantilevered 
trapezoidal plates with various skew angles, aspect ratios (a/b), chord ratios (c/b) and thickness 
ratios (h/b) are reported and compared to the published results obtained by other researchers to 
improve the currently available data base. 
 

3. Contents of the Research 
3.1 Methodology 

For the free vibration of a plate in Cartesian coordinates (x, y), the maximum strain energy 
(Vmax) and the maximum kinetic energy (Tmax) are (cf. [8]), 
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where w is the transverse displacement of the mid-plane; xψ and yψ  are the bending rotations 
of the mid-plane normal in the x and y directions, respectively; h is the thickness of the plate; 

)1(12/ 23 υ−= EhD  is the flexural rigidity;  E is the modulus of elasticity; υ  is Poisson’s 

ratio ; 2κ is the shear correction factor; G is the shear modulus, and ω  is the vibration 
frequency. 

The use of skew coordinates (ξ , η ) (Fig.1) and oblique rotations, ξψ  and ηψ  is normally 
convenient in analyzing skew plates. They are related to orthogonal coordinates, x and y, and 
orthogonal rotations, xψ and yψ , by 

βξ cos/x= , βη tanxy −= ,  (3) 
and 

βψψψξ tanyx += , βψψη cos/y= , (4) 
where βis the skew angle ( Fig. 1). Equations (1-4) can be used to redefine Vmax and Tmax in 
the skew coordinates as 

−+−−= ∫∫ 2
,,,,

2
max ) sin sin({sec

2
{ ηηξηηξξξ ψψβψβψβ

A

DV   

++−− ]})(
4
1)[1(2 2

,,,, ξηηξξξηη ψψψψυ  



 5

dAwwwGh }) (cos) tan sec sin[(
2

2
,

2
,,

2
ηηηξηξ ψβββψβψκ ++−+−  (5) 

dAhhwT
A

]}) (cos) sin[(
12

{
2

22
3

2
2

max ηηξ ψβψβψρρω +−+= ∫∫  (6) 

where ηξβ dddA   cos= .  
In the Ritz method, the energy functional is defined as 

maxmax TV −=Π . (7) 
),( ηξw , ),( ηξψξ  and ),( ηξψη  in eqs. (6 and 7) are approximated by finite series of 

admissible functions, which satisfy the geometric boundary conditions under consideration, and 
expressed as  
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where p ξΨ , p ηΨ  and pW consist of algebraic polynomials, and c ξΨ , c ηΨ  and cW consist 
of corner functions, which account for the singular behaviors of moments and shear forces at 
re-entrant corner ABC∠ in Fig.1. The polynomials in terms of skew co-ordinates are used; 
hence,  
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where ijA , ijB  and ijC are coefficients to be determined by minimizing Π .  
Although the polynomials given in eq.(9) constitute a mathematically complete set of 

admissible functions and theoretically yield accurate values of the frequencies when I and J are 
large enough, numerical difficulties are very likely to occur when I and J are large. It is desirable 
to supplement the polynomial admissible functions with the corner functions, which properly 
represent the singularities, to accelerate the convergence of the solution.  

The sets of corner functions are  
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where nkk CBA  and  , are arbitrary coefficients, and nkk W and  ,   ηξ ΨΨ are established from the 
asymptotic solutions presented in [13]. The asymptotic solutions [13] are expressed in terms of 
polar co-ordinates (r,θ ) as shown in Fig.1, the displacement components in polar co-ordinates 
have to transform into those in skew co-ordinates, yielding,   
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and α is the re-entrant angle (Fig. 1). The characteristic values kλ and nλ  are, respectively, 
the roots of the following equations: 
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Using the Ritz method, the free vibration problem is solved by substituting eqs. (9) and (11) 
into eqs.(5) and (6) and minimizing Π  in eq.(7). Minimizing Π  with respect to the 
undetermined coefficients  ,ijA , ijB , ijC  ,kA kB , and nC  yields 3IJ+2K+N homogeneous, 
linear algebraic equations in terms of the undetermined coefficients, which results in the matrix 
form of a generalized eigenvalue problem. The eigenvalues correspond to the natural vibration 
frequencies.  
 
3.2 Results and discussion 

The frequencies obtained by the Ritz method should monotonically converge to the exact 
frequencies as upper bounds when a sufficient number of admissible functions are used, if the 
admissible functions are taken from a complete set of functions. This section addresses 
convergence studies which were carried out for cantilevered skewed triangular plates. All 
numerical results are presented in terms of the nondimensional frequency parameter Ω  defined 
as Dha /2 ρω .  The results are for materials with a Poisson ratio (υ ) of 0.3.   

Tables 1-2 present a convergence study of the non-dimensional frequency parameters of five 
skewed triangular plates (a/b=1; h/b=0.001 or 0.2; o60=β or o75 ). The shear correction factors 
were set equal to 5/6 to allow the present results to be compared with published data. The 
frequencies were obtained by increasing the number of polynomial terms in eq. (9) (e.g. 
(I,J)=(4,4), (5,5), …,(9,9)) and the number of corner functions in eq. (10) (e.g. K=N=0, 5, 10, and 
15 for o60≥β ).  

Tables 1-2 show that the frequencies monotonically converge to the exact ones from above as 
the number of polynomial terms or the number of corner functions increases. The results obtained 
using only polynomial terms (K=N=0) do not converge well for large skew angles ( o60=β or 

o75 ). The convergence of the frequencies is significantly enhanced by augmenting the 
polynomial sets with an increasing number of corner functions, especially for a large skew angle. 
The improvement in the convergence of frequencies obtained by adding corner functions does not 
considerably change for different values of h/b. The results obtained using I=J=8 and K=N=10 
are exact to at least three significant figures.  

Some of the published results obtained by others are also given in Tables 1-2. Based on 
classical thin plate theory, McGee et al. [6] applied the Ritz method and added thin plate theory 
corner functions to the algebraic polynomial admissible displacement functions. Based on 
Mindlin plate theory, Karunasena et al. [8] obtained the natural frequencies of skewed triangular 
plates by using the Ritz method and 120 admissible polynomial functions for each of w, ξψ  and 

ηψ . Comparing the presented results with those of McGee et al. [6] reveals that the present 
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converged results demonstrate the theoretical fact that the frequencies determined from Mindlin 
plate theory are less than those obtained from thin plate theory. However, the results of 
Karunasena et al. [8] violate this, indicating these results not accurate enough. Indeed, their 
frequencies are seen to be much too high for large skew angles ( o60=β  and o75 ). Karunasena 
et al. [8] acknowledged that the accuracy of their results become worse as the skewed angle 
increases because stress singularity effects at the re-entrant corner were not considered. Notably, 
the present solution does not show the shear locking phenomenon that is often found in a finite 
element approach when the Mindlin plate theory is applied to a thin plate. 

The results of McGee and Butalia [7] in Table 3 were obtained using higher-order shear 
deformable plate theory and the finite element approach. No shear correction factor is involved. 
These results were obtained using 64 Lagrangian isoparametric plate elements with a total of 
2448 degrees of freedom, whereas the present method used, at most, 222 degrees of freedom. The 
convergence studies in [7] indicate that these results may converge to only two significant figures. 
Generally reasonably good agreement is observed between the present results and those of 
McGee and Butalia [7], except in the cases of plates with o75=β . Notably, McGee and Butalia 
[7] conceded that the stress singularity at the re-entrant corner should be incorporated into their 
finite element modeling of highly skewed plates, when they found that their results for thin plates 
exceeded those obtained by applying thin plate theory [6] using the Ritz method.   

Figure 2 shows the nodal patterns for parallelogram plates with o75 and45o=β and h/b=0.1. 

The nodal patterns for o75=β  are first shown in the literature. One can find that the nodal 
patterns strongly depend on the skew angle, especially for higher modes. 

 
4. Concluding Remarks 

This work has demonstrated a novel Ritz procedure to determine accurately the natural 
frequencies of skewed cantilevered triangular, trapezoidal and parallelogram plates based on 
Mindlin plate theory. The proposed procedure incorporates a mathematically complete set of 
admissible polynomials in conjunction with admissible corner functions that not only properly 
describe the singular behaviors of moments and shear forces at the re-entrant clamped corner, but 
also satisfy the free moment conditions along the free edge of the re-entrant corner.  

The effects of adding corner functions to the admissible set of polynomials in the Ritz method 
on the determination of the frequencies of a plate were investigated through convergence studies 
for various plates with different shapes. It was shown there that use of corner functions 
accelerates the convergence of the solutions significantly, thereby permitting one to obtain 
accurate frequencies from smaller eigenvalue determinants, and reducing numerical 
ill-conditioning. 

The highly accurate results obtained from the present solution were demonstrated through 
comparison with previously published data for cantilevered triangular, trapezoidal and 
parallelogram plates. Significant improvement (closer upper bounds) was seen especially for the 
thick plates with a large skewed angle ( o45≥β ).   

Because of the limitation in the number of pages in this report, only a part of the results from 
this project were shown. However, we have achieved the goals of the project given in the 
proposal. We are preparing a paper, which will be submitted to International Journal of 
Mechanical Science. In this paper, a complete set of results for accurate vibration frequencies of 
skewed cantilevered trapezoidal plates with various skew angles, aspect ratios (a/b), chord ratios 
(c/b) and thickness ratios (h/b) will be reported and compared to the published results obtained by 
other researchers to improve the currently available data base.  
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Table 1 Convergence of frequency parameter Ω  for a thin triangular plate 

(a/b=1, o75=β ,  h/b=0.001) 

(I, J)  in eq.(9) 
Mode 

No. 

K and N in eq. (10) 

(No. of corner  

functions) 
(4,4) (5,5) (6,6) (7,7) (8,8) (9,9) 

McGee 

 et al. [6] 

0 8.251  7.835  7.677 7.272 6.721 6.651  

5 7.792  6.689  6.484 6.436 6.435 6.435  

10 6.882  6.457  6.435 6.434 6.434 6.433  
1 

15 6.450  6.435  6.434 6.433 6.433 6.432  

6.437  

0 32.56  31.13  30.37 29.47 28.84 27.92  

5 30.87  29.44  28.27 27.74 27.74 27.73  

10 29.95  28.01  27.74 27.73 27.73 27.72  
2 

15 27.85  27.73  27.73 27.73 27.72 27.72  

27.75  

0 76.20  72.32  71.22 69.86 68.28 67.69  

5 73.10  68.11  66.90 66.81 66.81 66.80  

10 68.01  66.87  66.81 66.80 66.79 66.79  
3 

15 66.86  66.81  66.80 66.79 66.79 66.78  

66.85  

0 139.2  131.6  128.5 123.2 120.4 118.3  

5 133.0  118.5  117.9 117.9 117.8 117.8  

10 120.2  117.9  117.8 117.8 117.8 117.8  
4 

15 117.9  117.8  117.8 117.7 117.7 117.7  

117.9  

0 209.8  179.3  165.5 154.1 151.0 146.4  

5 185.7  148.5  144.7 144.3 144.3 144.2  

10 154.4  144.5  144.3 144.2 144.2 144.1  
5 

15 144.4  144.3  144.3 144.2 144.1 144.1  

144.3  
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Table 2 Convergence of frequency parameter Ω  for a thick triangular plate 
(a/b=1, o60=β ,  h/b=0.2) 

 
(I, J)  in eqs.(9a)-(9c) 

Mode 

No. 

K and N in eqs. 

(10a)-(10c) 

(No. of corner  

functions) 

(4,4) (5,5) (6,6) (7,7) (8,8) (9,9) 

Karunasena 

et al. [8] 

0 6.314  5.747 5.624 5.500 5.483 5.424  

5 5.622  5.534 5.458 5.410 5.410 5.409  

10 5.509  5.449 5.409 5.409 5.409 5.408  
1 

15 5.432  5.409 5.409 5.408 5.408 5.408  

5.517  

0 25.16  21.26 20.49 20.14 19.95 19.94  

5 20.98  20.42 20.00 19.93 19.93 19.92  

10 20.29  20.20 19.93 19.93 19.92 19.92  
2 

15 19.99  19.93 19.92 19.92 19.92 19.91  

20.32  

0 40.79  29.38 25.27 24.49 23.33 23.22  

5 27.39  24.64 23.98 23.20 23.19 23.19  

10 24.56  23.41 23.19 23.19 23.19 23.19  
3 

15 23.28  23.19 23.19 23.19 23.18 23.18  

23.65  

0 87.98  66.92 46.68 40.92 34.89 34.80  

5 69.74  44.60 38.92 34.75 34.75 34.75  

10 41.03  38.01 34.75 34.75 34.75 34.74  
4 

15 35.66  34.75 34.74 34.74 34.74 34.73  

35.43  

0 101.7  76.13 47.29 43.74 42.16 41.74  

5 80.46  46.95 42.45 41.27 41.27 41.27  

10 47.37  41.75 41.27 41.27 41.26 41.26  
5 

15 41.66  41.27 41.26 41.26 41.25 41.25  

41.90  
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Table 3 Comparison of frequency parameters Ω  for trapezoidal thick plates  
(h/b=0.2) 

 
β  Mode Number 

a/b c/b 
(degrees) 1 2 3 4 

3.508  7.602  12.71  14.43  
15 

<3.521> <7.674> <12.86> </> 
3.551  7.882  12.97  14.52  

30 
<3.565> <7.947> <13.06> <14.65> 

3.724  8.823  13.25  15.77  
45 

<3.747> <8.897> <13.27> </> 
4.017  10.03  13.26  18.40  

60 
<4.026> <10.05> <13.29> </> 

4.448  7.244  12.33  15.05  

0.25 

75 
<4.455> <7.633> <14.63> </> 

3.314  6.087  11.36  12.00  
15 

<3.330> <6.147> <11.40> <12.00> 
3.461  6.396  11.82  12.34  

30 
<3.472> <6.451> <11.90> <12.47> 

3.736  7.407  12.41  13.49  
45 

<3.759> <7.410> <12.53> <13.52> 
4.126  9.701  12.92  15.71  

60 
<4.135> <9.764> <12.88> </> 

4.674  7.780  12.85  13.54  

0.5 

0.5 

75 
<4.653> <8.139> <13.93> </> 

4.168  14.26  19.42  30.91  
15 

<4.170> <14.32> <19.52> </> 
4.152  14.43  20.11  30.43  

30 
<4.153> <14.49> <20.22> </> 

4.275  15.73  21.17  32.31  
45 

<4.278> <15.80> <21.27> </> 
4.475  17.99  22.16  36.72  

60 
<4.494> <18.08> <22.18> </> 

4.803  17.90  20.43  34.60  

0.25 

75 
<4.817> <18.19> <20.54> </> 

3.772  11.40  18.42  27.55  
15 

<3.774> <11.44> <18.53> </> 
3.858  11.76  19.39  27.16  

30 
<3.864> <11.81> <19.52> </> 

3.858  11.76  19.39  27.16  
45 

<3.864> <11.81> <19.52> </> 
4.243  16.06  22.31  34.60  

60 
<4.444> <16.25> <22.50> </> 

4.718  19.21  21.59  35.56  

1.0  

0.5 

75 
<4.887> <19.61> <21.68> </> 

Note: <  > denotes values from McGee and Butalia [7]; 
     /  denotes no data available. 
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Fig. 1 Geometry and coordinate systems of skewed cantilevered trapezoidal plate. 
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Mode 
β a/b 

1 2 3 4 5 

     
0.5 

(4.236) (7.359) (11.38) (18.29) (21.22) 

     
1.0 

(4.384) (10.52) (24.72) (28.24) (44.97) 

     

45° 

2.0 

(4.009) (17.14) (28.49) (47.35) (78.85) 

     
0.5 

(5.693) (21.19) (25.12) (36.22) (39.67) 

     

1.0 

(5.295) (22.95) (44.78) (64.09) (85.48) 

     

75° 

2.0 

(5.018) (25.51) (59.77) (64.91) (107.4) 

 
 

Fig. 2  Nodal pattern for parallelogram plates (h/b=0.1)
 


