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Abstract
In this project, we build a virtual 3D
environment. We use the MIT head-related impulse
responses (HRIRs) as our database. More specifically,
it deals with synthesis of 3D moving sound to be
supplied binaurally through headphones. Then, we
propose an efficient method, which can reduce the
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information size and interpolate the nonsampling
HRIR while retaining high resolution of localization.
First, in this model the HRIRs are expressed as
weighted combinations of a set of eigentransfer
functions. The weights applied to each eigentransfer
functions only of spatial location and are thus termed
SCFs (Spatial Characteristic Functions).

The SCFs that we extract, however, are restricted
to the specified azimuths and elevations that the HRIR
database records. The SCFs for the nonsample spatial
location are unknown. So we use the architecture of
radial basis function network (RBFN) with Von Mises
function as activation functions for classification of the
spatial characteristic features. This neural network is
called VMBFN (Von Mises Basis Functions Network).
The VMBFN used here can solve the problem of
approximation and interpolation. When using the
orthogonal least square learning algorithm to train
VMBEFN, the RMSE (Root Mean Square Error) is
minimal. Through convolution the source sound with
the simulated HRIR, we can synthesize the spatial
sound over headphone..

1. Introduction

Sound is an extremely useful medium for
conveying information. We are focused on study of the
head-related impulse responses (HRIRs). In this case,
the direction of arrival of the sound can be controlled
by filtering the original monaural signal through a
proper set of previously measured HRIRs But the
database needs a lot of memories to record. It is
difficult to allocate such a large memories on the IC.
The present work addresses the problem of spatial
sound generation at a reduced storage cost. So we
propose a neural network model of binaural hearing
based on spatial feature extraction of the HRIRs.

As a consequence, estimating the HRIR
associated with any desired source location asks for
some interpolation scheme. When realizing moving
sound, especial care must be taken to avoid audible
discontinuities along the required path. So we also
concentrate on the issue of the interpolation of HRIRs.
Our neural network associated with spatial
characteristic functions parameterized by angular
positions provides proper localization for each sound
source. Given the desired angles, only the
corresponding spatial characteristic functions need to
be computed. Therefore, this method can be more
efficient than conventional HRIRs interpolation when
dealing with multi-source synthesis. Furthermore, the
method implicitly performs the spatial interpolation of
the non-measured HRIRs.



In this project we propose an efficient method,
which can reduce the information size and
computation while retaining high resolution of
localization. First, in this model the HRIRs are
expressed as weighted combinations of a set of
eigentransfer functions. The weights applied to each
eigentransfer functions only of spatial location and are
thus termed spatial characteristic functions. Then, we
use the architecture of radial basis function network
(RBFN) with Von Mises function as activation
functions for classification of the spatial characteristic
features. This neural network is called VMBFN. The
VMBFN used here can solve the problem of
approximation and interpolation. Through convolution
the source sound with HRIR, we can synthesize the
spatial sound over headphone. So we can build a
virtual 3D environment.

2. Spatial Feature Extraction

The HMM, which uses probabilistic functions of
Markov chains to model random processes, is a model
of stochastic process. The effectiveness of this model
class lies in its ability to deal with non-stationarity that
often appears in the observed data sequences. HMMs
usually turn out to be a good model for non-stationary
process, such as the sequence of the speech observation
vectors.

2.1 Basic Framework

Our goal in this chapter is to reduce the storage
for HRIR through the dimension reduction of the data
set. We use structural composition and decomposition
of the database to compress the database. HRIRs of
Kemar are our database. There were 710
measurements taken around the manikin at elevations
ranging from -40° to +90° at one meter in distance.
Let h; denote the HRIR of location (6, ¢;), where the
variable 6 and ¢ correspond to any sample direction in
azimuth and elevation, with j=1,2,...P, and P=710. h;
is an 128x1 wvalued vector representing the 128
samples of the HRIR measured at the jth location.

A given normalized HRIR h; is decomposited by

M

hj :ij +hbias zzwijqi +hbias

i=1
To reduce the amount of storage of HRIR we
only record both the transformation matrix

0=[4,,9,,---q,,] and W, to replace record the

database of HRIRs. To accomplish this, we require an
optimal linear dimension reduction technique. The
method called principal component analysis is
employed to get orthonormal transformation Q and the

corresponding W ;-

2.2 Principle Component Analysis

The PCA is used here to express the HRIRs in
terms of an orthogonal function expansion. In our
application, we derived orthonormal basis functions
from the normalized HRIRs. Let h; denote the HRIR
of location (0, ¢;),with j=1,2,...P, and P=710. h; is an
128x1 valued vector representing the 128 samples of
the HRIR measured at the jth location. Prior to
deriving the basis function, the space sample average
was subtracted from each normalized HRIR to remove
the direction-independent component. The space

sample average is defined as
1 P
ho == Z h(ﬁj 9, )
P

is the sample mean and a time autocovariance matrix
is then calculated by

P
Rh - %Z; [h(gj > qu )_ huv ]X [h(gl > (p.f )_h”" ]T wh
j=

ich is a real Qalued matrix. The normalized HRIR,
which corresponds to P=710 measured samples, are

used to determine the R, . The eigenvectors of the

covariance matrix Rh define the unit vectors v,

representing the orthogonal directions along which the
variance probes y(v;) (i.e., a function of variance)
have their extreme values, for /=1, 2, ... , N, N=128.
The eigenvalues {A;, Ay, ... , Ay} define the extreme

values of the variance probes y(v,), where R »Vi= Avy,

for /=1, 2, ..., N and the eigenvalues of Rh be
arranged in decreasing order 222Ny This is
an application of PCA to dimensionality reduction.
The eigenvectors of R, are chosen as the
columns of an orthonormal transformation
matrix Q=[q,,9,,*-q,,] - Applying the PCA
methodology to this 128-dimenional representation for
the spatially sampled HRIR, h; can be expressed by the
eigentransfer basis functions ¢q,,i=1...,M . A

given normalized HRIR b is represented by
M
h,=0w, +h, =Y wq, +h,
i=1

Next, we do an experiment for selection of
eigenvectors. The eigenvectors of the covariance
matrix corresponding to the largest eignvalues are
often referred to as principal components in the
context of statistical data analysis. The eigenvalues
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i=1,...,N represent the sample variance of
|_h(91.,¢].)—qoj, j=1,2,...,P projected onto each

eigentransfer function q; i=1,...N. That is, the value o
f A; indicates the variability of projection of the data
on the corresponding eigentransfer function. Hence,
the number of eigenvectors, M, required to achieve a
given mean squared error is determined by the relative
size of the eigenvalues. The results below indicate that
a very percentage of variability in the measured HRIR
is represented using a relatively small value of M.
Finally we choose M=14 as the number of
eigenvectors.

Figure 2.1 Percent of variance as a function of M for
Kemar Database



2.3  Spatial Characteristic Functions

The normalized HRIRs, which contain the
spectral cues, are expressed as weighted combinations
of a set of basis functions. The basis functions are
real-valued eigenvectors that are derived from a
covariance matrix of the measured HRIRs. The
weights applied to each basis function and termed real
spatial characteristic functions, define the relative
contribution of each basis function to the HRIR and
are real-valued functions of the spatial location.
Samples of the M SCF at the P measurement locations
are obtained from the M eigentransfer functions as

w,(0,.0,)=¢"[M6,.0,)-q,}i=12,..M;j=12,.,PTh
e eigentransfer functions ¢;,i = 0,1,...,M only
contain the temporal information of the HRIR and the
weight vectors W, ,I = 1,2,...,M are the spatial

character functions (SCF).

Although the HRIRs are the function of both
space and time, we can separate the spatial
characteristic features from the temporal features
through spatial feature extraction. Because the
sampling in space is more problematic than sampling
in frequency because the spatial bandwidth is
unknown, the required spatial sampling density and
mathematics for reconstructing the HRIR as a
continuous function of 6 and ¢ from samples are
unknown. So we don’t know the SCF of HRIR at an
arbitrary spatial location that doesn’t sample in the
database. The estimates of the SCF applied to each
basis function can be obtained by interpolation. We
will use neural network to solve the problem of
interpolation.

3. Von Mises Basis Function Network

The spatial characteristic functions that we
extract, however, are restricted to the specified
azimuths and elevations that the HRIR database
records. The SCFs for the nonsample spatial location
are unknown. We need a method to estimates of the
spatial characteristic functions using the interpolate
method at arbitrary spatial locations. So it is a problem
of interpolation. There is a network proposed to solve
the two problems of approximation and interpolation.
The architecture of the network is similar to radial
basis function network.

3.1 Von Mises Function

The Von Mises function is based on a spherical
probability density function that was used to model
line directions distributed with rotational symmetry.
The expression for the Von Mises function, dropping
the constant of proportionality and elevational
weighting factor from the probability density function,
is

VMBF(H, ¢) _ e<7c[sin¢sin [ cos(6—a )+cos g cos f-1])

a,0 e [0,27[] p,pe [0,7[]
where the variable 6 and ¢ correspond to any sample
direction in azimuth and elevation. For each Von
Mises function, the parameters o and 3 correspond to a
centroid in azimuth and elevation, and the parameter k

corresponds to a concentration parameter. Applications
of the Von Mises function require an azimuthal range

in radians from 0 to 27 and elevational range form 0
tor. Any sample direction (6 and ¢) on the sphere will
induce an output from a Von Mises function
proportional to the angle between the sample direction
and the centroid of the Von Mises function (a and ).
The azimuthal periodicity of the basis function is
driven by the cos(6-o) term, which will be maximal
when 0=o. The (singsinf) term modulates the
azimuthal term in the elevational plane, hence the
requirement that ¢ range from 0 to w. As the sample
elevation or the centroid elevation approaches either
pole (0 or m), the multiplicative effect of (singsinf3)
progressively eliminates the contribution of azimuthal
variation and the (cos¢cosP) term dominates. The
concentration parameter k controls the function’s
shape, where the larger the value the narrower the
function width after transformation by the expansive
exponential function. Although other spherical
functions have been proposed for approximation on
the sphere (e.g., thin-plate pseudo-spline), the VMBF
serves as a convenient spherical analog of the
well-known multidimensional Gaussian on plane. It
resembles a bump on a sphere and behaves in a similar
fashion to the planar Gaussian with the centroid
corresponding to the mean and k' corresponding to
the SD. It differs from the thin-plate spline in that it
has a parameter for controlling the width or
concentration of the basis function, which allows the
VMBF to focus resolution where needed. A mixture of
Gaussians or Gabor functions has been used to model
curve on the plane, so can a mixture of Von Mises
functions. The parametersa, f and x for a fixed
number of basis functions are “learned” adaptively
with a sum-of-squared-error cost function.

We transform the spatial characteristic functions
from the Cartesian coordinate to polar coordinate. The
shape of spatial characteristic functions in polar
coordinate likes the combinations of Von Mises
functions. So the spatial characteristic functions can be
linear combined with many Von Mises functions.

3.2  Von Mises Basis Function Network

The construction of a Von Mises basis function
network (VMBFN) in its most basic form involves
three entirely different layers. The input layer is made
up of source nodes (sensory units). The second layer is
a hidden layer of high enough dimension, which the
Von Mises basis function serves as the activation
function to conforming to the RBF architecture as
shown in Figure 3.1. The transformation from the
input space to the hidden-unit space is nonlinear,
whereas the transformation from the hidden-unit space
to the output space is linear. Hence the reason for
making the dimension of the hidden-unit space in an
RBFN high. Through careful design, however, it is
possible to reduce the dimension of the hidden-unit
space, especially if the centers of the hidden units are
made adaptive.

The input layer of each network consists of the
any location in azimuth and elevation. The input
requires an azimuthal range in radians from 0 to 2zn
and elevational range from 0 to m. The size of the
hidden layer is determined as following section. For
all experiments, the output layer of each network



consists of 14 nodes, each representing a spatial
feature extraction.

Output Layer:
Spatial Characterisic function

Hidden Layer:
VyMBF(@, w):e(A [sin sin 1 cos(9-arcos ¢ cos 1))
TInput Layer:
Arbitrary azimnth and elevation
Figure 3.1 The architecture of the Von Mises basis
function network
3.3 Back Propagation Learning Algorithm for
VMBFN
Over the course of iterative training, the
centroid(a,B) of each basis function will move on the
surface of the sphere, and the concentration k of the
basis function will change progressively. The learning
algorithm used here is as follows.

Q(n +1)=Q(n) + (n)AQ + £[Q(n) - Q(n -1)]
where Q= [WZT,aT,ﬁT,KT]

The first step in the development of such a
VMBEFN learning procedure is to define the
instantaneous error measure for the pth data pair is
defined by

1 2
E(ti,ﬁ _xi,p)

E
where 7, p is the desire output, X, , is the output of

ip

VMBEFN. The derivative of the above instantaneous
error measure with respect to the linear weights is
written as

oF
Gwp = [ti _yi(99¢)]VMBF(9’¢’aj’ j»’(j) Th
e derivative of the above instantaneous error measure
with respect to the centroid aweights is
OF, o v
e = Kj[SIIl¢ sin 3, s1n(49 - aj)]x z<[t[ - y,(6,¢)]>< wt[4’j>
J i
VMBF(0,4,a,,5,.x,)
The derivative of the above instantaneous error
measure with respect to the centroid B is

OF
j =K, [sin $cospf, cos(é?—aj )— cos @sin f3, ]x Th

ﬁ:<[ti _y[(6’¢)]>< Wti./>XVMBF('9’ ¢’a/” /’Kj)

i

e derivative of the above instantaneous error measure
with respect to the concentration « is

i

Z% =K,/[Sin¢sinﬂ/ Cos(g_al_)+cos¢cosﬂ,-]x

j

(1, - (0.8 x wr, ) VMBF(0.8,2, 5,.x,)

3.4 Orthogonal Least Square Learning Algorithm
for VMBFN
For VMBFN with a scalar output, an intelligent
learning algorithm has been derived based on the
orthogonal least squares method, which constructs
VMBEN in a rational way. The algorithm chooses
appropriate VMBFN centers one by one from training
data points until a satisfactory network is obtained.
Each selected centre maximizes the increment to

explained variance of the desired output, and so
learning does not suffer numerical ill-conditioning
problems. The main attraction of this algorithm is that
it can naturally be implemented in a recursive form.

The orthogonal least square algorithm is a
structural identification algorithm, and it constructs an
adequate network structure in an intelligent way
during learning. The task of network learning is to
choose appropriate centres ¢; and to determine the
corresponding weights 8, based on a given set of
network training inputs To avoid nonlinear learning,
the VMBFN centres are to be selected from training
data, and this is equivalent to a problem of subset
model selection. The full model is defined by
considering all the training data as candidates for
centres.

Assume that a nonlinearity ¢( ) is chosen and a

fixed width o is given. A candidate centre C ;= x(k )
gives rise to a candidate hidden node ¢; in the full

VMBEFN network of N hidden nodes. The desired
outputs can be expressed as

d)=Y 0,600, +e(t) 1<i<n,
j=1

where e(t) are the errors between the desired outputs
and the network outputs. The model in equation above
is a linear regression model. ¢,(t) are known as the
regressors, which are some fixed functions of the input
vector x(t). By defining

d; = [di(l)“'df(N)]T I<i<n

€ :[ei(l)"'ei(N)]T
@, =[¢j(1)"'¢j(N)]T I<j<N

then for 1</<N, equation above can collectively
written as

0, o or,
[d,d,]=[@ 0] : olrlee,]
X gm eNn()
more concisely, in the matrix form
D=0 +FE
The parameter matrix @ can readily be solved using

the LS principle.

Form a geometric viewpoint, the regressors @;
form a set of basis vectors. These basis, however, are
generally correlated. An orthogonal transformation can
be performed to transfer from the set of @; into a set of
orthogonal basis vectors. This can be achieved by
decomposing @ into

O=WA
where 4 is an M*M triangular matrix with 1’s on the
diagonal and 0’s below the diagonal.

The space spanned by the set of w; is the same
space spanned by the set of ®@;, and equation
D =®0+ E can be rewritten as

D=WG+E
The orthogonal least square solution is given by
&n © 8o and
ot
gv vt &

the ordinary LS solution @ satisfy the triangular

system
AB®=G



The classical Gram-Schmidt and modified
Gram-Schmidt methods can be used to derive A and G,
and thus to solve for the LS estimate ® .

4. Experiment Result

In the experiments, there were two networks to
solve the two problems of approximation and
interpolation. These methods are called RBFN and
VMBEFN. So we can compare the performance of the
HRIR system with the RBFN or VMBEFN algorithm in
this chapter. The modeled binaural HRIRs are used to
synthesis that, when presented over earphones. The
work described in this project represents our attempt,
through the development of a simple binaural model,
to simulate 3D audio surround sound.

4.1 Training Result

All the training patterns are randomly picked
from the 710 HRIR set. The RBFN parameters are
initialized by making sure all the centers are in the
input ranges The VMBFN parameters are initialized
by positioning the basis functions uniformly on the
input space with a small degree of relative overlap and
solving the output weights with small pseudoinverse.

In this section, we compare the performance of
learning strategy between the back propagation and
orthogonal least square on the RBFN. We use 710
training patterns to train the RBFN. Figure 4.1 shows
the root mean square error of the RBFN training
between back propagation and orthogonal least square
learning strategy. And Figure 4.2 shows the root mean
square error of the VMBEFN training between back
propagation and orthogonal least square learning
strategy.
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Figure 4.1 The root mean square error of the RBFN
training between back propagation and orthogonal
least square learning strategy.
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Figure 4.2 The root mean square error of the VMBFN
training between back propagation and orthogonal
least square learning strategy.

From the figures above, the performance of
orthogonal least square algorithm is better than the

performance of back propagation algorithm under the
same numbers of hidden layer. Because the orthogonal
least square method can be employed as a forward
regression procedure to select a suitable set of centers
from a large set of candidates. At each step of the
regression, the increment to the explained variance of
the desired output is maximized. So the orthogonal
least square approach provides an efficient learning
algorithm for fitting adequate RBFN network.
4.2 Testing Result

In the experiments of this section, we use
several different numbers of training patterns to train
the RBFN and VMBFN with orthogonal least square
algorithm. All the experiments use the same numbers
of the hidden layer. According the table below, we can
find the result in Table 4.1 shows the performance of
VMBEFN is better than RBFN, even the numbers of the
training set are just 310. So we can say that the Von
Mises function has the better characters for fitting a
spatial characteristic function.

RMS

INUMB RMS RMS
ERS ERRO ERROR |ERROR RMS

R OF ERROR OF
OF OF THE |OF THE

THE THE HRIR
TRAI SCF SCF HRIR USING
INING USING USING [USING RBEN
SET VMBF RBFN |VMBF

700  [0.0588 |0.0617 ]0.0213  [0.0222
690  10.0824 [0.0882 [0.0285 ]0.0303
610  10.0962 10.1017 [0.0329  ]0.0347
510 ]0.1013 ]0.1036 [0.0346  0.0353
410 [0.1052 [0.1058 [0.0351  ]0.0355
310 10.1067 10.1069 [0.0363  ]0.0364
Table 4.1 The results of testing error for VMBN with
OLS and RBFN with OLS.
4.3 The Implementation of HRIR System

According to Figure 4.3, the RMSE of VMBFN
is smaller than RBFN. So we use the VMBFN with
learning strategy of orthogonal least square to train
spatial characteristic functions as our 3D surround
system.
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Figure 4.3 The root mean square error of training
SCFs between VMBFN and RBFN.

We use 60 numbers of hidden units to record
our parameters. The original Kemar HRIR database
quantity of data is
710 locations x 128 points impulse response = 90880
Then the quantity of our parameters is
60 hidden units x (14 parameters of hidden layer to
output layer—+3 parameters of inputs layer to hidden



layer)+ 14x128 eigentransfer functions = 2812

So the compress ratio is
(90880-2812) _ 06.9%

90880
The simulated HRIR is linear combined with the
first fourteen eigentransfer functions and the output
from our VMBFN. Then we synthesize the sound. The
original sound must be convolved with the appropriate
pair of the simulated HRIRs and then presented to the
listener binaurally. Usually this is done using
headphones. The apparent source position can be
changed by selecting the appropriate pair of the
simulated HRIRs. However, to prevent clicks in the
output, it is necessary to perform some sort of
interpolation to smooth the transition. So we must use
smaller interval of azimuth and elevation than the
interval of Kemar HRIR database as the input of our
VMBEFN. Then we can synthesize 3D surround sound
by out system.
5. Conclusion
A simplified model for HRIR is developed and has
been implemented in a network to simulate the sounds.
The model avoids minimum phase approximation by
directly representing the impulse response of HRTF.
Furthermore, the only operations involved in
reconstruction of the HRIR are real multiplication and
real addition, which means the cost of computation is
low. The spatial feature extraction and VMBF network
are used to reduce the storage size of HRIRs. Through
simple combinations of these extracted parameters, we
can get the simulated HRIR. So we believe that our
method is an efficient way to virtual acoustic space
implementation for human.
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Abstract

In this project, a neural-network-based adaptive
hybrid-reflectance model is proposed for 3-D surface
reconstruction. The neural network combines the
diffuse component and specular component into the
hybrid model automatically. We can consider the
characteristic of each point individually and solve the
problem of variant albedo. The pixels of the 2-D
image are fed into the multi-layer neural network and
we can obtain the normal vectors of the surface
through  supervised learning. Then enforcing
integrability method is used for the reconstruction of
3-D objects from the obtained normal vectors. In order
to test the performance of our proposed algorithm on
the facial images and other images of general objects,
we design and construct a photographing environment
to satisfy the requirement of the proposed method. To
make the strength of different light sources
illuminating to the photographed objects equal, the
photographing environment is constructed as a
hemisphere structure. In order to synchronize the
capturing action with the trigger of the electronic
flashes, we also design a control board to control the
electronic ~ flashes. ~With  this  photographing
environment, we can modify the direction of
illuminant source easily and capture images under
variable illumination in a short time. Finally, four

experiments are performed to demonstrate the
performance of the proposed method. The advantages
of our method are summarized as follows: (1) By the
learning ability of neural network, we don’t need to
know the illuminant direction in advance. (2) The
individual characteristic of each point on the surface is
considered. (3) The problem of variant albedo is
considered to avoid the distortion of surface
reconstruction. (4) According to the experimental
results, our neural-network-based adaptive
hybrid-reflectance model can be applied to more
general objects and achieve better performance for
surface reconstruction.

1. Introduction

Shape recovery is a classic problem in computer
vision. The goal is to derive a 3-D scene description
from one or more 2-D images. The techniques to
recover the shape of an object are called shape-from-X
techniques, where X is the specific information and
can be shading, stereo, motion, texture, etc. Shape
recovery from shading (SFS) is a major approach of
the computer vision that deals with 3-D shape
reconstruction of an object from its gradual variation
of shading in 2-D images. When a point light source
illuminates an object, since the normals corresponding
to different parts of the object’s surface are different,
they will appear with different brightness. We make
use of the spatial variation of brightness, referred to
shading, to estimate the orientation of surface and then
calculate the depth map of the object. The recovered
shape can be expressed in terms of the depth , the
surface normal vector , the surface gradient , or the
surface slant and tilt.

The SFS approach is firstly proposed by Horn
in the early 1970s and is further improved by himself
and Brooks. It has received considerable attention and
several efforts have been made to improve the
performance of recovery.

To solve the SFS problem, it is important to
study how the images are formed. A simple model of
image formation is the Lambertian model in which the
gray intensity of a pixel in the image depends on the
light source direction and the surface normal. The
classical methods to solve the SFS problem are
employing the conventional Lambertian model and
minimizing the cost function that consists of the
brightness constraint, the smoothness constraint, the
integrability  constraint, the intensity gradient
constraint, or the unit normal constraint. Since solving
the nonlinear optimization problem requires a long
computational time and it often suffers difficulty in
converging to the optimum solution, the approaches of
direct shape reconstruction were proposed. All these
approaches require an additional smoothness
constraint in the cost function.

Ruo Zhang divided the SFS techniques into four
groups:  minimization approaches, propagation
approaches, local approaches, and linear approaches.
Minimization approaches obtain the solution by
minimizing an energy function. Propagation
approaches propagate the shape information from a set
of surface points to the whole image. Local



approaches derive the shape based on the assumption
of surface type. Linear approaches compute the
solution based on the linearization of the reflectance
map. Ruo Zhang compared these four kinds of SFS
techniques with respect to CPU time and accuracy to
realize the advantages and disadvantages of these
approaches. It was found that none of the algorithms
has consistent performance for all images. They work
well for some images, but perform poorly for others. It
was concluded that, in general, minimization
approaches are more robust, but the other approaches
are faster. In order to achieve high performance of 3-D
reconstruction, the minimization approach is used in
the training stage of our method.
2. Fundamental Reflectance Model

There are mainly two kinds of light reflection
considered in computer vision: diffuse reflection and
specular reflection. Diffuse reflection is a uniform
reflection of light with no directional dependence for
the viewer. On the contrary, the specular reflection
obeys Shell’s law, i.c., the light reaching the surface is
reflected in the direction having the same angle.

2.1 Pure Diffuse Reflectance Model

Lambertian surface is the surface having only
diffuse reflection, i.e., the surface reflects light with
equal strength in all directions, and appear the same
brightness in any viewing directions. The brightness
of a Lambertian surface is proportional to the energy
of the incident light. The amount of light energy
falling on a surface element is proportional to the area
of the surface element as seen from the light source
position (the foreshortened area). The foreshortened
area is a cosine function of the angle € between the
surface orientation (normal vector) n and the light
source s. The diffuse reflectance model is called
Lambertian model in general and it is used to
represent a surface illuminated by a single point light
source as
R,(n(x,y) a(x, y))=max{La(x, y)n(x y)s(x,y).0}

2-1)
2.2 Pure Specular Reflectance Model

Specularity only occurs when the incident angle
of the light source is equal to the reflected angle and
this component is formed by two terms: the specular
spike and the specular lobe. The specular spike is zero
in all directions except for a very narrow  range
around the directions of specular reflection. The
specular lobe spreads around the direction of specular
reflection.

The simplest model for specular reflection is
described by the delta function:

R =Bo(6.-26,)

(2-2)
where R, is the speuclar brightness, B is the strength

of the specular component, g is the angle between

the light source direction and viewing direction, and
¢ 1is the angle between the surface normal and

viewing direction.
2.3 Hybrid Reflectance Model
As far as practical application is concerned, it is
not enough to considering only the diffuse component

or the specular component single-handedly. In general,
most surfaces are neither pure Lambertian nor pure
specular, and their reflection characteristic is the
mixing of these two reflection components. As a result,
hybrid reflectance model was presented. It used a
linear combination of the diffuse intensity and the
specular intensity by a constant ratio:

Rhybml (X,y)Z H Rd (x’ y)+ (1 - /.l) R.& (X, y)’
(2-3)
where p () is the total intensity of the hybrid

hybrid

reflectance model, R, () and Rv(') are the diffuse
intensity and the specular intensity, , is the
combination ratio for the hybrid reflectance model.

3. The Neural-Network-Based Adaptive
Hybrid-Reflectance Model for 3-D Surface
Reconstruction

Although the existing hybrid approaches have
already considered the diffuse and the specular
reflection, they combine these components by constant
ratio for all points on the surface. There are some
problems for the conventional approaches. First, they
can’t determine the proper ratio between the diffuse
and the specular components. In the conventional
method, the ratio is obtained by trying in several
illuminant conditions and finding an optimal value in
the experiments. If the object is changed, then they
must try again by the same steps. This may wastes a
lot of time and the results may not be correct. If they
don’t change the hybrid ratio and use it for all objects,
this is unreasonable and it will produce distortion as
reconstruction. Second, the characteristic of each
position on the surface may not be the same and we
should deal with them individually. For example, the
brow of human face is usually smooth and flat, and the
nose is usually sharp. Thus we should consider
different hybrid ratio in these regions. But the
conventional hybrid methods use the same hybrid ratio
for the whole surfaces, it will lead to ill-reconstruction
for complicate surfaces.

Undoubtedly, it is hard to determine the proper
hybrid ratio of diffuse and specular components for
different surfaces in advance. Therefore, in this project,
we propose a novel neural-network-based
hybrid-reflectance model and the hybrid ratio of
diffuse and specular component is regarded as
adaptive weights of neural network. The supervised
learning algorithm is adopted and the hybrid ratio for
each point is updated in the learning iterations. After
the learning process, we will obtain the proper hybrid
ratio. In this manner, we will not trouble about the
combination and we can integrate diffuse component
and specular component intelligently and efficiently.

Fig. 1 Block diagram of the proposed adaptive



hybrid- reflectance model.

The schematic block diagram of our proposed
adaptive hybrid-reflectance model is shown in Fig. 1.
The structure diagram consists of the diffuse part and
the specular part. They are used to describe the
characteristic of the diffuse component and specular
component of our adaptive hybrid-reflectance model,
respectively, by two neural networks with similar
structure of neural network. The composite intensity
R is obtained by using the adaptive weights

A,(x,y) and 2 (xy) to combine the diffuse

hybrid

intensity R, and the specular intensity R . The inputs

of the system are 2-D image intensity of each point
and the outputs of system are the learned reflectance
map.

3.1 The Variant Albedo Effect

The conventional SFS methods assume that the
object’s surface has constant albedo. When solving the
SFS problem, they ignore the effect of the albedo.
Consequently, they can’t be applied directly to the
images that their object’s surface has variant albedo.

In this project, we calculate the rough-albedo
value first for each pixel and adjust the intensity value
for each pixel by dividing by the corresponding
rough-albedo value. Since the intensity value at each
point is just the composite albedo value multiplied by
the rest term in the irradiance equation, the effect of
albedo variation will be canceled by the intensity
adjustment. Then the shape distortion of objects with
variant albedo can be solved and obtain the correct
depth map.

Fig. 2 shows the reconstructed results of a
synthetic sphere with two albedo values on the
different regions. The reconstructed result of the
conventional method obtains wrong depth estimation
as shown in Fig. 2(b). The reconstructed result of the
proposed method more approximates to the original
shape of the sphere as shown in Fig. 2(c).

Fig. 2 (a) The image with different albedo on the
same surface. (b)The reconstructed result by
the conventional method. (¢)The reconstructed
result by the proposed method.

3.2 Diffuse Component of the Hybrid Reflectance
Model

The structure of the symmetric neural network
used to simulate the diffuse reflection model (as
shown in Fig. 3) is proposed. The input and output of
the symmetric neural network is like a mirror in the
center layer and the number of input nodes is equal to
the number of output nodes, therefore, we call it as the
symmetric neural network. We separate the light
source direction and the normal vector from the input

2-D images in the left part of the symmetric neural
network and then we combine them inversely to
generate the reflectance map for diffuse reflection in
the right part of the network.

—{(F ~NO—D—R.,
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Fig. 3 The structure of the symmetry neural network
for diffuse reflection model

3.3 Specular Component of the Hybrid Reflectance

Model

The energy of specular component is maximum

when incident angle of the illumination direction is

equal to viewer’s angle and it decreases rapidly when

the angle far away the incident angle of the

illumination. By physical observation, Phong

proposed the reflected intensity function for specular

reflection as (cosg)”. When r is larger, the plot of

(cosg)” is more closing to the y-axis and the cross
area by the contour of (cos¢g)” is smaller. Therefore,

the parameter r is related to the degree of specuarity
and it can be use to represent the roughness of the
surface. If the surface is rougher, its reflection is
approximate to diffuse reflection and its parameter r
should be smaller. Otherwise, 7 should be larger for
smooth surface.

Based on the concept, specular reflection R is

calculated from normal vector n and half-way vector
h by

R (n(x, ) h(x, y))=(<nlx, ) h(x, ) >) =(cosg)

(-1

where ¢ is the angle between normal vector n and

halfway-vector h. If the viewer observes the surface

just at the reflected direction, then h equals to n, that
is ¢=0. In this situation, the observed energy is

strongest and this corresponds to the phenomenon of
specular reflection.
3.4 The Adaptive Hybrid-Reflectance Model
The complete structure of the adaptive hybrid-
reflectance model is shown in Fig. 4. The total
intensity of the adaptive hybrid-reflectance model is
expressed as the following equation:

Rhybridk = ﬂ‘d,( de + ﬂ“sk RS,(’
(3-2)
where ; and ; is the adaptive combination ratio
d, 51

between the diffuse and specular intensities in our

hybrid model. In order to get the proper ratio of each

points, ; and ; are regarded as the weights of the
d, St

neural network and they can be determined after the
training of the network.
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Fig. 4 The complete structure of our neural
network.

3.5 The Training of the Proposed Model
The back-propagation method is used for the
supervised learning of our method and our goal is to

minimize the error function
2

ET = g(Rhybr[d, -D, [) ’
(3-3)

where m is the number of total pixels of the 2-D image.

R is the ith output of the neural network. p is

hybrid;
the ith desired output and it is equal to the ith intensity
of the original 2-D image. For each 2-D image,
starting at the input nodes, a forward pass is used to
compute the activity levels of all the nodes in the
network to obtain the output. Then starting at the
output nodes, a backward pass is used to compute
oF % for the hidden nodes. Assuming that @ is the
w

adjustable parameter in the network, the general
update rule used is

Ao o — OF, ’
ow
(3-4)
olt+1)=olt)+ n(_ 5Ej :
ow
(3-5)

where 77 is the learning rate.

3.6 3-D Surface Reconstruction from the Normal
Vectors
In general, the surface z(x, y) can be represented

2{x,y)= Y clo)glx. v 0)
0eQ (3-6)
where ® = (u, v) is a two-dimensional index where

as:

the sum is performed, Q is a finite set of indexes,
and {g4(x,y,0)} is a finite set of basis functions

which are not necessarily mutually orthogonal. The
partial derivatives of z(x,y) can also be expressed

in the same way, that is

z,(x,y)=Yc(0)¢,(x.y.0), G

weQ

z, (5, )= Y c(0)d,(x,y.0), (3-8

weQ

where

g Plov.e)=og()ox  4(xr.0)=04()cy

Suppose we now have the possibly nonintegrable
2 (x,y) and 2,(x,) We can express these partial
derivatives as

2(xy)=2é(0)4.(x.r.0), ;o9

e

z, (x, J’) = Z;éz ((D) 9, (x, Y, 03)- (3-10)
In order to enforce integr;bility, we would like to find
z.(x, ) and z,(x,y) which are a set of integrable

partial derivatives to approximate 2 (x,y) and
2,(x,y)> respectively. In other words, we want to

solve the equation
min 2(2.(x, )= 2.(x,9))" +(z,(x,y) - Z}(x,()é){zl.)
X,y -

If a possibly nonintegrable estimation of surface
slopes gx(x,y) and Zﬂy(x,y) is given, a method
has been proposed for finding the expansion
coefficients c((y)) as:

_ o) (@)+p, () (o) , for
clw)=

p.(0)+p, ()

o=(u,)eQ, (3-12)

where P, (0)) = ﬂ
Finally, the surface depth can be calculated by

performing inverse 2D-FFT on the coefficients c(u)).

A schematic block diagram of our method for
3-D surface reconstruction is shown in Fig. 5. The top
five blocks of Fig. 5 are corresponding to the learning
process of the proposed hybrid-reflectance model and
the rest blocks represent 3-D surface reconstruction
from the obtained normal vectors. The proposed
algorithm corresponding to Fig. 5 for the SFS problem
is also summary step by step in Fig. 6.

4. Experimental Results and Analysis

Some experimental results are shown in this
seciton. First, images of the synthetic objects are used
for testing. The estimated depth map is compared with
the true depth map to examine the performance of
reconstruction.

In the second experiment, images corresponding
to real surfaces of human faces are used for testing.
Those images are downloaded from the Yale Face
Database B. Fig. 7 shows the reconstructed results of
the proposed method. Fig. 8 and Fig. 9 show the
reconstructed results of human faces and general
objects captured by the photographing environment.

6. (x.yr0)f dxdy, p,(0)=[],(x.r.0) dxdy.
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Fig. 5 Block diagram of the proposed reconstructed
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Fig 6. Summary of the proposed algorithm for SFS

problem.

TABLE 1 The absolute mean errors between
estimated depth and desired depth of
sphere surface.

Mean The The The Propose

absolut | diffuse | specular | hybrid d

e depth | reflectan | reflectan | reflectan | reflectan

error | ce model | ce model | ce model | ce model
(R3)) ()] (3D

Consta | 0.0245 0.0253 0.0240 0.0248

nt

albedo

Varian | 0.0286 1.8514 1.7328 0.0283

t

albedo

TABLE 2  The absolute mean errors between the
estimated depth and the desired depth of
sombrero and vase.

Mean The The The Propose

absolut | diffuse | specular | hybrid d

e depth | reflectan | reflectan | reflectan | reflectan

error ce ce ce ce
model model model model
D ()] (3D
Sombre | 0.0374 1.6823 1.6508 0.0366
)
Vase 1.2162 0.8937 0.8337 0.0963
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Fig. 7 The reconstructed results of Yale Face Database
B by the proposed method.

-
P B

Fig. 8 The reconstructed results of our laboratory

members by the proposed method.
Jz"' b




Fig. 9 The images of the first row are the original 2-D
images and the images of the second row are the
reconstructed results of general objects by the
proposed method.

5. Conclusions and Discussions

In this project, a novel 3-D reconstruction
method is proposed. This method considers the diffuse
reflection component and the speuclar reflection
component of the reflectance model simultaneously.
We use two neural networks with similar structure to
simulate them separately and combine them with the
adaptive ratio for each point. The proposed model can
be used to generalize the characteristic of the real
objects, and the obtained normal vectors of the surface
are also applied to 3-D surface reconstruction by
enforcing integrability approach.

We also consider the influence of variable
albedo and try to reduce the distortion due to variable
albedo effects. To cancel the effect of albedo variation,
we adjust the intensity value for each pixel by dividing
the pixel’s intensity by the corresponding
rough-albedo value. Then these intensities are fed into
our neural network to learn the normal vectors of the
surface by the back-propagation learning algorithm.
The critical parameters, such as the light source and
the viewing direction and so on, are also obtained
from the learning process of the neural network.

In addition, the influence of illuminant positions
and angles on the reconstruction performance of our
method and how to find the better combination of
shaded images for fine reconstruction are also
discussed. It is concluded that we should use three
images at least for fine reconstruction. However, the
reconstructed results that use more than three images
are not necessarily better than the reconstructed result
that uses three images. Based on the conclusion, we
use three 2-D images to reconstruct the surface of a
3-D object in the proposed method and we can reduce
the unnecessary calculation.

The contributions of the proposed method are
summarized as follows:

1. In the past, we have to know the locations of light
sources first for solving the SFS problems. But this is
not practical in the real situations. In this project, we
used the images under three different light source
locations to solve this problem. In our method, we can
still obtain a very good result even if the locations of
light sources are not given.

2. In this project, we consider the changes of the
albedo on the object surface. So, we can also get a
good reconstruction results of the human faces and
general objects with variant albedo.

3. Applying the proposed model combined with
supervised training procedure for solving SFS
problems does not need any special parameters and the
smoothing conditions. It is easier to converge and
make the system stable.

4. The proposed method applies the adaptive
combination ratio for each points of the surface to
compose the diffuse intensity and specular intensity.
In this manner, the different reflecting properties of
each point are considered to achieve Dbetter
performance of surface reconstruction.
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From the experimental results, our proposed
method can reconstruct the object well and it also
indicates that our method is better than the
conventional approaches indeed. There are still some
aspects to be improved in the future, such as the
influence of object size, some critical surface, and so
on. In addition, the present researches considered the
linear combination of the diffuse components and the
specular components by some way. In the future, we
could study a single nonlinear reflection model to
consider these two components efficiently and
directly.



