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一、前言 

本計畫為「虛擬實境之多媒體影音控

制技術開發」，研發重點在於結合各種

電機資訊與人工智慧等科技，讓虛擬實

境系統具備有智慧型的反應能力，研究

的方向有虛擬實境多媒體系統的影像控

制、音訊控制與通訊等三項技術的開發

與研究。在本期的計畫中，除了已就音

訊控制技術開發的部份，包括「不特定

語者語音辨識系統核心辨識器」與「環

場音效系統之研究」做研究外，這裡將

再針對3D音場技術作探討；此外，就影

像控制技術開發的部分，我們也說明關

於三維立體影像重建之研究。 
關於3D音場技術部份，我們嘗試建立

3D環繞音效的系統模型，主要技術包括

以PCA對已有的頭部相關位置脈衝響應

(Heade-Related-Impulse-Response，HRIR)
資料庫作分析及壓縮，同時利用類神經

網路內插的特性將空間中任一位置的

HRIR合成出來，以達成3D音場之重建與

模擬。在三維立體影像重建之研究中，

我們提出一個以類神經網路為基礎的適

應性整合式反射模型。這個類神經網路

自動整合光學成像上的散射與反射成

分，使得我們可以個別考慮物體表面上

每一點的成像特性，並且針對表面不同

反射率的問題加以處理。 

以下將分別針對此二主題進行說明。 

 
二、3D 音場技術之研究 

Abstract 
In this project, we build a virtual 3D 

environment. We use the MIT head-related impulse 
responses (HRIRs) as our database. More specifically, 
it deals with synthesis of 3D moving sound to be 
supplied binaurally through headphones. Then, we 
propose an efficient method, which can reduce the 

information size and interpolate the nonsampling 
HRIR while retaining high resolution of localization. 
First, in this model the HRIRs are expressed as 
weighted combinations of a set of eigentransfer 
functions. The weights applied to each eigentransfer 
functions only of spatial location and are thus termed 
SCFs (Spatial Characteristic Functions).  

The SCFs that we extract, however, are restricted 
to the specified azimuths and elevations that the HRIR 
database records. The SCFs for the nonsample spatial 
location are unknown. So we use the architecture of 
radial basis function network (RBFN) with Von Mises 
function as activation functions for classification of the 
spatial characteristic features. This neural network is 
called VMBFN (Von Mises Basis Functions Network). 
The VMBFN used here can solve the problem of 
approximation and interpolation. When using the 
orthogonal least square learning algorithm to train 
VMBFN, the RMSE (Root Mean Square Error) is 
minimal. Through convolution the source sound with 
the simulated HRIR, we can synthesize the spatial 
sound over headphone.. 

1. Introduction 
Sound is an extremely useful medium for 

conveying information. We are focused on study of the 
head-related impulse responses (HRIRs). In this case, 
the direction of arrival of the sound can be controlled 
by filtering the original monaural signal through a 
proper set of previously measured HRIRs But the 
database needs a lot of memories to record. It is 
difficult to allocate such a large memories on the IC. 
The present work addresses the problem of spatial 
sound generation at a reduced storage cost. So we 
propose a neural network model of binaural hearing 
based on spatial feature extraction of the HRIRs. 

As a consequence, estimating the HRIR 
associated with any desired source location asks for 
some interpolation scheme. When realizing moving 
sound, especial care must be taken to avoid audible 
discontinuities along the required path. So we also 
concentrate on the issue of the interpolation of HRIRs. 
Our neural network associated with spatial 
characteristic functions parameterized by angular 
positions provides proper localization for each sound 
source. Given the desired angles, only the 
corresponding spatial characteristic functions need to 
be computed. Therefore, this method can be more 
efficient than conventional HRIRs interpolation when 
dealing with multi-source synthesis. Furthermore, the 
method implicitly performs the spatial interpolation of 
the non-measured HRIRs. 
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In this project we propose an efficient method, 
which can reduce the information size and 
computation while retaining high resolution of 
localization. First, in this model the HRIRs are 
expressed as weighted combinations of a set of 
eigentransfer functions. The weights applied to each 
eigentransfer functions only of spatial location and are 
thus termed spatial characteristic functions. Then, we 
use the architecture of radial basis function network 
(RBFN) with Von Mises function as activation 
functions for classification of the spatial characteristic 
features. This neural network is called VMBFN. The 
VMBFN used here can solve the problem of 
approximation and interpolation. Through convolution 
the source sound with HRIR, we can synthesize the 
spatial sound over headphone. So we can build a 
virtual 3D environment.  

2. Spatial Feature Extraction 
The HMM, which uses probabilistic functions of 

Markov chains to model random processes, is a model 
of stochastic process. The effectiveness of this model 
class lies in its ability to deal with non-stationarity that 
often appears in the observed data sequences. HMMs 
usually turn out to be a good model for non-stationary 
process, such as the sequence of the speech observation 
vectors. 

2.1 Basic Framework 
Our goal in this chapter is to reduce the storage 

for HRIR through the dimension reduction of the data 
set. We use structural composition and decomposition 
of the database to compress the database. HRIRs of 
Kemar are our database. There were 710 
measurements taken around the manikin at elevations 
ranging from -40 to +90 at one meter in distance. ∘ ∘
Let hj denote the HRIR of location (θj, φj), where the 
variable θ and φ correspond to any sample direction in 
azimuth and elevation, with j=1,2,…P, and P=710. hj 
is an 128×1 valued vector representing the 128 
samples of the HRIR measured at the jth location.  

A given normalized HRIR hj is decomposited by 

biasi

M

i
ijbiasjj hqwhQwh +=+= ∑

=1

                   

To reduce the amount of storage of HRIR we 
only record both the transformation matrix 

],,[ 21 MqqqQ L=  and jw  to replace record the 

database of HRIRs. To accomplish this, we require an 
optimal linear dimension reduction technique. The 
method called principal component analysis is 
employed to get orthonormal transformation Q and the 
corresponding jw . 

2.2 Principle Component Analysis  
The PCA is used here to express the HRIRs in 

terms of an orthogonal function expansion. In our 
application, we derived orthonormal basis functions 
from the normalized HRIRs. Let hj denote the HRIR 
of location (θj, φj),with j=1,2,…P, and P=710. hj is an 
128×1 valued vector representing the 128 samples of 
the HRIR measured at the jth location. Prior to 
deriving the basis function, the space sample average 
was subtracted from each normalized HRIR to remove 
the direction-independent component. The space 

sample average is defined as 

( )∑
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is the sample mean and a time autocovariance matrix 
is then calculated by 
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ich is a real valued matrix. The normalized HRIR, 
which corresponds to P=710 measured samples, are 
used to determine the hR . The eigenvectors of the 

covariance matrix hR  define the unit vectors vl 
representing the orthogonal directions along which the 
variance probes ψ(vl) (i.e., a function of variance) 
have their extreme values, for l = 1, 2, … , N, N=128. 
The eigenvalues {λ1, λ2, … , λN} define the extreme 
values of the variance probes ψ(vl), where hR vl = λlvl, 

for l = 1, 2, … , N and the eigenvalues of hR  be 
arranged in decreasing order 

Nλλλ ≥≥≥ ...21
. This is 

an application of PCA to dimensionality reduction. 
The eigenvectors of 

hR  are chosen as the 
columns of an orthonormal transformation 
matrix ],,[ 21 MqqqQ L= . Applying the PCA 
methodology to this 128-dimenional representation for 
the spatially sampled HRIR, hj can be expressed by the 
eigentransfer basis functions Miqi ,...,1, = . A 
given normalized HRIR hj is represented by 

avi
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i
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Next, we do an experiment for selection of 
eigenvectors. The eigenvectors of the covariance 
matrix corresponding to the largest eignvalues are 
often referred to as principal components in the 
context of statistical data analysis. The eigenvalues  
λi , 

i=1,…,N represent the sample variance of 
( )[ ]0, qh jj −ϕθ , j=1,2,…,P projected onto each 

eigentransfer function qi, i=1,…N. That is, the value o 
f λi indicates the variability of projection of the data 
on the corresponding eigentransfer function. Hence, 
the number of eigenvectors, M, required to achieve a 
given mean squared error is determined by the relative 
size of the eigenvalues. The results below indicate that 
a very percentage of variability in the measured HRIR 
is represented using a relatively small value of M. 
Finally we choose M=14 as the number of 
eigenvectors. 
Figure 2.1 Percent of variance as a function of M for 
Kemar Database 
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2.3 Spatial Characteristic Functions 
The normalized HRIRs, which contain the 

spectral cues, are expressed as weighted combinations 
of a set of basis functions. The basis functions are 
real-valued eigenvectors that are derived from a 
covariance matrix of the measured HRIRs. The 
weights applied to each basis function and termed real 
spatial characteristic functions, define the relative 
contribution of each basis function to the HRIR and 
are real-valued functions of the spatial location. 
Samples of the M SCF at the P measurement locations 
are obtained from the M eigentransfer functions as  

( ) ( )[ ] PjMiqhqw jj
H
ijji ,...,2,1;,...,2,1,,, 0 ==−= ϕθϕθ Th

e eigentransfer functions Miqi ,...,1,0, =  only 
contain the temporal information of the HRIR and the 
weight vectors Miwi ,...,2,1, =  are the spatial 
character functions (SCF). 

Although the HRIRs are the function of both 
space and time, we can separate the spatial 
characteristic features from the temporal features 
through spatial feature extraction. Because the 
sampling in space is more problematic than sampling 
in frequency because the spatial bandwidth is 
unknown, the required spatial sampling density and 
mathematics for reconstructing the HRIR as a 
continuous function of θ and φ from samples are 
unknown. So we don’t know the SCF of HRIR at an 
arbitrary spatial location that doesn’t sample in the 
database. The estimates of the SCF applied to each 
basis function can be obtained by interpolation. We 
will use neural network to solve the problem of 
interpolation. 

3. Von Mises Basis Function Network 
The spatial characteristic functions that we 

extract, however, are restricted to the specified 
azimuths and elevations that the HRIR database 
records. The SCFs for the nonsample spatial location 
are unknown. We need a method to estimates of the 
spatial characteristic functions using the interpolate 
method at arbitrary spatial locations. So it is a problem 
of interpolation. There is a network proposed to solve 
the two problems of approximation and interpolation. 
The architecture of the network is similar to radial 
basis function network.  

3.1 Von Mises Function 
The Von Mises function is based on a spherical 

probability density function that was used to model 
line directions distributed with rotational symmetry. 
The expression for the Von Mises function, dropping 
the constant of proportionality and elevational 
weighting factor from the probability density function, 
is 

( ) ( )[ ]

[ ] [ ]πφβπθα
φθ βφαθβφκ

0,,    2,0,                        
            , 1coscoscossinsin

∈∈

= −+−eVMBF

where the variable θ and φ correspond to any sample 
direction in azimuth and elevation. For each Von 
Mises function, the parameters α and β correspond to a 
centroid in azimuth and elevation, and the parameter κ 
corresponds to a concentration parameter. Applications 
of the Von Mises function require an azimuthal range 

in radians from 0 to 2π and elevational range form 0 
toπ. Any sample direction (θ and φ) on the sphere will 
induce an output from a Von Mises function 
proportional to the angle between the sample direction 
and the centroid of the Von Mises function (α and β). 
The azimuthal periodicity of the basis function is 
driven by the cos(θ-α) term, which will be maximal 
when θ=α. The (sinφsinβ) term modulates the 
azimuthal term in the elevational plane, hence the 
requirement that φ range from 0 to π. As the sample 
elevation or the centroid elevation approaches either 
pole (0 or π), the multiplicative effect of (sinφsinβ) 
progressively eliminates the contribution of azimuthal 
variation and the (cosφcosβ) term dominates. The 
concentration parameter κ controls the function’s 
shape, where the larger the value the narrower the 
function width after transformation by the expansive 
exponential function. Although other spherical 
functions have been proposed for approximation on 
the sphere (e.g., thin-plate pseudo-spline), the VMBF 
serves as a convenient spherical analog of the 
well-known multidimensional Gaussian on plane. It 
resembles a bump on a sphere and behaves in a similar 
fashion to the planar Gaussian with the centroid 
corresponding to the mean and κ-1 corresponding to 
the SD. It differs from the thin-plate spline in that it 
has a parameter for controlling the width or 
concentration of the basis function, which allows the 
VMBF to focus resolution where needed. A mixture of 
Gaussians or Gabor functions has been used to model 
curve on the plane, so can a mixture of Von Mises 
functions. The parametersα, β and κ for a fixed 
number of basis functions are “learned” adaptively 
with a sum-of-squared-error cost function. 

We transform the spatial characteristic functions 
from the Cartesian coordinate to polar coordinate. The 
shape of spatial characteristic functions in polar 
coordinate likes the combinations of Von Mises 
functions. So the spatial characteristic functions can be 
linear combined with many Von Mises functions. 
3.2 Von Mises Basis Function Network 

The construction of a Von Mises basis function 
network (VMBFN) in its most basic form involves 
three entirely different layers. The input layer is made 
up of source nodes (sensory units). The second layer is 
a hidden layer of high enough dimension, which the 
Von Mises basis function serves as the activation 
function to conforming to the RBF architecture as 
shown in Figure 3.1. The transformation from the 
input space to the hidden-unit space is nonlinear, 
whereas the transformation from the hidden-unit space 
to the output space is linear. Hence the reason for 
making the dimension of the hidden-unit space in an 
RBFN high. Through careful design, however, it is 
possible to reduce the dimension of the hidden-unit 
space, especially if the centers of the hidden units are 
made adaptive.  

The input layer of each network consists of the 
any location in azimuth and elevation. The input 
requires an azimuthal range in radians from 0 to 2π 
and elevational range from 0 to π. The size of the 
hidden layer is determined as following section. For 
all experiments, the output layer of each network 
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consists of 14 nodes, each representing a spatial 
feature extraction. 

Figure 3.1 The architecture of the Von Mises basis 
function network  

3.3 Back Propagation Learning Algorithm for 
VMBFN 

Over the course of iterative training, the 
centroid(α,β) of each basis function will move on the 
surface of the sphere, and the concentration κ of the 
basis function will change progressively. The learning 
algorithm used here is as follows. 

( ) ( ) ( ) ( )[ ]1)(1n −Ω−Ω+∆Ω+Ω=+Ω nnnn µη
where [ ]TTTTwt κβα ,,, =Ω  

The first step in the development of such a 
VMBFN learning procedure is to define the 
instantaneous error measure for the pth data pair is 
defined by  

( )2
,,, 2

1
pipipi xtE −=                        

where pit , is the desire output, pix ,  is the output of 

VMBFN. The derivative of the above instantaneous 
error measure with respect to the linear weights is 
written as 
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e derivative of the above instantaneous error measure 
with respect to the centroid αweights is 
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The derivative of the above instantaneous error 
measure with respect to the centroid β is  
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e derivative of the above instantaneous error measure 
with respect to the concentration κ is  
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3.4 Orthogonal Least Square Learning Algorithm 
for VMBFN 

For VMBFN with a scalar output, an intelligent 
learning algorithm has been derived based on the 
orthogonal least squares method, which constructs 
VMBFN in a rational way. The algorithm chooses 
appropriate VMBFN centers one by one from training 
data points until a satisfactory network is obtained. 
Each selected centre maximizes the increment to 

explained variance of the desired output, and so 
learning does not suffer numerical ill-conditioning 
problems. The main attraction of this algorithm is that 
it can naturally be implemented in a recursive form. 

The orthogonal least square algorithm is a 
structural identification algorithm, and it constructs an 
adequate network structure in an intelligent way 
during learning. The task of network learning is to 
choose appropriate centres cj and to determine the 
corresponding weights θji, based on a given set of 
network training inputs To avoid nonlinear learning, 
the VMBFN centres are to be selected from training 
data, and this is equivalent to a problem of subset 
model selection. The full model is defined by 
considering all the training data as candidates for 
centres. 

Assume that a nonlinearity φ( ) is chosen and a 
fixed width σ is given. A candidate centre ( )kxc j =  

gives rise to a candidate hidden node φj in the full 
VMBFN network of N hidden nodes. The desired 
outputs can be expressed as 

( ) ( ) ( ) oi
j

jiji nitettd ≤≤+=∑
=

1     
1

θϕ                  

where ei(t) are the errors between the desired outputs 
and the network outputs. The model in equation above 
is a linear regression model. φj(t) are known as the 
regressors, which are some fixed functions of the input 
vector x(t). By defining 

( ) ( )[ ] o
T

iii niNddd ≤≤= 1     1 L

( ) ( )[ ] o
T

iii niNeee ≤≤= 1       1 L   

( ) ( )[ ] NjN T
jjji ≤≤=Φ 1   1 ϕϕ L  

then for 1≤t≤N, equation above can collectively 
written as  
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
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θθ

θθ or, 

more concisely, in the matrix form 
ED +ΦΘ=                          

The parameter matrix Θ  can readily be solved using 
the LS principle. 

 Form a geometric viewpoint, the regressors Φj 
form a set of basis vectors. These basis, however, are 
generally correlated. An orthogonal transformation can 
be performed to transfer from the set of Φj into a set of 
orthogonal basis vectors. This can be achieved by 
decomposing Φ into 

Φ=WA 
where A is an M×M triangular matrix with 1’s on the 
diagonal and 0’s below the diagonal. 

The space spanned by the set of wj is the same 
space spanned by the set of Φj, and equation 

ED +ΦΘ=  can be rewritten as 
EWGD +=                           

The orthogonal least square solution is given by 
















=

NnoN
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G

L

MOM

L

1

111                      and 

the ordinary LS solution Θ  satisfy the triangular 
system 

GA =Θ                            

Input Layer:
Arbitrary azimuth and elevation

Hidden Layer:

( ) ( )[ ]  , 1coscoscossinsineVMBF −+−= βφαθβφκφθ

....

........

θ φ 1

κα

β

w

Output Layer:
Spatial Characterisic function
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The classical Gram-Schmidt and modified 
Gram-Schmidt methods can be used to derive A and G, 

and thus to solve for the LS estimateΘ . 
4. Experiment Result 

In the experiments, there were two networks to 
solve the two problems of approximation and 
interpolation. These methods are called RBFN and 
VMBFN. So we can compare the performance of the 
HRIR system with the RBFN or VMBFN algorithm in 
this chapter. The modeled binaural HRIRs are used to 
synthesis that, when presented over earphones. The 
work described in this project represents our attempt, 
through the development of a simple binaural model, 
to simulate 3D audio surround sound. 

4.1 Training Result 
All the training patterns are randomly picked 

from the 710 HRIR set. The RBFN parameters are 
initialized by making sure all the centers are in the 
input ranges The VMBFN parameters are initialized 
by positioning the basis functions uniformly on the 
input space with a small degree of relative overlap and 
solving the output weights with small pseudoinverse.  

In this section, we compare the performance of 
learning strategy between the back propagation and 
orthogonal least square on the RBFN. We use 710 
training patterns to train the RBFN. Figure 4.1 shows 
the root mean square error of the RBFN training 
between back propagation and orthogonal least square 
learning strategy. And Figure 4.2 shows the root mean 
square error of the VMBFN training between back 
propagation and orthogonal least square learning 
strategy. 
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Figure 4.1 The root mean square error of the RBFN 
training between back propagation and orthogonal 
least square learning strategy. 
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Figure 4.2 The root mean square error of the VMBFN 
training between back propagation and orthogonal 
least square learning strategy. 

From the figures above, the performance of 
orthogonal least square algorithm is better than the 

performance of back propagation algorithm under the 
same numbers of hidden layer. Because the orthogonal 
least square method can be employed as a forward 
regression procedure to select a suitable set of centers 
from a large set of candidates. At each step of the 
regression, the increment to the explained variance of 
the desired output is maximized. So the orthogonal 
least square approach provides an efficient learning 
algorithm for fitting adequate RBFN network. 

4.2 Testing Result 
In the experiments of this section, we use 

several different numbers of training patterns to train 
the RBFN and VMBFN with orthogonal least square 
algorithm. All the experiments use the same numbers 
of the hidden layer. According the table below, we can 
find the result in Table 4.1 shows the performance of 
VMBFN is better than RBFN, even the numbers of the 
training set are just 310. So we can say that the Von 
Mises function has the better characters for fitting a 
spatial characteristic function. 

NUMB
ERS 
OF 
TRAI
NING 
SET 

RMS 
ERRO
R OF 
THE 
SCF 
USING 
VMBF

RMS 
ERROR 
OF THE 
SCF 
USING 
RBFN 

RMS 
ERROR 
OF THE 
HRIR 
USING 
VMBF 

RMS 
ERROR OF 
THE HRIR 
USING 
RBFN 

700 0.0588 0.0617 0.0213 0.0222 
690 0.0824 0.0882 0.0285 0.0303 
610 0.0962 0.1017 0.0329 0.0347 
510 0.1013 0.1036 0.0346 0.0353 
410 0.1052 0.1058 0.0351 0.0355 
310 0.1067 0.1069 0.0363 0.0364 

Table 4.1 The results of testing error for VMBN with 
OLS and RBFN with OLS. 

4.3 The Implementation of HRIR System 
According to Figure 4.3, the RMSE of VMBFN 

is smaller than RBFN. So we use the VMBFN with 
learning strategy of orthogonal least square to train 
spatial characteristic functions as our 3D surround 
system.  
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Figure 4.3 The root mean square error of training 
SCFs between VMBFN and RBFN. 

We use 60 numbers of hidden units to record 
our parameters. The original Kemar HRIR database 
quantity of data is  
710 locations × 128 points impulse response = 90880  
Then the quantity of our parameters is 
60 hidden units × (14 parameters of hidden layer to 
output layer＋3 parameters of inputs layer to hidden 
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layer)＋14×128 eigentransfer functions = 2812 
So the compress ratio is  

( ) %9.96
90880

281290880
=

−              

The simulated HRIR is linear combined with the 
first fourteen eigentransfer functions and the output 
from our VMBFN. Then we synthesize the sound. The 
original sound must be convolved with the appropriate 
pair of the simulated HRIRs and then presented to the 
listener binaurally. Usually this is done using 
headphones. The apparent source position can be 
changed by selecting the appropriate pair of the 
simulated HRIRs. However, to prevent clicks in the 
output, it is necessary to perform some sort of 
interpolation to smooth the transition. So we must use 
smaller interval of azimuth and elevation than the 
interval of Kemar HRIR database as the input of our 
VMBFN. Then we can synthesize 3D surround sound 
by out system. 

5. Conclusion 
A simplified model for HRIR is developed and has 

been implemented in a network to simulate the sounds. 
The model avoids minimum phase approximation by 
directly representing the impulse response of HRTF. 
Furthermore, the only operations involved in 
reconstruction of the HRIR are real multiplication and 
real addition, which means the cost of computation is 
low. The spatial feature extraction and VMBF network 
are used to reduce the storage size of HRIRs. Through 
simple combinations of these extracted parameters, we 
can get the simulated HRIR. So we believe that our 
method is an efficient way to virtual acoustic space 
implementation for human. 

 
二、三維立體影像重建之研究 

Abstract 
In this project, a neural-network-based adaptive 
hybrid-reflectance model is proposed for 3-D surface 
reconstruction. The neural network combines the 
diffuse component and specular component into the 
hybrid model automatically. We can consider the 
characteristic of each point individually and solve the 
problem of variant albedo. The pixels of the 2-D 
image are fed into the multi-layer neural network and 
we can obtain the normal vectors of the surface 
through supervised learning. Then enforcing 
integrability method is used for the reconstruction of 
3-D objects from the obtained normal vectors. In order 
to test the performance of our proposed algorithm on 
the facial images and other images of general objects, 
we design and construct a photographing environment 
to satisfy the requirement of the proposed method. To 
make the strength of different light sources 
illuminating to the photographed objects equal, the 
photographing environment is constructed as a 
hemisphere structure. In order to synchronize the 
capturing action with the trigger of the electronic 
flashes, we also design a control board to control the 
electronic flashes. With this photographing 
environment, we can modify the direction of 
illuminant source easily and capture images under 
variable illumination in a short time. Finally, four 

experiments are performed to demonstrate the 
performance of the proposed method. The advantages 
of our method are summarized as follows: (1) By the 
learning ability of neural network, we don’t need to 
know the illuminant direction in advance. (2) The 
individual characteristic of each point on the surface is 
considered. (3) The problem of variant albedo is 
considered to avoid the distortion of surface 
reconstruction. (4) According to the experimental 
results, our neural-network-based adaptive 
hybrid-reflectance model can be applied to more 
general objects and achieve better performance for 
surface reconstruction. 

 
1.  Introduction 

Shape recovery is a classic problem in computer 
vision. The goal is to derive a 3-D scene description 
from one or more 2-D images. The techniques to 
recover the shape of an object are called shape-from-X 
techniques, where X is the specific information and 
can be shading, stereo, motion, texture, etc. Shape 
recovery from shading (SFS) is a major approach of 
the computer vision that deals with 3-D shape 
reconstruction of an object from its gradual variation 
of shading in 2-D images. When a point light source 
illuminates an object, since the normals corresponding 
to different parts of the object’s surface are different, 
they will appear with different brightness. We make 
use of the spatial variation of brightness, referred to 
shading, to estimate the orientation of surface and then 
calculate the depth map of the object. The recovered 
shape can be expressed in terms of the depth , the 
surface normal vector , the surface gradient , or the 
surface slant and tilt. 

The SFS approach is firstly proposed by Horn 
in the early 1970s and is further improved by himself 
and Brooks. It has received considerable attention and 
several efforts have been made to improve the 
performance of recovery.  

To solve the SFS problem, it is important to 
study how the images are formed. A simple model of 
image formation is the Lambertian model in which the 
gray intensity of a pixel in the image depends on the 
light source direction and the surface normal. The 
classical methods to solve the SFS problem are 
employing the conventional Lambertian model and 
minimizing the cost function that consists of the 
brightness constraint, the smoothness constraint, the 
integrability constraint, the intensity gradient 
constraint, or the unit normal constraint. Since solving 
the nonlinear optimization problem requires a long 
computational time and it often suffers difficulty in 
converging to the optimum solution, the approaches of 
direct shape reconstruction were proposed. All these 
approaches require an additional smoothness 
constraint in the cost function.  

Ruo Zhang divided the SFS techniques into four 
groups: minimization approaches, propagation 
approaches, local approaches, and linear approaches. 
Minimization approaches obtain the solution by 
minimizing an energy function. Propagation 
approaches propagate the shape information from a set 
of surface points to the whole image. Local 
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approaches derive the shape based on the assumption 
of surface type. Linear approaches compute the 
solution based on the linearization of the reflectance 
map. Ruo Zhang compared these four kinds of SFS 
techniques with respect to CPU time and accuracy to 
realize the advantages and disadvantages of these 
approaches. It was found that none of the algorithms 
has consistent performance for all images. They work 
well for some images, but perform poorly for others. It 
was concluded that, in general, minimization 
approaches are more robust, but the other approaches 
are faster. In order to achieve high performance of 3-D 
reconstruction, the minimization approach is used in 
the training stage of our method.  

2.  Fundamental Reflectance Model 
There are mainly two kinds of light reflection 

considered in computer vision: diffuse reflection and 
specular reflection. Diffuse reflection is a uniform 
reflection of light with no directional dependence for 
the viewer. On the contrary, the specular reflection 
obeys Shell’s law, i.e., the light reaching the surface is 
reflected in the direction having the same angle. 

2.1 Pure Diffuse Reflectance Model 
Lambertian surface is the surface having only 

diffuse reflection, i.e., the surface reflects light with 
equal strength in all directions, and appear the same 
brightness in any viewing directions. The brightness 
of a Lambertian surface is proportional to the energy 
of the incident light. The amount of light energy 
falling on a surface element is proportional to the area 
of the surface element as seen from the light source 
position (the foreshortened area). The foreshortened 
area is a cosine function of the angle θ between the 
surface orientation (normal vector) n  and the light 
source s. The diffuse reflectance model is called 
Lambertian model in general and it is used to 
represent a surface illuminated by a single point light 
source as 

( ) ( )( ) ( ) ( ) ( ) },y,xyx,y,xLmax{y,x,y,xRd 0  s  n      n αα = .           
(2-1) 

2.2 Pure Specular Reflectance Model 
Specularity only occurs when the incident angle 

of the light source is equal to the reflected angle and 
this component is formed by two terms: the specular 
spike and the specular lobe. The specular spike is zero 
in all directions except for a very narrow   range 
around the directions of specular reflection. The 
specular lobe spreads around the direction of specular 
reflection. 

The simplest model for specular reflection is 
described by the delta function: 

)(BR vss θθδ 2−= ,                                
(2-2) 
where 

sR  is the speuclar brightness, B is the strength 
of the specular component, 

sθ  is the angle between 
the light source direction and viewing direction, and 

vθ  is the angle between the surface normal and 
viewing direction. 

2.3 Hybrid Reflectance Model 
As far as practical application is concerned, it is 

not enough to considering only the diffuse component 

or the specular component single-handedly. In general, 
most surfaces are neither pure Lambertian nor pure 
specular, and their reflection characteristic is the 
mixing of these two reflection components. As a result, 
hybrid reflectance model was presented. It used a 
linear combination of the diffuse intensity and the 
specular intensity by a constant ratio: 

  ( ) ( ) ( )y,xR)(y,xRy,xR sdhybrid     µµ −+= 1 ,          

(2-3) 
where ( )⋅hybridR  is the total intensity of the hybrid 

reflectance model, ( )⋅dR  and ( )⋅sR  are the diffuse 
intensity and the specular intensity, µ  is the 
combination ratio for the hybrid reflectance model. 
 

3.  The Neural-Network-Based Adaptive 
Hybrid-Reflectance Model for 3-D Surface 

Reconstruction 
Although the existing hybrid approaches have 

already considered the diffuse and the specular 
reflection, they combine these components by constant 
ratio for all points on the surface. There are some 
problems for the conventional approaches. First, they 
can’t determine the proper ratio between the diffuse 
and the specular components. In the conventional 
method, the ratio is obtained by trying in several 
illuminant conditions and finding an optimal value in 
the experiments. If the object is changed, then they 
must try again by the same steps. This may wastes a 
lot of time and the results may not be correct. If they 
don’t change the hybrid ratio and use it for all objects, 
this is unreasonable and it will produce distortion as 
reconstruction. Second, the characteristic of each 
position on the surface may not be the same and we 
should deal with them individually. For example, the 
brow of human face is usually smooth and flat, and the 
nose is usually sharp. Thus we should consider 
different hybrid ratio in these regions. But the 
conventional hybrid methods use the same hybrid ratio 
for the whole surfaces, it will lead to ill-reconstruction 
for complicate surfaces. 

Undoubtedly, it is hard to determine the proper 
hybrid ratio of diffuse and specular components for 
different surfaces in advance. Therefore, in this project, 
we propose a novel neural-network-based 
hybrid-reflectance model and the hybrid ratio of 
diffuse and specular component is regarded as 
adaptive weights of neural network. The supervised 
learning algorithm is adopted and the hybrid ratio for 
each point is updated in the learning iterations. After 
the learning process, we will obtain the proper hybrid 
ratio. In this manner, we will not trouble about the 
combination and we can integrate diffuse component 
and specular component intelligently and efficiently.  

 

 
Fig. 1  Block diagram of the proposed adaptive 



 8

hybrid- reflectance model. 
The schematic block diagram of our proposed 

adaptive hybrid-reflectance model is shown in Fig. 1. 
The structure diagram consists of the diffuse part and 
the specular part. They are used to describe the 
characteristic of the diffuse component and specular 
component of our adaptive hybrid-reflectance model, 
respectively, by two neural networks with similar 
structure of neural network. The composite intensity 

hybridR  is obtained by using the adaptive weights 

)y,x(dλ  and )y,x(sλ  to combine the diffuse 
intensity

dR  and the specular intensity
sR . The inputs 

of the system are 2-D image intensity of each point 
and the outputs of system are the learned reflectance 
map.  

3.1 The Variant Albedo Effect 
The conventional SFS methods assume that the 

object’s surface has constant albedo. When solving the 
SFS problem, they ignore the effect of the albedo. 
Consequently, they can’t be applied directly to the 
images that their object’s surface has variant albedo. 

In this project, we calculate the rough-albedo 
value first for each pixel and adjust the intensity value 
for each pixel by dividing by the corresponding 
rough-albedo value. Since the intensity value at each 
point is just the composite albedo value multiplied by 
the rest term in the irradiance equation, the effect of 
albedo variation will be canceled by the intensity 
adjustment. Then the shape distortion of objects with 
variant albedo can be solved and obtain the correct 
depth map. 

Fig. 2 shows the reconstructed results of a 
synthetic sphere with two albedo values on the 
different regions. The reconstructed result of the 
conventional method obtains wrong depth estimation 
as shown in Fig. 2(b). The reconstructed result of the 
proposed method more approximates to the original 
shape of the sphere as shown in Fig. 2(c). 

 

   

 
Fig. 2  (a) The image with different albedo on the 

same surface. (b)The reconstructed result by 
the conventional method. (c)The reconstructed 
result by the proposed method. 

 
3.2 Diffuse Component of the Hybrid Reflectance  

Model 
The structure of the symmetric neural network 

used to simulate the diffuse reflection model (as 
shown in Fig. 3) is proposed. The input and output of 
the symmetric neural network is like a mirror in the 
center layer and the number of input nodes is equal to 
the number of output nodes, therefore, we call it as the 
symmetric neural network. We separate the light 
source direction and the normal vector from the input 

2-D images in the left part of the symmetric neural 
network and then we combine them inversely to 
generate the reflectance map for diffuse reflection in 
the right part of the network.  

 
Fig. 3  The structure of the symmetry neural network 

for diffuse reflection model 
3.3 Specular Component of the Hybrid Reflectance 

Model 
The energy of specular component is maximum 

when incident angle of the illumination direction is 
equal to viewer’s angle and it decreases rapidly when 
the angle far away the incident angle of the 
illumination. By physical observation, Phong 
proposed the reflected intensity function for specular 
reflection as r)(cosφ .  When r is larger, the plot of 

r)(cosφ  is more closing to the y-axis and the cross 
area by the contour of r)(cosφ  is smaller. Therefore, 
the parameter r is related to the degree of specuarity 
and it can be use to represent the roughness of the 
surface. If the surface is rougher, its reflection is 
approximate to diffuse reflection and its parameter r 
should be smaller. Otherwise, r  should be larger for 
smooth surface. 

Based on the concept, specular reflection 
sR  is 

calculated from normal vector n  and half-way vector 
h  by  

( ) ( )( ) ( )( ) ( )rr
s cos)y,x(,y,xy,x,y,xR φ=><=  h  n h  n ,        

(3-1) 
where φ  is the angle between normal vector n and 
halfway-vector h. If the viewer observes the surface 
just at the reflected direction, then h equals to n, that 
is 0=φ . In this situation, the observed energy is 
strongest and this corresponds to the phenomenon of 
specular reflection.  

3.4 The Adaptive Hybrid-Reflectance Model 
The complete structure of the adaptive hybrid- 

reflectance model is shown in Fig. 4. The total 
intensity of the adaptive hybrid-reflectance model is 
expressed as the following equation: 

                                                     
,

kkkk ssddkhybrid RRR λλ +=                   

(3-2) 
where 

kdλ  and 
ksλ  is the adaptive combination ratio 

between the diffuse and specular intensities in our 
hybrid model. In order to get the proper ratio of each 
points, 

kdλ  and 
ksλ are regarded as the weights of the 

neural network and they can be determined after the 
training of the network. 
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Fig. 4  The complete structure of our neural 

network. 
 

3.5 The Training of the Proposed Model 
The back-propagation method is used for the 

supervised learning of our method and our goal is to 
minimize the error function 

( )
2

1
∑
=

−=
m

i
ihybridT DRE

i

          ,                         

(3-3) 
where m is the number of total pixels of the 2-D image. 

ihybridR  is the ith output of the neural network. 
iD  is 

the ith desired output and it is equal to the ith intensity 
of the original 2-D image. For each 2-D image, 
starting at the input nodes, a forward pass is used to 
compute the activity levels of all the nodes in the 
network to obtain the output. Then starting at the 
output nodes, a backward pass is used to compute 

ω∂
∂ TE  for the hidden nodes. Assuming that ω  is the 

adjustable parameter in the network, the general 
update rule used is 

ω
ω

∂
∂

−∝∆ TE                  ,                                   

(3-4) 
      ( ) ( ) 








∂
∂

−+=+
ω

ηωω TEtt 1          ,                       

(3-5) 
where η  is the learning rate. 

3.6 3-D Surface Reconstruction from the Normal 
Vectors 

In general, the surface z(x, y) can be represented 
as:  

                                            
(3-6) 

where ( )vu  ,=ω  is a two-dimensional index where 
the sum is performed, Ω  is a finite set of indexes, 
and ( ){ }  , , ωyxφ  is a finite set of basis functions 
which are not necessarily mutually orthogonal. The 
partial derivatives of ( )yxz  ,  can also be expressed 
in the same way, that is 

                     (3-7) 
                                                           

(3-8) 

where                                  
and                                . 

Suppose we now have the possibly nonintegrable 
),(ˆ yxzx
 and ),(ˆ yxz y

. We can express these partial 

derivatives as  
              

(3-9) 
              

(3-10) 
In order to enforce integrability, we would like to find 

),( yxzx
 and ),( yxzy

which are a set of integrable 

partial derivatives to approximate ),(ˆ yxzx
 and 

),(ˆ yxz y
, respectively. In other words, we want to 

solve the equation 
              

(3-11) 
If a possibly nonintegrable estimation of surface 

slopes ( )yxzx ,ˆ  and ( )yxz y ,ˆ  is given, a method 

has been proposed for finding the expansion 
coefficients ( )ωc  as: 

                                     , for  
 
 

( ) Ω∈= vu,ω ,      (3-12) 
 
where                          

Finally, the surface depth can be calculated by 
performing inverse 2D-FFT on the coefficients ( )ωc . 

A schematic block diagram of our method for 
3-D surface reconstruction is shown in Fig. 5. The top 
five blocks of Fig. 5 are corresponding to the learning 
process of the proposed hybrid-reflectance model and 
the rest blocks represent 3-D surface reconstruction 
from the obtained normal vectors. The proposed 
algorithm corresponding to Fig. 5 for the SFS problem 
is also summary step by step in Fig. 6. 

 
4. Experimental Results and Analysis 

Some experimental results are shown in this 
seciton. First, images of the synthetic objects are used 
for testing. The estimated depth map is compared with 
the true depth map to examine the performance of 
reconstruction. 

In the second experiment, images corresponding 
to real surfaces of human faces are used for testing. 
Those images are downloaded from the Yale Face 
Database B. Fig. 7 shows the reconstructed results of 
the proposed method. Fig. 8 and Fig. 9 show the 
reconstructed results of human faces and general 
objects captured by the photographing environment. 
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Fig. 5 Block diagram of the proposed reconstructed 
method. 
 

 
Fig 6. Summary of the proposed algorithm for  SFS 
problem. 
TABLE 1   The absolute mean errors between 

estimated depth and desired depth of   
sphere surface. 

Mean 
absolut
e depth 
error 

The 
diffuse 

reflectan
ce model  

([1]) 

The 
specular 
reflectan
ce model  

([2]) 

The 
hybrid 

reflectan
ce model 

 ([3]) 

Propose
d 

reflectan
ce model

Consta
nt 
albedo 

0.0245 0.0253 0.0240 0.0248 

Varian
t 
albedo 

0.0286 1.8514 1.7328 0.0283 

TABLE 2   The absolute mean errors between the 
estimated depth and the desired depth of 
sombrero and vase.  

Mean 
absolut
e depth 
error 

The 
diffuse 

reflectan
ce 

model  
([1]) 

The 
specular 
reflectan

ce 
model  
([2]) 

The 
hybrid 

reflectan
ce 

model  
([3]) 

Propose
d 

reflectan
ce 

model 

Sombre
ro 

0.0374 1.6823 1.6508 0.0366 

Vase 1.2162 0.8937 0.8337 0.0963 
 

 

 

       

 
Fig. 7 The reconstructed results of Yale Face Database 
B by the proposed method. 
 

       

 

                

 
Fig. 8 The reconstructed results of our laboratory 
members by the proposed method. 
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Fig. 9 The images of the first row are the original 2-D 
images and the images of the second row are the 
reconstructed results of general objects by the 
proposed method. 

5.  Conclusions and Discussions 
In this project, a novel 3-D reconstruction 

method is proposed. This method considers the diffuse 
reflection component and the speuclar reflection 
component of the reflectance model simultaneously. 
We use two neural networks with similar structure to 
simulate them separately and combine them with the 
adaptive ratio for each point. The proposed model can 
be used to generalize the characteristic of the real 
objects, and the obtained normal vectors of the surface 
are also applied to 3-D surface reconstruction by 
enforcing integrability approach. 

We also consider the influence of variable 
albedo and try to reduce the distortion due to variable 
albedo effects. To cancel the effect of albedo variation, 
we adjust the intensity value for each pixel by dividing 
the pixel’s intensity by the corresponding 
rough-albedo value. Then these intensities are fed into 
our neural network to learn the normal vectors of the 
surface by the back-propagation learning algorithm. 
The critical parameters, such as the light source and 
the viewing direction and so on, are also obtained 
from the learning process of the neural network. 

In addition, the influence of illuminant positions 
and angles on the reconstruction performance of our 
method and how to find the better combination of 
shaded images for fine reconstruction are also 
discussed. It is concluded that we should use three 
images at least for fine reconstruction. However, the 
reconstructed results that use more than three images 
are not necessarily better than the reconstructed result 
that uses three images. Based on the conclusion, we 
use three 2-D images to reconstruct the surface of a 
3-D object in the proposed method and we can reduce 
the unnecessary calculation. 

The contributions of the proposed method are 
summarized as follows: 
1. In the past, we have to know the locations of light 
sources first for solving the SFS problems. But this is 
not practical in the real situations. In this project, we 
used the images under three different light source 
locations to solve this problem. In our method, we can 
still obtain a very good result even if the locations of 
light sources are not given.  
2. In this project, we consider the changes of the 
albedo on the object surface. So, we can also get a 
good reconstruction results of the human faces and 
general objects with variant albedo.  
3. Applying the proposed model combined with 
supervised training procedure for solving SFS 
problems does not need any special parameters and the 
smoothing conditions. It is easier to converge and 
make the system stable.  
4. The proposed method applies the adaptive 
combination ratio for each points of the surface to 
compose the diffuse intensity and specular intensity. 
In this manner, the different reflecting properties of 
each point are considered to achieve better 
performance of surface reconstruction. 

From the experimental results, our proposed 
method can reconstruct the object well and it also 
indicates that our method is better than the 
conventional approaches indeed. There are still some 
aspects to be improved in the future, such as the 
influence of object size, some critical surface, and so 
on. In addition, the present researches considered the 
linear combination of the diffuse components and the 
specular components by some way. In the future, we 
could study a single nonlinear reflection model to 
consider these two components efficiently and 
directly.  
 


