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(failure times)

This paper is mainly concerned with modelling data from degradation sample paths
over time. It uses a genera growth curve model with Box—Cox transformation,
random effects and ARMA (p, ¢) dependence to analyse a set of such data A
maximum likelihood estimation procedure for the proposed model is derived and
future values are predicted, based on the best linear unbiased prediction. The paper
compares the proposed models with a nonlinear degradation model from a prediction
point of view. Forecasts of failure times with various data lengths in the sample are
also compared.

In this paper, we are concerned with modelling degradation data such as
measurements of the growth of fatigue cracks. In general, engineers need to produce
units of material with acceptable reliability and at an acceptable life-cycle cost. Most
material accumulates irreversible damage during its life, which leads to failure. The



cumulative damage reduces the reliability of the materia as time increases. To
maintain an acceptable reliability in the unit, inspections and repairs must be made,
which increase life-cycle costs. Thus, cumulative damage plays a very important role
in the design of the unit.

For degradation data such as the fatigue crack growth data described above, it is
very important to develop a model capable of predicting the fatigue crack growth and,
most important of all, predicting the time to failure. Then engineers can order repair
or replacement before the failure actually occurs. Once the unit or material has failed,
itistoo lateto repair, and failure could cause heavy physical and/or economic losses.

This type of data is quite typical in studies such as accelerated life testing,
because the product usualy takes a long time to wear out. One important
characteristic of the observations obtained in degradation studies is that they are
measurements of several units, and each unit is measured over time. The
measurements on a single unit are not independent because they are time-series in
nature. If there are only a few measurements on the unit, say fewer than 20, then the
dependence may be too hard to estimate. Fortunately, such data are usually obtained
for severa similar and independent units. Also, the linearity of growth function can be
enhanced by the well known Box—Cox transformation (Box & Cox, 1964), as seen in
Figure 1(b). These phenomena occur in many studies including technology
substitutions as reported by Keramidas & Lee (1990). This paper predicts that a
general growth curve model having ARMA(p, ¢q) dependence coupled with the
Box—Cox transformation can be applied to degradation data. A model is proposed and
compared, in terms of its prediction accuracy and failure time prediction, with the
degradation model of Lu & Meeker (1993) using the fatigue crack data of Bogdanoff
& Kozin (1985). The failure time is the time to grow a crack from 0.90 inches to the
critical crack length of 1.60 inches. A credible prediction of failure time is important,
particularly to engineers.

From the results presented in Section 4 we know that if there are only a few
measurements on each unit, it may be too hard to estimate the autocorrelation. Also,
the data in each unit are time-series in nature and hence are not independent.
Therefore, we can use the general growth curve model with ARMA(p, ¢) covariance
structures to analyse this kind of data, using measurements from similar units to get
better prediction results. The advantage of our modelling for this type of data is
evident in the comparisons of forecast accuracy in future values and in failure times.

As remarked in Rochon (1992), ARMA(p, ¢) covariance structures are worth
considering and may have better performance than AR(1) dependence in many
applications. For the modelling of degradation data, with appropriate ARMA(®p, q)
covariance structure and coupled with random effects and the Box—Cox



transformation, our modelling approach makes the prediction results quite appealing.
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Based on the generalized p-values and generalized confidence interval developed by
Tsui and Weerahandi (1989), Weerahandi (1993), respectively, hypothesis testing and
confidence intervals for the ratio of means of two normal populations are developed
to solve Fieller's problems. We use two different procedures to find two potential
generalized pivotal quantities. One procedure is to find the generalized pivota
quantity based directly on the ratio of means. The other is to treat the problem as a
pseudo Behrens-Fisher problem through testing the two-sided hypothesis on 4, and
then to construct the 1-o generalized confidence interval as a counterpart of
generalized p-values. Illustrative examples show that the two proposed methods are
numerically equivalent for large sample sizes. Furthermore, our simulation study
shows that confidence intervals based on generalized p-values without the assumption
of identical variance are more efficient than two other methods, especidly in the
situation in which the heteroscedasticity of the two populations is serious.

Much attention has heen paid to Fieller's E""I'I"":"' hecause they occurred fre-
quently I many important research areas such as bioassay and boeguivalence [
bioassay '|'-I':-|-|.l":I|. the relative potency ol a test pr |=-'-I':|Ii:-I| fs |-||||||;||'|-|:_ with a
astandard 18 estimated by (1) the ratio of two means for direct assavs, (1] the ratio of
twn gl |n-r|||- nt normal random variables to |-:||:|||-'| hine assavs ancd (o) the ratye



of two slopes for slope-ratio assays. In biological sssav problems (Fieller (1954),
Finney (1978)) and bicequivalence problems (Chow and Lin (1992), Berger and
Heu [1996G)], one is interested o the relative potency of two drugs or treatments,
Traditionally, Fieller {1944, 19534} provides s widely used general procedure for the
construction of confidence imtervals (often called Fieller's theorem) for the ratio of
means (also discussed by Rao (1973), Finney (1978}, Koschat {(1987) and Hwang
(1995]). Under homoscedasticity case, Koschat (1987) has also shown that within a
large class of sensible procedures the Fieller solution 15 the only one that gives exact
coverage probability for all parameters. However, the conventional procedures are
often restricted to the assumption of a common variance or pairwise observations for
mathematical tractability. Thus, the exact approsches to Fieller's problems under
the unequal variances assumption have also been intensively investigated. Consider
the following problem: Let X=X Xy - X,,) and ¥V=(}]. %5, .- ¥, ) be two
independent sets of observations for the potency of a standard drg and a new
drug, respectively. Assume that X, are independently and wdentically distributed
as Nigy, o), Yi are independently and identically distributed as N{ps, 03), where
jiy and gis are the true potencies. The problem is to determine, with any desired
probability, the range of values for the ratio of means # = i: which s the melative
potency of the new drug to the standard.

Under the assumption of identical variance, Fieller (1054) constructed a confi-
dence interval based on the statistic

T = 7["?4?5)_,
|:1.|_—=+W:‘-~'r"i

: Lo 3, P oo , el e I L e
where X = ap Loiml s Y = ng gt ¥ and 5% - ==l rn+n:'” I is

obvious that 1,!'%1 T has the Student's £ distribution with (n; +ns —2) degrees
of freedom. Solving the inequality

Ry LT

(g + rg (1 g 4+ 62 /g )82
ny 4+ ng — 2

={0:[F—0T| < t1_q 1,

where fi-g 15 the (1 — 3 )th quantile of the ¢ distribution, the exact 1 — o confidence
interval for # will be obtained.

On the other hand, if variances are related to the means, such as ¢ = (c+ Yeg?
with ¢ + gty > 0,1 = 1.2 and & is known, Cox (1985) provided a interval estimate
based on the statistic

(N —2)2

= o



with I = (¢ +JU"¢ + T — e+ e+ # a=(c4+ pua)” ‘—"'-'— + (e 4 pg )*= f..‘al
. . Xy ny oy
anel %T I_"_ + -"""'—"—T : [T = noted that T has 'r||| Fisher-Snedecor’s
F distribution ‘.‘n]lll 1 and ny + ng — 2 desrees of freedom. Define § = S the
! : - Lt S LE
1001 — &)™ confidence interval for & i1s obtaimed ]rj.' solving the ||_|_q-||_||_;=||||_.1,

(N -nP
(8 ———— < Fy_,(1.ny 4+ ny = 2)}.

(1 P

For ¢ = 0 and & = 2, the oyl — o % confidence interval for & = H 15 based on

solving the quadratic inequality

Fialling4+nz—2 52 5
{E:{E_ﬁjzi 1 &{ s 0] 2 :I - 2 +52 1 ]}-..
ny +ng — 2 ny/(ng + nz) nz/(n1 +na)
with 57 = JI- Titlry —T)* and 55 = . L T (y — §)%, respectively.

[ lh]:n article, we propose two different exact approaches based on generalized
p-values and generalized confidence intervals, as defined by Tsul and Weerahandi
{ ] tk=tay, 1|.I||l1'||'|_'il.||i||jl'|i [ 1UEs g, |_|'.h|_:-|-1'rj‘.'|'|_:l,'. to constract confidence intervals tor the
ratio of memns of two pormal ]|1|]|I|_|_||Ti_|r||:-\. el ||1-T|'|:'|:-e-|'|'||,:u-\.l'jl.jr_'.' The lack of
excact confidenoe intervals in many applications can be ateributed to the statistical
problems mvolving nusance parameters. | he possibility of exact confidence interval
can b schioved by extending the defimcion of confidence interval, Lo generalize the
definition of confidence intervals, first examine the properties of interval estimates
obtained by the conventional definition. To fix ideas, consider a random sample
X=(X. Xz, X, ) from a distribution with an unknown parameter 8. Let A{ X')

anid EI X I be two statistics .-;1r1.-r'_riu-__~_ the l.'l:11].|.1'il ()]
PAIX) =0 <B(X)] =+,

where v B a prespecified constant between 0 and 1. Let a=A{x) and b=B(x) be
the ohserved values of the two statistics, then, in the commonly nsed terminolosy,
|z, B is a confidence interval for @ with the confidence coefficient +. For example, if
1 = .95, then the interval [a, b obtained in this manner s a 93% confidence interval.
This approach to constructing interval estimates is conceptually simple and easy to
implement, but in most applications involving nuisance parameters it is not easy or
impossible to fnd A(x) and B(x) so as to satisfy the above equation for al possible
values of the nuisance parameters. The idea in generalized confidence intervals is to
make this possible by making probability statements relative to the observed sample,
as done in Bayesian and nonparametric methods. In other words, we alow the
functions A(-) and B(+) to depend not only on the observable random vector X but also
on the observed data Xobs.
In this article, we propose two different exact generalized approaches based on
generalized p-values and generalized confidence intervals to solve the well-known
Fieller-Creasy problem, which is widely used in many important research areas such



as bioassay and bioequivalence. Under homogeneous case, Fieller's solution gives
exact coverage probability for al parameters. Unfortunately, in the presence of
serious heteroscedasticity, the methods under the restriction of identical variance can
not yield decent confidence intervals. Through the proposed methods in this article, an
exact 1 — a generalized confidence intervals for the ratio of two means can be
obtained under unequal variances and unequal sample sizes. According to our
findings, the existing procedures ignoring the mild heteroscedasticity will perform
well. However, they will perform very poorly in the situation in which serious
heteroscedasticity is present. Thus our proposed methods are very valuable in practice,
especially when the two variances are quite different.
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On thelnverse of the Autocorrelation Matrix for an AR (p) Process
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Cy = (,O‘I_s‘), t,s=1....N, p Xy = (xl,...,xN)'
Nzp
C C MANOV A

AR( 2)
AR( 3) AR( 4)

Lot Oy = il”'n-q]' t,a = 1,...,N, be the autocorrelation matrix of a
veretor X v = (2q,.... Ty ) from a stationary antoregressive process of order
p, where N = p. In this paper, we derive a general formula without any
distributional assumption, which is easy to program for directly solving the
inverse of Oy, denoted by ﬂ';' The formulation of I:';-] i= vselil in time se-
ries analysis, general linear model, multivariate linear model, MANOVA and
growth curves model with high order antoregressive errors, and can simplify
the computational procedure of parameter estimation. Some demonstrations
of l:-';-] including AR(2)., AR(3), and AR{4) are given.

In time series model, let {z;} be the observations on a variate at time ¢, for
t=12,.... It is assumed that the underlying model is a stationary autoregressive
process of order p (AR(p)),

ie.,

Tp— T — = Pplp = Iy,

11



with the following assumptions:

_ E(xz,)
rl!';I|! sl = ﬂ_g .
Similar to Siddiqui (1958), let
Xln,l = {Tl._...._ﬂ'.'_.l.'r];_.
X?\- = {TN_. - _..]’:1]'[_.
Y_.-..r = I:.I:h vy oy Zpaly ooy IN 1 E,n,'}r,
Y:,' - |:2.’N: EN—1s---3Zp4+1:Tpy-.. ,Il}r,

then E(Xy) =0, E(Yn)=0,and p,=1, p, =p,.

Let Xy stand for the covariance matrix of Xy, 1e., Cov(X y) = By, and T,

for Cov(X3,). then by (1.2). Ex = 02Cy = X%, where Cy is the autocorrelation
P

matrix, that is, Cy = (pu al}! t,s =1,...,N, and p; = Et:":'.’.l'plt il for i 2 1.
=1

Siddiqui (1958) noted that Xy is persvmmetric (or r]{mhl}'.ﬁylnmetri(']._ and so is

=3
0 0
. - )= 2 a
B} |{ _';.-3 ]1 C[n {Yﬁ"] 0'2. ( U I.’\'—P )1
where

78, = Cov(X,) = 02O,

Wise (1955) proposed a method to obtain ¢°E3', where N > 2p, based on
the spectral density function and under the assumption of o2 being equal to a2,
Siddigumi (1958) derived EE.'_. where N = 2p, from the properties of persymmetric
matrix under the normality assumption of X 5 with o7 being one. Galbraith and
Galbraith (1974) provided an explicit formula for 2X3", where N > p, given the
distributions of zjs are i.i.d. Gaussion with mean zero and variance o7 for all f.
Box, Jenkins and Reinsel (1994, p. 206) also gave a somewhat improved version
of Siddiqui’s method to find E;—l iterativelyv, which is not efficient when N is much
bigger than p.

In this paper, we give a general derivation, alternative to Galbraith and Galbraith
(1974), of obtaining C ;-1._ and its determinant when N > p, by using simple matrix
algebra and without any distributional assumption. Once C3' is obtained, 3" =

J—liﬂ & which is quite useful in time series analysis, general linear model, multivariate
Fa
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linear model, multivariate analysis of variance (MANOWVA), and growth curves model
as well as other areas where the dependence of the observed variables has an AR(p)
structure. This will facilitate the parameter estimation and prediction of future

observations. | ¢f. Rao (1967), Lee (1988) and Chib (1993) ].
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