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Abstract 

In both behavioral and statistical sciences, the concept of suppression within the context 

of multiple linear regression has been the subject of considerable discussion, with much of the 

controversy focusing on the advantages and disadvantages associated with the definitions for 

this counterintuitive condition. This paper proposes alternative expressions for the two most 

prevailing definitions of suppression without resorting to the standardized regression 

modeling. The formulation provides a simple basis for the examination of their relationship. 

For the two-predictor regression, we demonstrate that the previous results in the literature are 

incomplete and oversimplified. The proposed approach also allows a natural extension for 

multiple regression with more than two predictor variables. It is shown that the conditions 

under which both types of suppression can occur are not fully congruent with the significance 

of the partial F test. This implies that all the standard variable selection techniques: backward 

elimination, forward selection and stepwise regression procedures can fail to detect 

suppression situations. This also explains the controversial findings in the redundancy or 

importance of correlated variables in applied settings. Furthermore, informative visual 

representations of various aspects of these phenomena are provided.  
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1. Introduction 

Multiple regression analysis is one of the most widely used of all statistical methods. 

One of the purposes of multiple regression is to investigate the relative importance of a 

number of predictor variables for their relationship with a response variable. The predictor 

variables are typically correlated among themselves and therefore there is no simple answer 

concerning how to assess their individual contribution. Several measures have been proposed 

such as t values, standardized regression coefficient, increment in R 2 , and correlation 

coefficients. Related comments and discussions can be found in Bring (1995, 1996) and their 

references. In this article, we focus on the concept of suppression that occurred when 

comparing the contribution of individual predictor variable with and without the presence of 

other predictor variables. Since Horst (1941) first discussed that a predictor variable can be 

totally uncorrelated with the response variable and still improves prediction by virtue of being 

correlated with other predictors, much discussion has been made concerning the concept of 

suppression in behavioral sciences. For detailed reviews of different approaches to defining 

suppression, see Conger (1974), Velicer (1978), Tzelgov & Henik (1981, 1991), Holling 

(1983) and Smith, Ager & Williams (1992).  

In this study, we are especially concerned with the definitions proposed by Conger 

(1974) and Velicer (1978) because they have drawn the most attention in both behavioral and 

statistical research. Essentially, Conger’s definition is based on the standardized regression 

coefficient and simple correlation, whereas Velicer’s definition is referred to the squared 

multiple and simple correlations or equivalently the increment in R2. As Pedhazur (1997) 

pointed out, the definition and interpretation of suppression, however, remain controversial. 

This is partly because the definitions of Conger (1974) and Velicer (1978) are fundamentally 
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different with respect to model formulation. Specifically, the comparisons between these two 

definitions are restricted to the special case of standardized regression model with two 

predictors as shown in Tzelgov & Henik (1981). Their results suggest that the cases of 

Conger’s suppression situations subsume those under Velicer’s definition. However, it is not 

clear exactly how and when such phenomenon can happen with respect to the interrelation of 

the response and two predictor variables. Although the aforementioned articles intended to 

address different aspects of the two definitions, it seems that the arguments are not settled. 

The major problem is the lack of schematic approach to the examination and comparison of 

the two definitions. The needed approach should be general enough to lay the same basis for 

the comparability of the two definitions and at the same time, should be precise enough to 

provide both concrete demonstration and visual representation for their similarities and 

differences.  

Interestingly, the type of suppression studied in statistical literature is in agreement with 

the definition of Velicer (1978). The geometric description, numerical example and algebraic 

argument for the two-predictor regression have been given in Schey (1993), Neter et al. (1996) 

and Sharpe & Roberts (1997), respectively. However, there is no extension beyond the 

two-predictor case. As indicated in Velicer (1978), the advantage of defining suppression 

situation in terms of the increment in R 2  is that such formulation can be extended 

immediately from the special case of two predictors to the general p-predictor case (p > 2). In 

relation to the notion of increase in R2, the partial F test is the standard procedure for selecting 

important predictors. It should be extremely informative to clarify the relationship of both 

definitions of suppression with the partial F test in a general framework of multiple 

regression.  
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This article aims to provide alternative expressions of Conger’s and Velicer’s definitions 

of suppression that not only take into account the problem of comparability, but also 

accommodate the extension to general multiple regression and permit thorough investigation 

of their relationship algebraically and graphically. In Section 2, we provide the revised 

constructions of the two criteria of suppression and present the important details of the 

conditions under which different types of suppression can occur. In Section 3, the concept of 

suppression is contrasted with the detection of important predictors in terms of the partial F 

test in variable selection. Finally, Section 4 contains some final remarks.  

 

2. Two definitions of suppression 

Consider the general linear regression model with response variable Y and p ( ≥ 2) 

predictor variables X1, ..., Xp: 

 Yi = β0 + ∑
j = 1

p
 Xijβj + εi, i = 1, ..., n, (1) 

where Yi is the value of the response variable; β0, β1, ..., βp are parameters; Xi1, ..., Xip are the 

known constants of predictors X1, ..., Xp, and εi are iid N(0, σ2) random variables. We are 

interested in the occurrence of suppression in the general linear regression model (1). First, 

consider the definition of suppression defined by Conger (1974) as follows. A suppression 

situation exists whenever 

 |β̂*
b| > |rYb|, (2) 

for some b, b = 1, ..., p, where β̂*
b is the least squares estimator of the standardized regression 

coefficient (beta weight, beta coefficient) and rYb is the coefficient of correlation between Y 

and Xb.  



 

5 

Next, Velicer (1978) defined a suppression situation in terms of the squared multiple 

and simple correlations: 

 R2 > R2
Ya + r2

Yb, (3) 

for some b, b = 1, ..., p, where R2 is the squared multiple correlation coefficient of Y with 

(X1, ..., Xp), and R2
Ya is the squared multiple correlation coefficient of Y with (X1, ..., Xb−1, 

Xb+1, ..., Xp); that is, Xb is omitted from (X1, ..., Xp). 

At first sight, the two definitions given in (2) and (3) may be fundamentally different. 

However, they are intertwined and are closely related. For the purpose of demonstrating their 

similarities and differences, we propose to consider two alternative formulations of 

suppression for providing important connection between Conger’s and Velicer’s definitions.  

 

Definition 1. For regression model (1), a C-suppression situation exists if  

 |β̂b| > |β̂S
b| (4) 

for some b, b = 1, ..., p, where β̂b is the usual least squares estimator of the regression 

coefficient βb in (1), and β̂S
b is the least squares estimator of the slope coefficient for the 

simple regression model of response Y and predictor Xb. It is important to note that throughout 

this article, we assume the regression model (1) is applicable.  

It is well-known that the least squares estimators of the standardized regression 

coefficients associated with model (1) can be written as β̂*
b = β̂b(sb/sY) with sY and sb being 

the respective square root of s2
Y and s2

b, where  

 s2
Y = ∑

i = 1

n
 (Yi − Y−)2, s2

b = ∑
i = 1

n
 (Xib − X−b)2, 

and, Y− and X−b are the respective sample means of the Y and the Xb observations. Moreover, 
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the coefficient of correlation between Y and Xb can be expressed as rYb = β̂S
b(sb/sY) with 

respect to the simple linear regression for Y with Xb. Hence, the condition (2) of suppression 

proposed in Conger (1974) is equivalent to |β̂b| > |β̂S
b|, which is exactly the condition of 

C-suppression defined in (4). Note that our formulation in Definition 1 is not limited to the 

case of standardized regression and consequently Definition 1 subsumes Conger’s (1974) 

definition as a special case. Essentially, the proposed definition of C-suppression in (4) solves 

the comparability problem for the differences in the range of β̂*
b and rYb raised by Velicer 

(1978) that |rYb| is bounded by unity and |β̂*
b| is not. Furthermore, it provides useful connection 

with Velicer’s definition of suppression shown next.  

Along the same line of comparability issue, a little reflection should make one wary of 

the comparison of β̂b and β̂S
b because of the differences in the units involved. In order to 

permit comparison of the estimated regression coefficients β̂b and β̂S
b in the same units, the 

adjustment with respect to the estimated variance is employed in the following formulation. 

 

Definition 2. For regression model (1), a V-suppression situation exists if  

 | tb | > | tS
b | (5) 

for some b, b = 1, ..., p, where 

 tb = 
β̂b

 {σ̂2(β̂b)}
1/2

 
 and tS

b = 
β̂S

b

 {σ̂2(β̂S
b)}

1/2
 
, 

and σ̂2(β̂b) and σ̂2(β̂S
b) are the estimated variance of β̂b and β̂S

b, respectively.  

Under the model assumption (1), it can be shown that  
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 σ̂2(β̂b) = 
σ̂2

 s2
b(1 − R2

ba) 
 and σ̂2(β̂S

b) = 
 σ̂2

 

s2
b

, (6) 

where σ̂2 = SSE/(n − p − 1) is the estimator of σ2, SSE is the usual error sums of squares, and 

R2
ba is the squared multiple correlation coefficient of Xb with (X1, ..., Xb−1, Xb+1, ..., Xp). Note 

that both tb and tS
b have a noncentral t distribution with n − p − 1 degrees of freedom. Also the 

estimators β̂b and β̂S
b can be expressed as follows 

 β̂b = 
rY(b.a)

 (1 − R2
ba)

1/2
 
·(

 sY 

sb
) and β̂S

b = rYb(
 sY 

sb
), (7) 

where rY(b.a) is the semipartial correlation coefficient of Y with Xb and with Xb adjusted for 

(X1, ..., Xb−1, Xb+1, ..., Xp). Utilizing the results in (6) and (7), the condition (5) of 

V-suppression could be formulated as  

 |rY(b.a)| > |rYb|, (8) 

and equivalently, r2
Y(b.a) > r2

Yb or R2 − R2
Ya > r2

Yb for r2
Y(b.a) = R2 − R2

Ya. For more detailed 

discussions of partial and semipartial correlations, see Pedhazur (1997, Chapter 7). 

Consequently, we can see that Definition 2 of V-suppression defined in (5) is the same as 

Velicer’s (1978) definition of suppression given in (3). However, we believe that the revised 

expressions for C-suppression in (4) and V-suppression in (5) are more appealing than other 

approaches of conceiving the conceptual relationship of Conger’s and Velicer’s definitions of 

suppression. Furthermore, the mathematical relationship between Conger’s and Velicer’s 

definitions of suppression is facilitated by considering the alternative form of (4) for 

C-suppression. Equation (7) enables us to rewrite (4) as follows:  

 
|rY(b.a)|

 (1 − R2
ba)

1/2
 
 > |rYb| (9) 
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or r2
Y(b.a)/(1 − R2

b.a) > r2
Yb. Since r2

Y(b.a) > r2
Yb implies r2

Y(b.a)/(1 − R2
b.a) > r2

Yb for R2
b.a ∈ [0, 1), we 

conclude from (8) and (9) that the occurrences of C-suppression subsume those of 

V-suppression as special cases.  

In order to understand the features of both types of suppression defined above, we begin 

by focusing on the case of two-predictor regression and then extend the discussion to the 

general multiple regression situations. 

 

2.1 Two-Predictor Regression 

For p = 2, model (1) reduces to  

 Yi = β0 + Xi1β1 + Xi2β2 + εi, i = 1, ..., n. 

In this case, it follows from (4) that a C-suppression situation exists if 

 
 |rYj − r12rYk| 

1 − r2
12

 > |rYj|, (10) 

where j ≠ k with j, k = 1 and 2, and r12 is the coefficient of correlation between X1 and X2. 

To lay the basis for developing a simplified view and providing a concise visualization of the 

suppression situations, we define  

 γ = rY2/rY1. 

Since the designation of X1 and X2 is arbitrary, as long as only one of rY1 and rY2 is zero, γ can 

be set as zero. The case that both rY1 and rY2 are zero will be excluded because all the least 

squares estimators β̂1, β̂2, β̂S
1, and β̂S

2 are obviously zero without practical meaning. We are 

especially concerned with the cases that X1 alone, X2 alone or both are suppressors. By 

definition, predictor Xk is a suppressor with respect to C-suppression if condition (10) holds. 

In terms of the definition of γ, it can be shown that both predictors X1 and X2 are suppressors 
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simultaneously or there is mutual or reciprocal C-suppression if 

γ < r12/(2 − r2
12) or γ > (2 − r2

12)/r12  for 0 < r12 < 1; 

γ < (2 − r2
12)/r12 or γ > r12/(2 − r2

12)  for −1 < r12 < 0. 

Predictor X1 is the only suppressor if 

 1/r12 < γ < (2 − r2
12)/r12  for 0 < r12 < 1; 

 (2 − r2
12)/r12 < γ < 1/r12  for −1 < r12 < 0. 

On the other hand, predictor X2 is the only suppressor if 

 r12/(2 − r2
12) < γ < r12  for 0 < r12 < 1; 

 r12 < γ < r12/(2 − r2
12)  for −1 < r12 < 0. 

Figure 1 presents the occurrence of C-suppression for combinations of r12 and γ. The dotted 

areas stand for the occurrence regions of C-suppression. The areas marked with “C” represent 

the occurrence of mutual C-suppression. Those areas marked with “C1” or “C2” represent the 

occurrences of single C-suppression with X1 or X2 as the only suppressor, respectively. We 

believe that Figure 1 can communicate the results of C-suppression more effectively than the 

respective Figure 1 in Conger (1974) or Tzelgov & Henik (1991), where the identification of 

suppression was not directly related to correlations or was indirectly presented with selected 

values of γ. 

For the occurrence of V-suppression situation, it can be shown that the condition (5) 

reduces to  

 
 |rYj − r12rYk| 

1 − r2
12 

 > |rYj|, (11) 

where j ≠ k with j, k = 1 and 2. Alternatively, the condition (11) of V-suppression in terms of 

r12 and γ is 
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 γ < (1 − 1 − r2
12 )/r12 or γ > (1 + 1 − r2

12 )/r12  for 0 < r12 < 1; 

 γ < (1 + 1 − r2
12 )/r12 or γ > (1 − 1 − r2

12 )/r12  for −1 < r12 < 0. 

With two predictors (p = 2), it is easy to see that (3) corresponds to the inequality between the 

coefficient of determination and the sum of two squared simple correlation coefficients: R2 > 

r2
Y1 + r2

Y2 or the inequality between the extra sum of squares and the sum of squares for simple 

regression. Related comments and discussions can be found in Currie & Korabinski (1984), 

Hamilton (1987), Bertrand & Holder (1988), Schey (1993), Sharpe & Roberts (1997), and 

Shieh (2001). However, these articles do not cover the relationship between different 

definitions of suppression.  

Unlike that C-suppression may be single or mutual, it is important to note that 

V-suppression is always mutual, see Velicer (1978). As visual supplement, Figure 1 also 

presents the occurrence of V-suppression by areas covered in horizontal lines and marked 

with “V”. It can be seen from the plot that V-suppression is a subset of C-suppression, as 

pointed out in Tzelgov & Henik (1981). Nevertheless, it can be more precise that 

V-suppression is encompassed by mutual C-suppression as a special case, although their 

differences are marginal. This reveals that the figure in Tzelgov & Henik (1981) is 

oversimplified and questionable. Furthermore, it should be clear that our Figure 1 conceives 

the occurrences of different suppressions more effectively than Figure 2 of Tzelgov & Henik 

(1991). 

 

2.2 Multiple Regression 

We consider the general setup of multiple regression with at least three predictors in the 
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model. For the purpose of permitting clear and informative visual representation, we define Γ 

= rY(b.a)/rYb. It follows from (9) that the condition of C-suppression is | Γ | > (1 − R2
ba)

1/2, whereas 

the condition of V-suppression in (8) is | Γ | > 1 with proper rYb and R2
ba. The relation between 

both types of suppression is presented in Figure 2 for combinations of R2
ba and Γ where “C” 

and “V” denote the C- and V-suppression situations, respectively. Similar results for Velicer’s 

suppression situations have been shown in Smith et al. (1992) and they also extended the 

discussion to relations between two sets of predictors. However, the emphasis here is on the 

relation between different types of suppression. In addition, it should be noted that both 

definitions (4) and (5) treat the p – 1 predictors (X1, ..., Xb−1, Xb+1, ..., Xp) as a whole that lead 

to suppression. 

 

3. Suppression and variable selection 

In multiple regression, variable selection procedures are commonly used to identify the 

legitimate variables and discard those that are not useful. All the backward elimination, 

forward selection and stepwise regression procedures are the typical algorithms for selecting 

the best subset of predictor variables. These procedures determine whether a predictor should 

be added to or deleted from the candidate set of predictor variables according to the 

significance or non-significance of the partial F test at each step. As shown in the previous 

section, the contribution of a predictor can be enhanced in the presence of other predictors for 

the intercorrelation or multicollinearity among them. Hamilton (1987) pointed out the 

inability of the forward selection technique to detect important predictors and recommended 

backward elimination as a more robust alternative for such seemingly paradoxical situations.  

At each stage of the variable selection procedures with predictors (X1, ..., Xp), the partial 
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F test statistic can be written as Fb = t2
b, where Fb follows the F distribution with (1, n – p – 1) 

degrees of freedom or F1
n−p−1, and tb is defined in (5) which follows a t distribution with n – p – 

1 degrees of freedom under the hypothesis βb = 0. The predictor Xb is retained with the subset 

of predictors (X1, ..., Xb−1, Xb+1, ..., Xp) if Fb > F(1, n – p – 1, α) where F(1, n – p – 1, α) is the 

(1 – α) percentile of F1
n−p−1. From the previous results, the respective condition of C- and 

V-suppression can be expressed as  

 | tb/t
S
b | > (1 − R2

ba)
1/2 and | tb/t

S
b | > 1. 

Obviously, the detection of an important predictor with the partial F test in all variable 

selection procedures is not completely compatible to the occurrences of both definitions of 

suppression. These phenomena are presented in Figure 3 for R2
ba = 0.5 and F(1, n – p – 1, α) = 

t2
b = 4. As in Figure 2, “C” and “V” denote the C- and V-suppression situations, respectively. 

The area below the dashed horizontal line represents the nonsignificant cases of the partial F 

test. Therefore, any of the variable selection procedures can fail to uncover the C- or 

V-suppression when there is a significant partial F test. On the other hand, it is possible to 

have either types of suppression even the partial F test is nonsignificant. This observation is 

generally true for all R2
ba ∈ [0, 1) and F(1, n – p – 1, α) > 0. Hence, the inclination in 

Hamilton (1987) that backward elimination is satisfactory for those not wanting to miss 

enhancement or synergism is open to question. Note that his illustrations of R2 > r2
Y1 + r2

Y2 is 

equivalent to the notion of V-suppression for p = 2 as shown in Section 2.1. Furthermore, 

Velicer’s (1978) claim that his definition of suppression is consistent with stepwise regression 

procedures is doubtful. To exemplify these findings, we consider the problem given in 

Kleinbaum et al. (1998, pp. 126-127) that a sociologist used data from 20 cities to investigate 

the relationship between the homicide rate per 100,000 city population (Y) and the following 
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three independent variables: the city’s population size (X1), the percentage of families with 

yearly income less than $5,000 (X2), and the rate of unemployment (X3). The numerical results 

are summarized below for each variable. 

 

Xb        X1      X2      X3 
                             

C-suppression      Yes     No     No 

| β̂b

 β̂S
b 
|       1.9642    0.4659    0.6666 

V-suppression      Yes     No     No 

| tb

 tS
b 
|       1.9020    0.2690    0.3795 

The significance of  
partial F test at α = 0.05  No     Yes     Yes 

Fb (p-value)    1.44 (0.2480)  4.51 (0.0497)  9.51 (0.0071) 

                             
 

In conclusion, the partial F test of single parameter with respect to the increase in R2 is 

not a profound indicator of the suppression situations in multiple regression.  

 

4. Conclusions 

In social studies, it is often the case that many of the variables are highly correlated. 

According to previous results, we wish to stress to users of multiple linear regression that the 

contribution of a variable can be enhanced by the presence of other variables. In general, it is 

not recommended to discard variables that are highly correlated with the variables to be 

retained in the best subset.  

In view of the discrepancy between different suppression definitions in behavioral 
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literature, the proposed C- and V-suppression are more appealing for several reasons. They 

simplify, clarify and expand the existing formulations. More importantly, it leads to results 

that are not well known. With the added information of distinguishing between mutual and 

single suppressions algebraically and graphically, we are able to discern the complexities of 

the definitions of Conger (1974) and Velicer (1978). This study permits new insights into their 

definitions of suppression as to how they occur and when they differ. Although our 

presentation is concerned exclusively with the suppression situations in multiple regression, it 

can be applied easily to other designs (ANOVA and ANCOVA) and multivariate models.  

We also present new characteristics about the contribution of each variable in multiple 

regression. Recognition of the relationship between suppression situations and partial F test 

helps clarify the issue of variable selection. This information should be useful in screening 

existing measurements and designing new ones. In fact, the occurrence of suppression and the 

significance of a partial F test can be employed simultaneously in the stepwise technique of 

variable selection. Further investigation and verification of this combined approach under a 

variety of different applications would be useful.  
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Figure 1. The regions of different types of suppression.
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Figure 2. The regions of C- and V-suppression.
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Figure 3. The regions of suppression and partial F Test.
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