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Application of modified nonlinear storage function on runoff estimation
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Abstract
This study proposed a modified nonlinear storage function runoff model to take into account the storage hysteresis effect, in which there
exists difference of the storageedischarge relationship between the rising and recession limb. Since the modified storage function runoff has
seven parameter, a parameter-calibration method, which combines the genetic algorithm with the least square criterion. For model calibration
and validation, twenty rainfallerunoff events (1968e2005) recorded at Wudu gage in Keelung River in northern Taiwan were used in the study.
The results of model validation reveal that the modified storage function runoff model not only produces the realistic storageedischarge
relationship, but also provides a good estimation of the runoff.
� 2011 International Association of Hydro-environment Engineering and Research, Asia Pacific Division. Published by Elsevier B.V. All rights
reserved.
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1. Introduction

The runoff estimation and prediction play an important role
in the design and performance evaluation of hydraulic struc-
tures and water resource management. According to the
transformation relationship between rainfall and runoff, the
rainfall-runoff models commonly used are classified into three
types: (1) the linear model, (2) the semi-linear model, and (3)
the nonlinear model. For example, the unit hydrograph is
a typical linear model, and the tank model is a semi-linear
model. Of the above three types of models, the storage func-
tion model (SFRM) not only describes more realistic rainfall
and runoff relationships, but also embeds a simple underlying
equation s¼ kqp for storage (s) and runoff (q) (e.g., Kimura,
1961; Aoki et al., 1976; Zbigniew and Jaroskaw, 1986;
Sugiyama et al., 1997, 1999; Sujono et al., 2003). In addi-
tion to parameters k and p, the SFRM has two other parame-
ters, namely, the lag time Tl and runoff coefficient fr. Park et al.
(1999) analyzed runoff characteristics of three small water-
sheds in the Su-Young River Basin in Korea using three
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rainfall-runoff models, i.e. the storage function method, liner
reservoir cascade model, and the discrete linear inputeoutput
model. Their study concluded that the storage function model
is the most accurate among the three models. In literature,
a number of forms of storage functions can be found (e.g.
Prasad, 1967; Kimura, 1975).

In the SFRM, the storageedischarge relationship for the
SFRM is a single-valued monotonic function. Thus, of five
parameters of the SFRM, the parameters k and p are
commonly calibrated using the regression analysis (e.g.
Prasad, 1967; Kimura, 1975; Sugiyama et al., 1997). The
runoff coefficient fr is equal to a ratio of runoff volume to that
of rainfall. For the lag time Tl and cumulative saturated rainfall
Rsa, a trial-and-error procedure is applied with an objective
function for minimizing the mean absolute error of estimated
runoff. Note that the parameters k, p, and fr should be cali-
brated under the specific Tl and Rsa. Hence, the process of
calibrating SFRM parameters is complicated and inflexible. In
addition, due to storage hysteresis effect which means that the
storageedischarge relation is a loop-shaped function, different
storages exist on the rising and recession limbs of a hydro-
graph with the same discharge (Kimura, 1975). Therefore, the
objectives of this study are to modify the nonlinear storage
ering and Research, Asia Pacific Division. Published by Elsevier B.V. All rights reserved.
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function by considering the storage hysteresis effect, and to
develop a corresponding parameter-calibration method. To
demonstrate the proposed model, twenty-four rainfall-runoff
events recorded at the Wudu station in the Keelung River of
northern Taiwan are used for the parameter calibration and
model validation.

2. Storage function runoff model
2.1. Brief concept
Fig. 1. Graphical illustration of storageedischarge relationship.
The storage function runoff model (SFRM) with a loss
mechanism was developed by Kimura (1961). In the SFRM,
relationship between the storage (s) and runoff (q) is defined
as:

s¼ kqp ð1Þ
where k and p are coefficients representing watershed char-
acteristics. As p¼ 1, Eq. (1) reduces to the linear reservoir
cascade model. In the runoff estimation, the SFRM incorpo-
rates the modified Plus method, which is derived from the
continuity equation, as (Kimura, 1961):

reðt� TlÞ � qðtÞ ¼ ds

dt

reðt� TlÞ ¼
�
fr � rðt� TlÞ; if

P
rðt� TlÞ � Rsa

rðt� TlÞ; if
P

rðt� TlÞ> Rsa

ð2Þ

where r(t) and q(t), respectively, denote the inflow and outflow
at time t; fr is the runoff ratio; Tl is the lag time; and Rsa stands
for the cumulative saturated rainfall. Note that the outflow rate
q(t) (mm/h) in Eq. (2) is calculated by:

qðtÞ ¼ QðtÞ
A

� 3:6 ð3Þ

where A is the catchment area (km2); and Q(t) is the discharge
(m3/s).
2.2. Traditional storageedischarge relationship
At the beginning of a rainstorm event, the rainfall mostly
infiltrates into the ground, and the storage is proportional to
the discharge. When the soil is saturated, the rainfall mostly
becomes surface runoff so that the storage is inversely related
to the runoff. Thus, the storageedischarge relationship has
a loop-like shape, which is called the storage hysteresis effect
(see Fig. 1). In Fig. 1, it can be seen the storage has different
magnitude for the same discharge on the rising and recession
limbs. However, Eq. (1) assumes that the storageedischarge
relationship is a one-to-one function, so that it hardly describes
the looped-shaped storageedischarge relationship attributed to
the storage hysteresis effect. Hence, Prasad (1967) proposed
a relationship between storage and discharge as:

s¼ k1q
p þ k2

dq

dt
ð4Þ

in which k1 and k2 are watershed characteristics. The added
term k2ðdq=dtÞ in Eq. (4) differentiates the storageedischarge
relationship on the rising and recession limbs, which cannot be
captured by Eq. (1). Therefore, this study adopts the Prasad
storageedischarge relation in the SFRM resulting in a six-
parameter rainfallerunoff model, called the PSFRM herein
with the parameters fr, p, k1, k2, Tl, and Rsa.
2.3. Development of the modified storage function runoff
model

2.3.1. Basic concept
Although the Prasad model can capture the storage

hysteresis effect in the watershed runoff modeling, it has
a limitation of using a constant ratio of difference in discharge
on the rising and recession limbs. In reality, the slope of
storageedischarge relationship on the rising limb could be
different from that on the recession limb, meaning the
different coefficients could be associated with the term dq=dt
on the rising and recession limbs. Therefore, a modified
storageedischarge relationship is proposed based on the Pra-
sad storageedischarge function as:

s¼ k1q
p þ k2 � I2 � dq

dt
þ k3

�I3
dq

dt

if
dq

dt
� 0; I2 ¼ 1; I3 ¼ 0 ðrising limbÞ

if
dq

dt
< 0; I2 ¼ 0; I3 ¼ 1 ðrecession limbÞ

8><
>:

ð5Þ

where k1, k2, k3, and p are parameters previously defined; and
I2, and I3 are indicator variables. The physical meanings of k1
and p resemble those of the SFRM and PSFRM. In this study,
the Kimura storage function relation, Eq. (1), is replaced by
Eq. (5), resulting in a seven-parameter rainfallerunoff model,
i.e. parameters fr, Tl, k1, k2, k3, p, and Rsa, denoted herein as the
MPSFRM. When k2¼ k3¼ 0, Eq. (5) reduces to a linear
storage function. Furthermore, the SFRM and PSFRM are the
special cases of the MPSFRM.

2.3.2. Sensitivity analysis for model parameters
Although the storageedischarge relationship focuses on the

behavior between the storage and runoff, it is expected to have
influences on runoff characteristics, i.e. the peak discharge Qp,
time-to-the peak Tp, total runoff volume V, runoff volume on
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Fig. 2. Rainfall hyetograph used in sensitivity analysis of MPSFRM.
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the rising and recession limb Vu and Vd, respectively. Hence,
the sensitivity analysis for model parameters is performed and
the results could be used as the basis to develop the proposed
MPSFRM. In detail, the sensitivity analysis is carried out
using the various ratios of model parameters for estimating
runoff; thus, the associated ratio of runoff characteristics rf
can be calculated by Eq. (6), for a particular rainstorm hye-
tograph (see Fig. 2).

rf ¼ fi �f0

f0

f0 ¼ f ðq0Þ
fi ¼ f ½q0ð1þ rÞ�

ð6Þ

where r is the varying ratio of model parameters, which are
0.1, 0.2, 0.3, 0.4 and 0.5; 40 denotes the runoff characteristics
estimated from an assigned nominal value of model parame-
ters q0; and 41 is the estimated runoff characteristics with
Fig. 3. Comparison of runoff characteristics
model parameters q0ð1þ rÞ. Since the lag time Tl is well
known to mainly produce the delay effect on the hydrograph
(Sonu, 1989), it can be excluded from the sensitivity analysis.
From the analysis, the sensitivity of runoff characteristics due
to various model parameter values can be assessed.

The nominal values of model parameters in Eq. (6) used in
the sensitivity analysis are hypothesized as fr¼ 0.5, Tl¼ 0,
p¼ 0.5, k1¼ k2¼ k3¼ 10, and Rsa¼ 300. Fig. 3 shows the
comparison of varying ratios of runoff characteristics with
respect to ratios of model parameters. In view of Fig. 3, the peak
dischargeQp is related positively with the parameter fr, whereas
negatively with the remaining parameters. For the total runoff
volume V, increasing parameters p, k1, and Rsa leads to decrease
in the runoff volume. On the contrary, the runoff volume
increases with ratios of parameters fr and k3. Of the runoff
volumes on the rising and recession limbs,Vu and Vd, increasing
k2 and k3, respectively, can result in more Vu and Vd.

In summary, the model parameters k2 and k3 could have
different effect on runoff characteristics, especially for the
runoff volume on the rising and recession limbs. As a result, it
is reasonable to hypothesize that there exist a different coef-
ficient associated with dq/dt in the Prasad storageedischarge
relation for the rising and recession limbs.
2.4. Parameter-calibration method
Since three storage function runoff models (SFRM, PSFRM,
and MPSFRM) have five and more parameters, the genetic
algorithm (GA) method, which is widely used in the parameter-
calibration of conceptual rainfall-runoff models with the multi-
parameter (Wang, 1991; Franchini, 1996), would be employed
in the parameter-calibration of the three models. The GA
with various ratios of model parameters.
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method should be associated with a fitness function, also named
as the objective function, to find the optimal model parameters.
In general, the objective functions for the parameter calibration
of hydrologic models can base on four criteria: (1) a good
agreement between the average simulated and observed runoff
volumes; (2) a good overall agreement of the shape of the
hydrographs; (3) a good agreement of the peak flowwith respect
to time, and volumes; and (4) a good agreement for low flows
(Madsen, 2000). Based on the above four criteria, the weighting
mean square error is used as the objective function Fobj in the
parameter-calibration of the three models (Madsen et al., 2002):

Fobj ¼min

(
1

nf

"Xnf
t¼1

wðtÞ � ðqobsðtÞ � qestðtÞÞ2
#0:5)

wðtÞ ¼ qobs þ qobsðtÞ
2qobs

ð7Þ

where nf is the runoff period; qobs(t) and qest(t) are the
observed and estimated discharges at time t; and qobs is the
mean of observed discharge. The objective function Fobj is
used as the fitness function in the GA. Since Eq. (5) is
a nonlinear function, taking the log transform on to both sides
of Eq. (5) yields a linear relation as shown in Eq. (8). Then, the
optimal p and k1 can be obtained by the least square (LS)
method conditioned on the parameters fr, Tl, Rsa and k2
produced by GA.

log

�
s�

�
I2k2

dq

dt
þ I3k3

dq

dt

��
¼ logðk1Þ þ p� logðqÞ ð8Þ

The proposed parameter-calibration method based on GA
and LS method is outlined below:

Step[1] : Define the range of model parameters fr, k2, k3, Tl
and Rsa.

Step[2] : Produce model parameters fr, k2, k3, Tl and Rsa by
using the GA.

Step[3] : Calculate the storage using Eq. (2) with generated
parameters fr, k2, k3, Tl and Rsa at Step[2].

Step[4] : Calculate parameters p and k1 using LS method.
Step[5] : Estimate runoff and calculate the objective function

with trial values of model parameters obtained at Step
[2] and Step[4].

Step[6] : If the objective function is less than the convergence
criteria, and the optimal value of model parameters
are determined; otherwise, return to Step[2].
Table 1

Geographical information of flow-gauge and rainfall-gauges in study area Wudu

Flow-gauge Location Area (km2)

TM_X TM_Y

Wudu 319141 2774866 204.41
3. Model validation

The model validation is made to compare estimated runoff
by the three models, SFRM, PSFRM, and MPSFRM. In
general, the validation of rainfallerunoff model can be carried
out visually and by calculating performance indices. The
performance indices commonly used herein for evaluating
rainfallerunoff models are listed below:

1. Efficiency coefficient (CE) (Nash and Sutcliffe, 1970)

CE¼ 1�
PðqobsðtÞ � qestðtÞÞ2PðqobsðtÞ � qobsÞ2

ð9Þ

If CE approaches to 1, this means that the estimated runoff
hydrograph can fit the observed one very well.

2. Error of peak discharge (EQP)

EQP¼
�
qp;est � qp;obs

�
qp;obs

� 100% ð10Þ

where qp,est and qp,obs are estimated and observed peak
discharges, respectively.

3. Error of time to peak (ETP)

ETP¼ Tp;est � Tp;obs ð11Þ

where Tp,obs is the time to observed peak discharge; and Tp,est
is the time to estimated peak discharge.

4. Root mean square error (RMSE)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nf

"Xnf
t¼1

ðqobsðtÞ � qestðtÞÞ2
#vuut ð12Þ

Note that indices EQP and ETP could be negative value, which
indicate that estimated value is less than observed data.

In the study, the estimated runoff hydrograph and stor-
ageedischarge relationship are not only visually compared,
but also used to calculate performance indices for evaluating
SFRM, PSFRM, and MPSFRM. In addition, to avoid sampling
error in the model performance assessment, cross-validation
method is applied in that numerous rainfallerunoff events are
selected for the parameter-calibration (called calibration
events), and the remaining event are used for the model vali-
dation (called validation events).
sub-basin.

Rain-gauge Location Elevation (m)

TM_X TM_Y

Huo-Shao-Liao 324813 2764092 380

Rang-Fu 330186 2778442 101

Wudu 319447 2774911 16



41S.-J. Wu et al. / Journal of Hydro-environment Research 5 (2011) 37e47
4. Results and discussion

For illustration, the study area is chosen to be Wudu sub-
basin in the Keelung River watershed of northern Taiwan in
which observations at three rainfall-gauges and one flow-
gauge are available, geographical information of the Wudu
basin is shown in Table 1. Twenty rainstorm events were
selected and their relevant rainfall and runoff information are
summarized in Table 2.
4.1. Parameter calibration
According to the parameter-calibration method described
previously, parameters fr, k2, k3, Tl and Rsa are calibrated by
GA combined with LS method. The range of SFRM, PSFRM
and MPSFRM parameters fr, k2, k3, Tl and Rsa are specified in
advance. Since the runoff coefficient fr is generally less than or
equal to 1, the associated range is supposed to be between 0.1
and 1.0. For the lag time Tl, the range is assumed from 0 to 5 h.
As for the coefficients associated with the term dq=dt, k2 and
k3, are regarded between 0.1 and 50. Since the cumulative
saturated rainfall Rsa depends on the antecedent moisture
conditions of ground and rainfall depth, a wider range of Rsa,
from 50 mm to 1000 mm, is adopted.

Performing the proposed parameter-calibration method
alongwith the assumed ranges ofmodel parameters, the optimal
parameters of the three models for each of twenty rainstorm
events are listed in Table 3. By comparing the objective func-
tion, for the most of rainstorm events, the values of Fobj for the
MPSFRM are the lowest, followed by the SFRM and PSFRM.
Thismeans that theMPSFRMcan perform the runoff estimation
better than the SFRM and PSFRM. It is also observed the
parameters Rsa for the three models are substantially different,
and this could be caused by the antecedent moisture conditions
Table 2

Rainstorm events used for model validation.

No of

event

Date Peak

discharge

(cm)

Max rainfall

intensity (mm/h)

Rainfall

depth (mm)

1 19680908e19681002 1150.0 53.3 695.2

2 19700905e19700908 564.0 26.2 300.7

3 19710921e19710924 1030.0 52.0 297.7

4 19720816e19720818 708.0 18.5 211.2

5 19781012e19781010 1370.0 40.2 603.6

6 19790814e19790816 1030.0 21.0 303.4

7 19810719e19810720 1250.0 22.1 227.5

8 19820811e19820812 682.0 37.8 276.4

9 19860822e19860815 690.0 60.0 446.0

10 19871022e19871028 1980.0 77.0 1755.2

11 19880928e19881003 734.0 40.5 698.5

12 19890728e19890731 946.0 36.1 461.7

13 19900903e19900904 857.0 52.5 239.0

14 19911028e19911031 583.0 18.6 262.9

15 19970817e19970820 1040.0 49.3 351.6

16 19981015e19981017 1050.0 56.0 571.6

17 20020709e20020711 608.0 43.9 162.0

18 20010916e20010919 2040.0 111.1 977.7

19 20041024e20041027 1574.5 60.9 356.3

20 20050831e20050902 580.8 26.0 283.3
of ground. Also, in Table 3, the k2 and k3 for the MPSFRM have
different statistical properties. Particularly, the 95% confidence
interval of k2 is greater than that of k3. It can be said that the
coefficient associated with dq/dt for the rising limb has higher
uncertainty than that for the recession limb. Therefore, it is
advisable to separate coefficients for dq/dt for the stor-
ageedischarge relationship.

The parameters of SFRM, PSFRM, and MPSFRM are
related to the watershed features. However, as the model
parameters are calibrated using the observations, the sample
variation in the observations probably contributes to the vari-
ation in parameters (e.g. Chaubey et al., 1999; Yu et al., 2001;
Jin et al., 2009). Hence, the mean values of optimal model
parameters can probably represent the average features of
watershed. Thereby, the average of parameters fr, p, k1 for the
three models, which are approximately 0.7, 0.8, and 35 (see
Table 3), could be regarded as the regional optimal values.
4.2. Comparison of estimated runoff with single-event
optimal parameters
Fig. 4 lists the performance indices for estimating runoff by
SFRM, PSFRM, and MPSFRM with the event-based optimal
parameters. It can be seen that the performance indices of
estimated runoff by the three models vary with the rainstorm
events. In average, the efficiency coefficient (CE) for the
MPSFRM (0.934) is greater than those for SFRM (0.913) and
PSFRM (0.927). Correspondingly, the MPSFRM has a less
average of RMSE (63.1) than the SFRM (75.4) and PSFRM
(68.3). Although the three models have the similar error of
peak discharge, the corresponding 95% confidence interval for
the MPSFRM is narrower than those for the SFRM and
PSFRM. Since the 95% confidence interval represents the
degree of uncertainty for the model output, a narrower 95%
confidence interval is associated with less uncertainty. This
implies that the uncertainty of runoff estimated by the
MPSFRM is lower than those by the SFRM and PSFRM.

In view of Fig. 4, the SFRM, PSFRM and MPSFRM have
significantly different values of performance indices, espe-
cially for events, EV5, EV7, EV12, and EV18. Therefore,
a visual comparison of the runoff hydrograph for the above
four events estimated by the three models is shown in Fig. 5. It
can be observed that the runoff hydrographs, especially on the
recession limb, estimated by the PSFRM and MPSFRM match
closer to observed line, and the SFRM overestimates the peak
discharge for four rainstorm events. Although the PSFRM and
MPSFRM also overestimate the peak discharge, their RMSE
are less than one by the SFRM.
4.3. Comparison of estimated storage with event-based
optimal parameters
In this section, the comparison of storage estimated by
SFRM, PSFRM and MPSFRM are made using the event-based
optimal parameters. The storage can be calculated using the
continuity equation as:



Table 3

Summary of event-based optimal parameters.

(1) SFRM

Event fr p k1 Tl Rsa Fobj

1 0.299 1.106 6.439 1 318.591 94.467

2 0.938 0.399 62.970 2 531.490 27.335

3 0.239 1.287 2.805 0 84.009 42.715

4 0.951 1.045 2.953 4 113.807 59.585

5 0.325 1.475 1.049 1 900.344 152.625

6 1.000 0.290 43.386 4 63.373 144.031

7 0.266 0.888 4.244 2 133.551 73.621

8 0.850 1.006 5.527 2 811.824 58.234

9 1.000 0.543 11.169 5 195.355 125.314

10 0.880 0.330 68.003 2 359.952 31.237

11 0.964 0.540 109.131 0 414.410 189.993

12 0.732 0.174 74.120 0 953.981 88.435

13 0.886 0.494 36.310 3 257.191 48.552

14 0.866 0.496 35.905 3 255.071 49.083

15 1.000 1.060 4.072 3 156.085 71.189

16 0.114 0.836 11.429 1 163.580 62.379

17 0.736 1.021 5.540 2 345.753 72.081

18 0.786 0.329 81.911 1 773.433 247.503

19 0.252 0.950 4.190 2 149.146 59.895

20 0.992 0.586 38.721 0 340.049 53.833

Statistics

Mean 0.704 0.743 30.494 1.900 366.050 87.605

Standard

deviation

0.310 0.360 32.033 1.411 274.150 55.527

95% Lower

limit

0.155 0.212 1.625 0.000 70.133 28.613

95% Upper

limit

1.000 1.445 104.748 4.839 945.344 238.243

(2) PSFRM

Event fr p k1 k2 Tl Rsa Fobj

1 0.193 1.110 6.283 4.485 1 257.032 95.171

2 0.931 0.391 64.323 1.518 2 317.401 25.155

3 0.867 0.667 17.018 5.095 0 425.627 59.459

4 0.841 1.043 3.074 2.917 3 101.274 58.884

5 0.299 2.161 0.077 2.295 1 848.181 157.546

6 0.178 2.139 0.086 32.210 1 87.701 102.500

7 0.543 0.259 67.673 4.819 1 108.293 55.282

8 0.826 0.988 5.724 10.390 1 337.441 50.399

9 1.000 0.593 14.494 5.290 3 97.000 113.705

10 0.937 0.310 77.418 1.025 2 322.717 30.946

11 1.000 0.526 115.179 7.867 0 176.862 187.779

12 0.672 1.398 1.948 0.531 1 600.649 66.521

13 0.931 0.431 51.056 4.403 2 222.180 44.139

14 0.316 0.507 38.215 4.742 2 57.674 44.913

15 1.000 0.922 6.688 6.680 2 140.440 63.673

16 0.259 0.550 27.395 6.694 0 186.696 38.647

17 0.693 1.127 3.840 0.843 2 341.804 71.750

18 0.683 1.229 1.879 2.062 1 429.038 256.483

19 0.710 0.328 61.262 2.593 1 204.683 23.149

20 1.000 0.574 40.175 0.273 0 146.970 54.151

Statistics

Mean 0.694 0.863 30.190 5.337 1.300 270.483 80.013

Standard

deviation

0.287 0.539 32.078 6.691 0.900 190.392 57.906

95% Lower

limit

0.183 0.276 0.080 0.357 0.000 67.510 23.807

95% Upper

limit

1.000 2.158 109.099 28.696 3.000 808.324 245.420

Table 3 (continued )

(3) MPSFRM

Event fr p k1 k2 k3 Tl Rsa Fobj

1 0.262 1.097 6.620 0.041 0.354 1 281.510 94.581

2 0.894 0.413 58.946 1.914 3.406 2 768.023 24.949

3 0.312 1.079 5.000 0.135 0.522 0 85.297 47.810

4 1.000 1.419 1.950 42.072 2.221 1 684.647 44.594

5 0.330 1.846 0.371 0.457 4.050 2 715.101 168.740

6 1.000 0.260 48.222 0.568 17.850 5 58.571 112.620

7 0.617 0.287 61.312 0.112 4.230 2 132.924 61.096

8 0.834 0.922 6.739 9.269 8.014 1 597.652 47.214

9 1.000 0.562 12.194 12.619 0.239 3 212.000 102.399

10 0.838 0.359 58.670 2.573 2.828 2 342.189 29.904

11 1.000 0.526 114.721 4.201 0.406 0 105.700 187.250

12 0.645 1.699 0.558 14.410 1.666 1 584.684 71.440

13 1.000 0.419 58.228 0.334 9.312 2 428.835 44.207

14 1.000 0.417 58.242 0.815 8.439 2 697.478 43.954

15 0.893 2.134 0.195 0.111 28.357 1 451.859 81.611

16 0.593 0.344 44.155 3.937 14.564 1 1140.577 39.785

17 0.669 1.073 4.438 0.267 1.510 2 329.869 71.603

18 0.769 0.903 7.519 1.225 1.358 1 728.565 153.892

19 0.818 0.284 84.570 1.335 4.304 1 195.446 30.041

20 1.000 0.573 40.182 1.718 0.657 0 536.939 55.055

Statistics

Mean 0.774 0.831 33.641 4.906 5.714 1.500 453.893 75.637

Standard

deviation

0.240 0.555 32.688 9.467 7.033 1.118 280.272 46.346

95% lower

limit

0.278 0.268 0.252 0.064 0.277 0.000 67.326 26.572

95% upper

limit

1.000 2.088 109.866 37.618 26.665 4.678 1080.589 184.270
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Stþ1 ¼ St þDt

2
½ðItþ1 þ ItÞ � ðOtþ1 þOtÞ� ð13Þ

where It and Ot are the inflow and outflow at time t, respec-
tively; Dt represents the time step; and St denotes the storage at
time t. Given the inflow and outflow, the storage can be
computed by Eq. (13).

Similar to the comparison of estimated runoff hydrograph,
a comparison of storageedischarge relationship estimated by the
three models with observed data is made. Fig. 6 shows that the
PSFRM and MPSFRM can fit the loop-shaped stor-
ageedischarge relationship for EV5, EV7, EV12, and EV18
better than the SFRM.Although the observed storageedischarge
curves for EV5 and EV7 are close to be a line, the MPSFRM
produces a better fit of observed lines than the SFRM. It is also
observed that if a rainstorm event has multi-peaks, such as EV12
and EV18, its storageedischarge relationship has a complicated
shape.However, theMPSFRMcan have a better fit of this kind of
storageedischarge relationship than the SFRM and PSFRM. As
the result, the MPSFRM not only enhances the performance of
estimating runoff, but also is superior to the SFRM and PSFRM
in describing the storageedischarge relationship, especially for
the loop-shaped relation.

Table 4 lists that the mean and standard deviation of the
efficiency coefficient (CE) and root mean square error (RMSE)
of estimated storage by the three models. It shows that the mean
of CE from MPSFRM (0.672) is closer to one than those from



Fig. 4. Comparison of performance indices of estimated runoff with event-based optimal parameters.
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SFRM (0.322) and PSFRM (0.59). The average of RMSE from
MPSFRM (22.2) is mostly less than those from SFRM (38.3)
and PSFRM (28.7). In addition, since the standard deviation of
CE and RMSE for MPSFRM are less than those from SFRM
and PSFRM, it indicates that the estimated storage from the
MPSFRM is more precise than those from the SFRM and
MPSFRM. In other words, the MPSFRM can provide the more
reliable storage estimation than the SFRM and PSFRM.
Fig. 5. Comparison of estimated hydrograph
4.4. Comparison of predicted runoff with multi-event
optimal parameters
To evaluate the overall performance of SFRM, PSFRM and
MPSFRM in the runoff prediction, the cross-validation
method is adopted. By cross-validation, the total rainstorm
events selected are separated into two groups: i.e. the cali-
bration events and validation events defined previously.
with event-based optimal parameters.



Fig. 6. Comparison of estimated storage with event-based optimal parameters.
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Although the mean of model parameters can probably repre-
sent the average features of watershed, the objective function
Fobj for event-based optimal parameters (see Table 3) repre-
sents that the fitness of the estimated runoff to observed data of
individual event. Therefore, this study calculates the weighted
average of model parameters based on objective function and
event-based parameters, defined as multi-event optimal
parameters, by:
Table 4

Statistics of CE and RMSE of estimated storage by SFRM, PSFRM and

MPSFRM.

Statistics SFRM PSFRM MPSFRM

CE RMSE CE RMSE CE RMSE

Mean 0.322 38.295 0.585 28.668 0.672 22.194

Standard deviation 0.841 40.703 0.527 30.381 0.480 18.836
q¼ PNevent

i¼1

wi � qi

wi ¼ 1=Fobj;iPNevent
i¼1

1=Fobj;i

ð14Þ

where Nevent is the number of rainstorm events; q is the multi-
event model parameters; and qi and Fobj,i denote the event-
based optimal parameters and the corresponding objective
function using the ith rainstorm event. Table 5 shows the
resulting multi-event multi-parameters of three models using
the first 4, 8, 12, and 16 calibrated events. In Table 5, although
the PSRM and MPSFRM have similar optimal values of
parameter fr, Tl, p, and k1, the parameters k2 and k3 are
significantly different. This implies that there is a quite
different storageedischarge property on the rising and reces-
sion limbs.



Table 5

Summary of multi-event optimal parameters.

Model Parameter Number of calibration events

4 8 12 16

SFRM fr 0.608 0.603 0.773 0.774

p 0.873 0.916 0.561 0.408

k1 26.671 21.159 49.848 46.046

Tl 2 2 2 2

Rsa 317.941 400.739 399.984 205.399

PSFRM fr 0.714 0.64 0.812 0.741

p 0.713 0.926 0.628 0.626

k1 32.71 27.608 52.891 47.824

k2 3.119 6.054 3.286 3.834

Tl 2 1 2 2

Rsa 293.191 315.789 324.401 291.843

MPSFRM fr 0.638 0.637 0.764 0.769

p 0.872 0.909 0.651 0.646

k1 26.328 24.553 42.794 42.875

k2 7.359 6.429 5.092 4.483

k3 1.891 3.092 2.688 5.082

Tl 1 1 2 2

Rsa 497.256 497.494 401.085 488.032
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Fig. 7 shows the statistics of performance indices for pre-
dicted runoff by the three models with multi-events optimal
parameters using various number of calibration events. It can
be seen that the performance indices of predicted runoff by the
Fig. 7. Comparison of statistics of performance indices of
three models vary with the number of calibrated events. In
detail, the 95% confidence intervals of performance indices
from MPSFRM are narrower than ones from SFRM and
PSFRM. The mean values of the efficiency coefficient CE
from MPSFRM are closer to one than those from SFRM and
PSFRM. Moreover, the MPSFRM has smaller mean values of
EQP and RMSE than the SFRM and PSFRM. The above
results indicate that the MPSFRM can produce more accurate
and reliable runoff prediction than the SFRM and PSFRM.

Fig. 8 shows the visual comparison of runoff hydrographs
for EV17, EV18, EV19, and EV20 predicted by the three
models with multi-event parameters based on the first 16
events for calibration. It is observed that the performance of
predicted runoff by the three models depends on validation
events. The MPSFRM predicts runoff hydrographs for EV17
and EV18 which match the observed data well, but the peak
discharge for EV19 and EV20 are underestimated. Although
the SFRM predicts runoff hydrographs for EV19 and EV20
closer to observed ones, the MSPSRM can produce the
suboptimal runoff hydrograph.

In summary, the MPSFRM can describe a nonlinear storage
function well by means of taking into account the different
behaviors of storageedischarge relationship on the rising and
recession limbs. As the result, the proposed MPSFRM can
enhance the accuracy of runoff estimation.
estimated runoff with multi-event optimal parameters.



Fig. 8. Comparison of predicted hydrograph with multi-event optimal parameters.
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5. Conclusions

This study modifies the storage function runoff model
(SFRM), which is denoted as MPSFRM, based on the Prasad
storage function runoff model (PSFRM), by considering
different coefficients for dq/dt on the rising and recession
limbs. To calibrate parameters of SFRM, PSFRM, and
MPSFRM, a method which combines the genetic algorithm
with the least square method was adopted in this study. The
model validation was made using twenty rainstorm events
recorded at the Wudu gauge in the Keelung River of northern
Taiwan. The results of the model validation indicate that the
MPSFRM has a best capability to capture the actual stor-
ageedischarge relationship, and hence, can more accurately
estimate runoff than the SFRM and PSFRM. Furthermore, the
MPSFRM provides a more flexibility in the runoff estimation
than the SFRM and PSFRM as the latter two are special cases
of the former.

As for future work, the regional formula for the MPSFRM
parameters should be developed based on physical meaning of
model parameters and geometric characteristics of the water-
shed, such as the area, river length, and catchment slope. Such
regional formula will be useful in estimating runoff at an
ungauged watershed. Moreover, other global optimization
methods with various calibration strategies could be utilized to
obtain model parameters which might produce more accurate
estimated runoff.
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