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摘要 

在這個計劃期中報告中已經得到了五個進展成果。第一個部分是關於可變長度的快速

傅利葉轉換處理器所使用的資料位址產生器設計；另一方面，對於傅利葉轉換中所需要的

旋轉因數指標產生器亦是可變長度快速傅利葉轉換處理器中的重要設計，在這裡共有二個

用於固定基數演算法與一個用於分裂基數演算法的旋轉因數指標產生器設計將會在第二部

分提出。為了減少儲存旋轉因數所佔用的硬體成本，第三部份會介紹一個以遞迴方程式來

產生正弦與餘弦函數的旋轉因數產生器設計。第四部份是一個範例性質的可變長度快速傅

利葉轉換處理器整合實作。最後一部份是一個結合 DCT 技術設計出之一新的高效能之
OFDM通道估測演算法。 

 
Abstract 
 

There are five intermediate results generated so far from our on-going project. All results 
are targeted on the FFT processor design for the modulation and demodulation of OFDM-based 
communication systems including DAB, DVB, 802.11a, 802.16 and VDSL systems. The results 
are: (1) a data address generator designed for memory-based, variable-length FFT processor; (2) 
three new architectures for coefficient index generation, which can work efficiently with the 
mentioned variable-length data address generator, where the first two are for fixed-radix FFT 
algorithms and the third one is for split-radix 2/4 FFT algorithm; (3) a new coefficient generator 
which can replace conventional high-cost coefficient ROM; (4) a variable-length FFT processor 
which integrates the advance technologies is proposed in part 4; (5) a high-performance 
DCT-based channel estimation algorithm for non-sample spaced channel impulse response.  
 
關鍵字：快速傅利葉轉換、位址產生器、係數產生器、正交分頻多工、數位聲訊廣播、數

位視訊廣播。 
 
Keyword: FFT, Address generator, Coefficient generator, OFDM, DAB, DVB. 



 III

 
TABLE OF CONTENTS 

ABSTRACT ...........................................................................................................................錯誤! 尚未定義書籤。 

1. INTRODUCTION AND PROJECT GOALS....................................................................................................... 1 

2. DISCUSSION AND RESULTS.............................................................................................................................. 2 

2.1 VARIABLE-LENGTH FFT PROCESSOR .................................................................................................................. 2 
2.1.1 Variable-length Data Address Generator ................................................................................................... 2 
2.1.2 Variable-length Coefficient Address Generator.......................................................................................... 7 
2.1.3 Variable-length Processing Element........................................................................................................... 8 
2.1.4 Variable-length Commutate Mode.............................................................................................................. 9 
2.1.5 The Proposed Variable-length FFT Processor Architecture......................................................................11 

2.2 CORDIC-BASED PROCESSING ELEMENT OF FFT PROCESSOR.......................................................................... 12 
2.2.1 The CORDIC Algorithm and Architecture................................................................................................ 12 
2.2.2 The New Angle Decomposition Scheme ................................................................................................... 14 
2.2.3 Table reducing scheme ............................................................................................................................. 15 
2.2.4 On-line variable factor compensation...................................................................................................... 16 
2.2.5 The Overall Operation Flow .................................................................................................................... 16 
2.2.6 Simulations Results .................................................................................................................................. 17 

3. CONCLUSION ..................................................................................................................................................... 18 

4. REFERENCES ..................................................................................................................................................... 18 

5. APPENDIX............................................................................................................................................................ 21 

 
 
 
 



 1

 
1. Introduction and Project Goals 

本子計劃主要在於研究多標準之正交分頻調變技術(OFDM)軟體無線電(software 
defined radio) FFT/IFFT演算法及架構之設計，考慮其整合性、低功率、快速計算、超大型
積體電路設計實現及其在數位通信之應用設計，特別是數位聲訊廣播(DAB)。FFT/IFFT運
算為正交分頻調變技術(OFDM) 之核心運算，而OFDM 為 DAB、DVB、802.11a、
HyperLAN、802.16等寬頻技術之調變方式。OFDM也被視為未來 3G之後之主要之無線通
信技術，而在有線寬頻之非對稱性數位用戶迴路通信技術(ADSL)亦利用相近技術，這兩種
數位通信技術均被視為現在及未來寬頻上網通信之主流技術，有鑑於此多標準、寬頻之廣

大應用及需求，本研究特別著重於多標準之相關於 FFT 信號處理之軟硬體整合設計如：
FFT/IFFT 設計。本計劃將為三年之多年計劃，第一年將著重於現有及未來 OFDM 傳輸理
論、相關應用如 DAB、DVB、802.11a、HyperLAN、ADSL標準之研究及 software defined radio 
理論研究，同時也將探討低功率、低複雜度、高速度 FFT/IFFT 演算法之研究及設計，此
外其它相關於 FFT之數位通信應用也將作整體性之探討，如頻域適應性等化、回音消除濾
波器理論與技術，並訂定出 FFT/IFFT 模組之設計規格，此規格將考慮到多標準、多模式
軟體無線電 FFT/IFFT 核心模組整合設計。為了配合總計劃及第二子計劃，DAB FFT/IFFT
模組之設計實現亦為主要考量。第二年除了繼續及改善第一年的研究外，將設計出適用數

位信通信應用、及多標準之之 FFT/IFFT架構及電路模組，特別是應用於 DAB OFDM，除
了設計出軟智慧財外(soft IP)， 我們也將作模組之FPGA實現以驗證設計之正確性，若時
間許可則將 FFT/IFFT 模組委託晶片廠實現之並作驗證。第三年除了繼續及改善第二年之
研究外將開始與其他模組作整合設計及驗證，基本之整合系統仍將以 FPGA實現為主，但
同時也將實作改進版之 FFT/IFFT模組晶片實現。 
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2. Discussion and Results 
 
2.1 Variable-length FFT Processor 

In order to realize multi-mode and multi-standard OFDM communication systems, the FFT 
processor must support length-independent computation and meet the worst-case hardware 
requirement. Consequently, the FFT processor design must contains an efficient processing 
element, a variable-length data address generator and a variable-length twiddle factor generator. 

2.1.1 Variable-length Data Address Generator 

In in-place memory-based FFT processor design, data address generator is decided by the 
order of butterfly operations. A conventional processing order and control scheme for radix-2 
FFT are proposed by Cohen (1976) [1], and the algorithm was then extended and generalized by 
[2], [3], [4], [5]. However, we can find out that Cohen’s scheme is not suitable for a 
variable-length FFT when analyzing a sub-segment of signal flow graph for a shorter-length FFT. 
To give an example of 16-point radix-2 DIF FFT operation, the direct-order scheme processes 
butterflies from top to down and from left stage to right stage as marked by the numbers on the 
right-hand sides of ellipses in Fig. 2.1. On the other hand, since the main idea of Cohen’s 
processing order is grouping butterflies associated with the same twiddle factor together to 
reduce signal switching frequency of the coefficient circuits, it results in decimation in butterfly 
(DIB) order as marked by the numbers on the left-hand sides of ellipses in Fig. 2.1. 
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Fig. 2.1 DIF butterfly processing sequence for fixed-length and variable-length memory 

based FFT processors 
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Table 2.1 Data addresses needed for butterfly PE in direct processing order. 

 BF 0 BF 1 BF 2 BF 3 BF 4 BF 5 BF 6 BF 7 

Stage 1 <0, 8> <1, 9> <2, 10> <3, 11> <4, 12> <5, 13> <6, 14> <7, 15>

Stage 2 <0, 4> <1, 5> <2, 6> <3, 7> <8, 12> <9, 13> <10, 14> <11, 15>

Stage 3 <0, 2> <1, 3> <4, 6> <5, 7> <8, 10> <9, 11> <12, 14> <13, 15>

Stage 4 <0, 1> <2, 3> <4, 5> <6, 7> <8, 9> <10, 11> <12, 13> <14, 15>

Table 2.2 data address pairs for butterfly PE in Cohen’s scheme. 

 BF 0 BF 1 BF 2 BF 3 BF 4 BF 5 BF 6 BF 7 

Stage 1 <0, 8> <1, 9> <2, 10> <3, 11> <4, 12> <5, 13> <6, 14> <7, 15>

Stage 2 <0, 4> <8, 12> <1, 5> <9, 13> <2, 6> <10, 14> <3, 7> <11, 15>

Stage 3 <0, 2> <4, 6> <8, 10> <12, 14> <1, 3> <5, 7> <9, 11> <13, 15>

Stage 4 <0, 1> <2, 3> <4, 5> <6, 7> <8, 9> <10, 11> <12, 13> <14, 15>

 

In Fig 2.1, when we isolate the sub-SFG of a shorter-length FFT from the longer SFG, the 
Cohen’s butterfly order is unmatchable with the variable-length FFT design concept. On the 
contrary, the direct processing order is suited to the varied FFT lengths, and therefore the 
architecture of Cohen’s data address generator has to be modified to deal with the operations of 
different lengths FFT. 

In the example shown above, the data addresses needed for butterfly PE in direct processing 
order and in Cohen’s processing order are listed in Table 2.1 and Table 2.2 respectively. In the 
table, <s, t> denotes data address pair for both input and output data for radix-2 butterfly PE, and 
s and t are indices of one dimension memory array. Note that the address translation and 
mapping from one dimension index to multi-bank memory system are considered later. 

Data address pair <s, t> needed for the i-th butterfly of the k-th stage in Cohen’s scheme can 
be described as (2.1), while the operator ROTATEn(X, m) circularly rotates X right by m bits 
within n bits. 
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To realize equation (2.1), Cohen proposed the efficient address generator architecture as 

shown in Fig. 2.2. The main idea is appending 0 and 1 to MSB of the content of butterfly counter 
then using barrel shifters to realize the rotation. 
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Fig. 2.2 Data address generator for radix-2 FFT in Cohen’s scheme 

 
We can modify Cohen’s DIB-ordered addressing scheme to direct ordered addressing 

scheme to suit with variable-length FFT design. The data address pair <s, t> can be described as 
the following equation (2.2) composed of the contents of the butterfly counter and the stage 
counter.  
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Chang [6] proposed a variable-length data address generator, which was modified from 

Cohen’s fixed-length data address generator. Chang’s design includes an extra barrel shifter that 
rotates the content of butterfly counter circular left before bit appending operations and then 
rotates circular right followed by bit appending operations. This design not only alternates 
Cohen’s scheme to direct butterfly operation order, but also adapts to varying FFT lengths. The 
block diagram is shown in Fig. 2.3. 
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Fig. 2.3 Chang’s variable-length data address generator. 
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In order to achieve high-performance variable-length FFT operations and data accesses, we 
propose the following data address generator. The design covers seven different FFT lengths 
including 64, 256, 512, 1024, 2048, 4096, and 8192 points, which cover all the required FFT 
lengths by 802.11a, 802.16a, DAB, DVB-T, VDSL and ADSL. Furthermore, the proposed data 
address generator significantly improves the address generator mentioned above, by considering 
radix-22 DIF FFT algorithm and variable-length FFT operations, and by simplifying the original 
area-consuming barrel-shifter based designs with simpler multiplexer-based addressing 
functions.  

The four addresses required by radix-22 butterfly PE correspond to the 4 different banks. 
The addresses are denoted as <s, t, u, v> which can be calculated by the equation (2.3), where N 
is the longest FFT length supported, k is the stage counter content, and 

20123)(log2)(log ]j jj  ......  jj[
22 −−= NNi  is butterfly counter content. 

 2012log1loglog2log1log

2012log1loglog2log1log

2012log1loglog2log1log

2012log1loglog2log1log

]  ...   11  ...  [
]  ...   10  ...  [

]  ...   01  ...  [
]  ...   00  ...  [

jjjjjjjv
jjjjjjju

jjjjjjjt
jjjjjjjs

KNKNKNNN

KNKNKNNN

KNKNKNNN

KNKNKNNN

−−−−−−−

−−−−−−−

−−−−−−−

−−−−−−−

=

=

=

=

 (2.3) 

Butterfly counter [10:0]

SIB MUX 
array 01

SIB MUX 
array 00

SIB MUX 
array 10

SIB MUX 
array 11

+

Comparator

Ca
rry

-in
 

co
nt

ro
lle

r

Stage 
Counter

1
2
4
8

16
32

128

13
12
11
10
9
8
6

Reset Signal

M
UX

M
UX

Mode select

s [12:0]

t [12:0]

u [12:0]

v [12:0]  
Fig. 2.4 Block diagram of the proposed variable-length data address generator 

 
The hardware block diagram of variable-length data address generator is shown in Fig. 2.4. 

In the figure, “carry-in controller” adds the carry-out signal from butterfly counter to the LSB or 
its left immediate bit of the stage counter to alternate the counter step of the stage counter 
between one and two; “comparator” compares stage counter content with the maximum stage 
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count corresponding to each FFT length and reset all counters if they are equal; input signal 
“mode select” controls the butterfly counter step and maximum stage count to vary FFT length; 
“SIB MUX array” denotes shift-insertion-bypass multiplexer array. It greatly simplifies the 
address generator of Fig. 2.5 and Fig. 2.6, as will be detailed below.  

Insert 
symbol 0

Insert 
symbol 1

Bypass Shift 1

MUX_n MUX_con_n

 

Fig. 2.5 Block diagram of MUX_n module 

 

MUX_0

MUX_1

MUX_2

MUX_3

MUX_9

MUX_10

MUX_11

MUX_12

Butterfly counter [10:0]

Data address [12:0]

Symbol 
[1:0]

x

x

x

x

MUX_con_12

MUX_con_11

MUX_con_10

MUX_con_9

MUX_con_3

MUX_con_2

MUX_con_1

MUX_con_0

 

Fig. 2.6 The architecture of Shift-insert-bypass MUX array 
 
In our design, we define several functions to simplify the design to replace those 

area-consuming barrel shifters with much simpler multiplexers. The functions include the 
required left shift operations, symbol bit insertion operations, and bypass the remaining bits, for 
the realization of the variable-length data address generation algorithm. Detailed architecture of 
the shift-bypass-insertion multiplexer array is shown in Fig. 2.6. In the figure, the input signal 
“symbol” to MUX_n module can be 00, 01, 10, or 11, where block diagram of MUX_n is shown 
in Fig. 2.5, and function of MUX_n out-put is explained in Table 2.3. Timing and area 
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comparisons of data address generator between SIB-MUX array approach and barrel shifter 
approach are shown in Table 2.4, and the result is synthesized by TSMC 0.25µm standard cell 
library with Synopsis Design Analyzer. 

 
Table 2.3 Output functions of the MUX_n. 

Output Function 
Insert symbol 0 (I0) Select symbol bit 0 as the n-th bit of data address. 
Insert symbol 1 (I1) Select symbol bit 1 as the n-th bit of data address. 

Bypass (BP) Select the n-th bit of butterfly counter as the n-th bit of data address. 
Shift 2 (S2) Select the (n-2)-th bit of butterfly counter as the n-th bit of data address.

 
 

Table 2.4 Comparison of DAG units. 

 SIB-MUX array Barrel shifter (Fig.2.3) 

No. of cells 143 229 

Total gate counts 169 352 

Path delay 5.72ns 7.14ns 

 

2.1.2 Variable-length Coefficient Address Generator 

The basic coefficient address generating function is mainly a counter with an adjustable 
counting step to realize varying stages and allow for varying FFT lengths. Hence, we can realize 
the coefficient address generator based on the content of the butterfly counter.  

In fig. 2.7, we give an example of coefficient address generator which sustains 8192, 4096, 
and 1024-point FFT.  

 

Butterfly Counter [11:0]

Barrel Shifter

carry

+

Mode_ control

M
U

X

1
2
4

Shift amount

Coefficient address [11:0]

Ca
rry

-in
co

nt
ro

lle
r

Stage Counter

 
Fig. 2.7 The block diagram of variable-length coefficient index generator 
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2.1.3 Variable-length Processing Element 

Although our design is based on radix-22 DIF FFT algorithm, we can still compute a general 
power-of-2 FFT by adding some minor modification to the radix-22 datapath. The unified 
radix-22/2 datapath is shown in Fig. 2.8 and Fig. 2.9. In the fig. 2.8, the control line “select=0” 
programs the PE to as radix-22 mode so as to execute radix-22 algorithm, otherwise, in fig. 2.9, 
the four adders on the right hand side and the multiplier WN

2n is bypassed so that the PE is 
configured as radix-2 mode such that two radix-2 butterflies are processed simultaneously. The 
“swap r/i” unit, that interchanges real part with imaginary part, is to implement the required 
multiplication with “-j”. This shared hardware design does not increase the complexity of data 
address generator. 
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Fig. 2.8 The radix-22 mode datapath of the PE 
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Fig. 2.9 The radix-22 mode datapath of the PE 
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2.1.4 Variable-length Commutate Mode 

The memory access bandwidth is the critical issue in memory-based FFT processor design. 

An N-point memory-based FFT processor based on radix-r algorithm needs N
r
N

rlog  PE 

operations to transform one N-point symbol. Further, each PE operation needs 2r memory 
accesses to read data from memory and write back to it, so that each N-point symbol requires 

NN rlog2  memory accesses. In order to handle this requirement, there are two solutions: 
1. Use a higher-radix algorithm to reduce total memory accesses. 
2. Increase memory access bandwidth by distributing memory accesses into several memory 

banks or multiple memory ports. 
However, it is expense to increase the arithmetic complexity. Further, the number of 

memory ports is not controlled by architecture designer but cell library provider and device 
vendor, and the desirable case of the in-place design is simultaneously delivering r complex data 
from memory to radix-r butterfly PE and writing back r complex data from output ports of 
butterfly PE to the data memory. Therefore, the solution of memory access bandwidth is to 
partition memory into r banks, and than assign r input data for radix-r butterfly PE to proper 
memory banks for conflict-free memory access.  

There are several efforts on memory partition and addressing methods to achieve 
conflict-free memory access [2], [3]. The general conflict-free memory partition scheme [2] that 
translates sequential data count into bank index and data index of each bank is shown in equation 
(2.4). 
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Similar result can also be found in Lo’s scheme derived by vertex coloring rule [3]. For 

radix-r butterfly PE, this allocation algorithm can access r data from r different banks 
simultaneously at proper addresses according to the original data addresses. The original data 
address data_count can be generated according to the content of the butterfly counter and the 
stage counter of FFT processing. The data_index is the new address assigned to each memory 
bank. 

The bank index generator of our design is shown in Fig. 2.10. The commutate modes of the 
commutator which supports the variable-length FFT mentioned above are shown in Table 2.5. 
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Fig. 2.10 Block diagram of bank index generator 

 
Table 2.5 Four different commutator configuration linking desired data access port index to 

bank index of data. 
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2.1.5 The Proposed Variable-length FFT Processor Architecture 
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Fig. 2.11 Block diagram of the proposed FFT processor 
 
A general memory-based FFT processor structure mainly consists of a PE, a main memory, 

ROM for twiddle factor storage, and a controller. The main memory stores processed data. The 
controller contains three functional units: data memory address generator, coefficient index 
generator, and operation state controller. The Butterfly PE is responsible for the butterfly 
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operations required by FFT operations. 
Inside the FFT processor, operation can be divided into three major parts: memory read, data 

processing, and memory write back. These three parts are isolated by two sets of register so that 
they can operate simultaneously and independently without conflict. The FFT operation diagram 
of our design example is shown in Fig. 2.12. 

PE

R
EG

R
EGMEM

READ
MEM

WRITE

PE

R
EG

R
EGMEM
READ

MEM
WRITE

PE

R
EG

R
EGMEM

READ
MEM

WRITE

 
Fig. 2.12 Pipelined data path and shared devices of FFT processor 

 
 
 
2.2 CORDIC-based Processing Element of FFT Processor 

2.2.1 The CORDIC Algorithm and Architecture 

In many FFT applications, the butterfly processing element (PE) often is realized with 
complex multipliers which have characteristics of high complexity and huge amount of area. 
Further, for the requirement of the twiddle factor multiplications, the twiddle factors must be 
stored in a look-up table which is generally implemented by ROM in advance. However, since 
long-length FFTs are commonly used in modern applications such as 8192-point FFT in DVB-T, 
the look-up table approach becomes inefficient because of enormous chip area cost. For example, 
even if we employ the symmetric property of the sinusoid function, the total ROM space 
requirement is 2*12*8192 /8 = 24576(bits) ≈ 3(KB) in an 8192-point FFT with 12-bit accuracy. 
For this reason, the CORDIC (Coordinate Rotation Digital Computer) algorithm is proposed here 
to substitute for conventional complex multiplier and look-up table approach. 

The CORDIC algorithm developed by Volder [7] in 1959 is a generalized algorithm that can 
perform vectoring and rotation operations of a two dimensional vector. The rotation operation is 
to compute the target vector of the initial vector and the given rotation angle θ, while the 
intention of the vectoring operation is to compute the angle between the start vector and the end 
vector. Furthermore, there are three different kinds of coordinate systems: the linear coordinate 
system, the circular coordinate system, and the hyperbolic coordinate system. Walther [8] extend 
the algorithm to compute multiplication, division, and hyperbolic functions. The applications of 
CORDIC-based are 3-D graphic [9], [10], adaptive filter [11], floating point unit, DSP processor, 
and so on. 
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When employing CORDIC algorithm to FFT PE, we only investigate the most popular 
circular coordinate system and the rotation mode operations. The basic theory of the CORDIC 
algorithm is reviewed as follows section. 

The rotation operations are approached by a sequence of micro-rotations (elementary angles) 
using only shift-and-add operations, and therefore it is very suited for VLSI implementation and 
DSP applications. There have been numerous improved CORDIC algorithms and structures 
proposed ever since its introduction. Most of the CORDIC algorithms assume a constant scale 
factor for the ease of scale factor compensation. However, they have to rotate even when the 
residual rotation angles have converged [12], [13], [14], [15]. In some cases, they either have to 
do accurate but slow decision operations for rotation directions or do rough direction decisions at 
the expense of extra compensation operations [12], [13]. To speedup CORDIC operations, the 
following techniques are widely used: (1) use carry-free redundant addition scheme [12], [13], 
[16-19]; (2) fast decision of rotation directions with only a few most significant digits (MSDs) of 
the control parameters [12], [13], [16-19]; (3) skip unnecessary rotations; (4) effectively recode 
rotation angles for saving rotation iterations [20]; (5) apply radix-4 rotation schemes [17], [21], 
[22], [23], to reduce iteration numbers; and (6) predict the rotation sequence for parallel and 
pipelined processing. 

Some of the mentioned techniques result in variable scale factors. Variable scale factors 
have the trouble of complicated scale factor computation followed by penalty compensation [18], 
[19]. Due to the considerable overhead generated by variable scale factor, most of the existing 
radix-4 CORDIC algorithms resort to constant scale factor approach [17], [22]. However, these 
constant-scale-factor CORDICs are basically hybrid radix-2 and radix-4 algorithms. As a result, 
their iteration numbers are not fully reduced. Recently, we proposed CORDIC algorithms with 
variable scale factors [21] skip unnecessary rotations and at the same time perform 
low-complexity on-line decompositions and compensations for the variable scale factors. 
Specifically, the radix-4 algorithm costs less iteration (including rotations and compensations) 
than the existing radix-4 algorithms. The radix-4 CORDIC algorithm proposed in [23] is similar 
to the one in [21], except the ways they handle variable scale factors. Both designs share the 
same low iteration number of 0.8n. Although the very high-radix CORDIC algorithm has an 
extremely small iteration number, it is irregular in realization which needs 
multiplication-and-accumulation circuits. Its efficiency is high dependent on practical circuit 
optimization. 

To reduce the shift-and-add operations of both rotation iterations and scale factor 
compensations, we will present a new table lookup recoding scheme for rotation angles and 
variable scale factors. The new method can speedup both the convergence rates of the residual 
rotation angles and our fast variable scale factor decomposition and compensation algorithm  
[21]. For more reduction of iteration number, the new CORDIC algorithm also applies the 
leading-one bit detection operations to both residual rotation angles and decomposition of 
variable scale factors.  
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2.2.2 The New Angle Decomposition Scheme 

For speeding up convergence, first we detect the leading-one (leading-zero) bit positions, 
for positive (negative) residual angle zi, respectively, in the i-th iteration. This action can avoid 
unnecessary rotations required by conventional CORDIC algorithms. Then the most significant r 
bits (denoted as zi,r ), counted from the leading-one (or leading-zero) bit of zi, are used to access 
δm and δn information from a table. These two retrieved parameters correspond to a combined 
rotation angle tan-12-m + tan-12-n that best matches zi,r (in a least-square error sense), which makes 
zi,r – ( tan-12-m + tan-12-n ) as close to zero as possible. This approach corresponds to the following 
iteration operation (2.5), and this iteration results in a variable scale factor described as the 
following equation (2.6).  
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In generalization, we may include more than two δn’s to speedup the convergence rate. 

However, the computational complexity increases significantly, and therefore we only investigate 
the case of two combined direction parameters here. Similar techniques can be extended to the 
general case. Based on equation (2-5), some lookup tables for the residual rotation angles can be 
constructed by computer search with the closest match as mentioned before. In a sense, it 
approximately amounts to a radix-2r CORDIC algorithm, by examining the MSB part zi,r of the 
residual rotation angle zi,. Since an optimal table depends on the iteration index i, it is better to 
have an optimized lookup table for each i. However, it will increase the table size accordingly. 
From easy Taylor expansion, we can get tan-12-i ≈ 2-i when i>>0. Then, in computer simulations, 
we find that it is enough to have good results by using only two different tables, as shown below. 

Here, we take r= 4 bits (i.e., radix-24) as a design example. Table 2.6 shows the stored 
optimized m and n of the δm and δn patterns, corresponding to the zi,r information. From Taylor’s 
expansion of θk = tan-12-k , we find that the binary patterns of θ0 and θ1 are noticeably different 
from those of the θk’s, k>1. Therefore, two different tables are used for the cases of k= {0,1} and 
k>1, respectively, where k is the leading-one (or leading-zero) bit position of the residual rotation 
angle zi. 
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Table 2.6 Recoding table for the decomposition of residual rotation angle 

Optimized patterns of m and n 

k=0,1 k>1 θi(2-k~2-k-3) 

m n m n 

1000 k k+3 k k+4 

1001 k k+2 k k+3 

1010 k k+2 k k+2 

1011 k k+1 k k+1 

1100 k k+1 k k+1 

1101 Unused , for θ0=0 ~ π/4 k k+1 

1110 Unused , for θ0=0 ~ π/4 k-1 k+5 

1111 Unused , for θ0=0 ~ π/4 k-1 k+3 

 

2.2.3 Table reducing scheme 

In above description of new angle encoding scheme, the given table size does not include 
the term n*p for {tan-12-i, i=0,1,2,…,n-1}, required by conventional CORDIC algorithms. We 
can find the equation (2.7) in Taylor expansion. 

 rangeerror max   theis )(  where),(
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22
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xxx +
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Table 2.7 the table of tan-12-i value for the 12-bit accuracy 

i tan-12-i ( radius ) tan-12-i ( degree ) 
1 0.463867 ( 0011101101102 ) 26.565051 ( 1101010010002 ) 
2 0.245117 ( 0001111101102 ) 14.036243 ( 1110000010012 ) 
3 0.124512 ( 0000111111112 ) 7.125016 ( 1110010000002 ) 
4 0.062500 ( 0000100000002 ) 3.576334 ( 1110010011102 ) 
5 0.031250 ( 0000010000002 ) 1.789911 ( 0111001010002 ) 
6 0.015625 ( 0000001000002 ) 0.895174 ( 0011100101002 ) 
7 0.007813 ( 0000000100002 ) 0.447614 ( 0001110010102 ) 
8 0.003906 ( 0000000010002 ) 0.223811 ( 0000111001012 ) 
9 0.001953 ( 0000000001002 ) 0.111906 ( 0000011100102 ) 
10 0.000977 ( 0000000000102 ) 0.055953 ( 0000001110012 ) 
11 0.000488 ( 0000000000012 ) 0.027976 ( 0000000111002 ) 
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In equation (2.7), if we need n bit output precision and x = 2-i, we can ignore the second 

item when i ≥ n/3. Then, we can get the tan-12-i value by shifting tan-12-(i-1). By the method, we 
only need n/3 words to store the angle tan-12-i, replacing the traditional n words. For instance, the 
terms of tan-12-i value which have be stored in ROM are 4 and 5 for radius and degree 
representation respectively.  

2.2.4 On-line variable factor compensation 

For low-complexity on-line variable scale factor compensation described by equation (2.6), 
here we further improve and speedup our previous efficient variable scale factor algorithm, by 
using a on-line variable factor compensation. The whole improved algorithm is detailed below. 

Rewriting equation (2.6), K can be first transformed to  

  
ii nmiK

22 21
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21
1

−− ++
=  (2.8) 

 
The same in Taylor, we can find Ki = (1-2-(2m+1))(1-2-(2n+1))+O(2-(4m+1)). From this expansion, 

the Ki will approximate to 1 when i > (n/2)-1. Therefore, we can get the most suitable scale 
factor compensation values when we get the rotation items δm and δn. And the compensation 
computation can also be calculated by shift-and-add operation. In every time scale factor 
compensation, we will have an error item O(2-(4m+1)), when i < (n/4)-1. The error will be store 
and than be compensated just after the rotation operations i > (n/2)-1. 

2.2.5 The Overall Operation Flow 

In summary, by combing the leading-one bit detection scheme, the residual recoding 
technique, and the on-line variable scale factor compensation, we have a CORDIC algorithm as 
detailed by the following steps:  

(1) Set the initial iteration number i = 0, initial residual angle z0 = θ, initial rotation vector   
(x0, y0) = (x, y), and initial exponent residual T0 = 0. If θ = 0, then (x’, y’) = (x, y), and 
exit the rotation iteration. Otherwise, proceed to step (2). 

(2) Check leading-one bit position k and obtain zi,r of zi,. If zi≠0, go to step (3). Otherwise, zi 
= 0: rotation operations are completed and set the total iteration number I=i-1; go to step 
(5). 

(3) Using zi,r retrieve the optimized m and n of δm and δn, and then get the value of tan-12-m 
and tan-12-n from lookup tables. To perform the iteration as shown in equation (2.5) and 
zi+1 = zi– ( tan-12-m + tan-12-n ). And the scale variable compensation: 
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(4) Set i=i+1, go to step (2). 
(5) Calculation complete and the output values are (xi+1, yi+1). 
 
Fig. 2.13 shows the architecture for our new CORDIC processor. However, for the 

consideration of high-speed operations, they can be put in a pipelined structure in cascade. The 
pipelined structure is particularly efficient for the applications that require intensive and 
sustaining vector rotation operations. 
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Fig. 2.13 The structure of new CORDIC algorithm 

 

2.2.6 Simulations Results 

Based on the structures shown in Fig. 2.13, we performed fixed-point hardware simulations 
using Matlab & Verilog hardware description language, assuming 8-bit, 12-bit and 16-bit 
accuracy (including 2-bit integer part). Exhausted simulations were conducted for all the rotation 
angles in the range of 0˚~ 45˚. The simulation result will be shown in the table 2.8. 



 18

 
Table 2.8 Simulation results in different output bits precision with our new CORDIC algorithm 

Output precision 8 12 16 
Angle composition 1.835 2.727 3.644 

Scale factor composition 1.786 3.092 4.153 Average 
Overall iteration 2.437 3.482 4.424 

Angle composition 3 4 5 
Scale factor composition 4 5 6 Worst case 

Overall iteration 4 5 6 

 
 
3. Conclusion 

In section 2.1, we propose an in-place memory-based variable-length FFT processor 
architecture, which is suited for multi-mode and multi-standard OFDM systems including 
802.11a, 802.16a, DAB, DVB-T, and VDSL. The design is featured with the following 
low-complexity components including: a butterfly PE, a variable-length data address generator, 
and a variable-length coefficient address generator. The design is published in ISCAS’04 and 
currently under final EDA realization. The design will be taped out soon in a few weeks. Due to 
page limitation, we just include our results on channel estimation in the appendix. The result is a 
high-performance DCT-based channel estimation algorithms which is accepted by ICC04. 

In addition, the new CORDIC algorithm considerably reduces the iteration number 
efficiently. It is achieved by combining several design techniques, including efficient high radix 
rotation scheme, angle encoding, leading-one bit detection, and on-line variable factor 
compensation. Our further work is to implement this new CORDIC-based PE for FFT processors 
of OFDM systems. 
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ABSTRACT 
 

In this paper, we propose an efficient variable-length 
FFT processor architecture suitable for multi-mode and 
multi-standard OFDM communication systems. The FFT 
processor is based on radix-22 DIF FFT algorithm and also 
supports non-power-of-4 FFT computation. The design 
contains an efficient processing element (PE), which can 
execute radix-22 butterfly (BF) operations, as well as 
radix-2 BF operations. Moreover, in order to achieve 
high-performance variable-length FFT operations and data 
accesses, an efficient variable-length address generator 
and twiddle factor generator are designed. The design has 
the merits of low complexity and high speed performance. 
The designs consider seven different FFT lengths 
including 64, 256, 512, 1024, 2048, 4096, and 8192 points, 
which cover all the required FFT lengths by 802.11a, 
802.16a, DAB, DVB-T, VDSL and ADSL. 
 

1. INTRODUCTION 
 
Fast Fourier Transform (FFT) unit, is one of the critical 
components in OFDM (orthogonal frequency division 
multiplexing) systems. Because of high real-time 
throughput rate demand by current OFDM systems, such 
as ADSL, VDSL, 802.11a, 802.16, DAB, and DVB-T, an 
efficient FFT processor is required for real-time 
operations.  

FFT architectures can be categorized as two types: the 
pipelined architectures and the memory-based 
architectures [1], [2], [3]. For hardware simplicity, this 
work only focuses on memory-based designs. 
Memory-based architectures generally include a single 
butterfly PE (or more than one to enhance computation 
power), a centralized memory block to store input or 
intermediate data, and a control unit to handle memory 
accesses and data flow direction.  

Since the existing OFDM communication systems all 
have similar baseband architectures and FFT/IFFT 
operations, it is advantageous to design a single 
variable-length memory-based FFT/IFFT module suitable 
for multi-mode and multi-standard operations. With this 
consideration, there are many design problems to be 
addressed and overcome for the realization of an efficient 

variable-length FFT/IFFT processor. Some of the key
design issues include: (1) a high-performance PE capable
of executing FFT butterfly operations for various FFT
algorithms; (2) a high-performance data-address generator
that supports in-place variable FFT length data accesses;
(3) an efficient multi-bank memory structure that support
low cycle-count conflict-free data accesses; (4) an
efficient address generator for variable-length twiddle
factor accesses or generations .  

There are some PE designs in the literature [1], [4], [5].
Here we adopt the conventional multiplier-and-adder
based butterfly structure, based on radix-4 FFT algorithm,
and also consider general power-of-two FFT operations.
For the complex multiplication, four real multipliers are
replaced by three multipliers. For the design of
variable-length address generator, not much was proposed
in the past. However, there are some efficient conflict-free
in-place memory addressing schemes [2], [3], [5], [6]. All
these designs require area-consuming barrel shifters. We
will propose a much efficient design which has a small
area, meanwhile supports variable-length FFT data
addressing. Correspondingly, we will also need a
four-bank memory that matches the in-place memory
address generator for high-bandwidth data access. 

For twiddle factor addressing and generation, we
propose an on-line generation design, which has a much
smaller area and higher speed than conventional
ROM-based designs. The design is detailed in [7]. 

 
2. MEMORY-BASED FFT ARCHITECTURES 

 
A general memory-based FFT processor structure mainly
consists of a PE, a main memory, ROM for twiddle factor
storage, and a controller. The main memory stores
processed data. The controller contains three functional
units: data memory address generator, coefficient index
generator, and operation state controller. The Butterfly PE
is responsible for the butterfly operations required by FFT
operations.  

For performance consideration, ideally the PE should
simultaneously fetch r complex data from memory then
write back r complex computed output data to the data  
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memory. Therefore, memory design should consider 
multi-bank data addressing and partition the memory into 
r banks for r concurrent conflict-free data accesses. There 
are some efforts on memory partition and addressing 
methods to achieve conflict-free memory access [5], [6]. 
In summary, those approaches can be described by the 
following efficient functions [5]:  
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Those mapping functions are efficient in that they are 
regular and simple for varying butterfly operations and 
conflict-free memory accesses. They can be realized by 
the data address generator structure shown in Fig. 1 [5]. In 
the figure, data_index_n is the new address in the assigned 
memory bank. The butterfly counter value indicates the 
sequence number of a butterfly operation from 0 to N/r. 
This counter value is appended a symbol value to its LSB, 
ranging from 0 to r-1, and shifted left by an amount equal 
to the content of the stage counter.  

These r input data addresses for butterfly PE are 
translated to r corresponding bank indices and addresses
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 Fig. 3 Data path of radix-22/2 processing element 
within the memory banks. This facilitates r simultaneous
conflict-free read operations from the r memory banks.
Although this address generator is very efficient, it is area
consuming, and it is only suitable for fixed-length FFT
operations. Later, we will propose a variable-length
address generator with smaller area than the design of Fig.
1.  

 
3. THE PROPOSED VARIABLE-LENGTH FFT 

ARCHITECTURES 
 
Our design is an 8192-point variable-length FFT processor
suited for various FFT lengths of 802.11a, 802.16, DAB,
DVB-T, and VDSL. Block diagram of our design is
shown in Fig. 2. 
 
3.1 The Butterfly PE 

Although our design is based on radix-22 DIF FFT
algorithm, we can still compute a general power-of-2 FFT
by adding some minor modification to the radix-22

datapath. The unified radix-22/2 datapath is shown in Fig.
3. In the figure, the control line “select=0” programs the
PE as radix-22 mode so as to execute radix-22 algorithm,
otherwise, the four adders on the right hand side and the
multiplier 

n
NW 2

is bypassed so that the PE is configured as
radix-2 mode such that two radix-2 butterflies are
processed simultaneously. The “swap r/i” unit, that
interchanges real part with imaginary part, is to implement
the required multiplication with “-j”. This shared
hardware design does not increase the complexity of data
address generator. 
 
3.2 The variable-length data address generator (DAG)

The proposed data address generator significantly
improves the address generator mentioned in section 2, by
considering radix-22 DIF FFT algorithm and
variable-length FFT operations, and by simplifying the
original area-consuming barrel-shifter based designs with
a few simpler multiplexer-based addressing functions. The
four addresses required by radix-22 butterfly PE in 
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power-of-4 point FFT correspond to the 4 different 
banks. The  
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addresses of the generator addresses are denoted as <s, t, u, 
v> which can be calculated by the following equations. 
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where 40123)(log2)(log ]  ..... [
44

iiiiii NN −−=  is the 
butterfly counter content, and k is the stage counter 
content. 

On the other hand, in non-power-of-4 point FFT 
operations, the radix-22 butterfly should be reconfigured 
as two radix-2 butterflies in the first stage of FFT 
operations. Hence, the data address generator should 
provide two different address-generation modes to 
accommodate both power-of-4 and non-power-of-4 point 
FFT operations. 

In the first stage of non-power-of-4 FFT operations, 
data addresses <s, t, u, v> required by butterfly PE are 
generated by the following equations. 
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where j is bit-wise representation of butterfly counter 
content and N is the longest FFT length supported. The 
generalized data address generation equations are: 
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where K is a special stage counter content, which is
increased by one each time when all the radix-2 butterfly
operations within the current stage are completed, or
increased by two after one stage of radix-22 butterfly
operations is completed. 

The hardware block diagram of variable-length data
address generator for our FFT processor capable of
executing 8192, 4096, 2048, 1024, 512, 256, and 64-point
FFTs is shown in Fig. 4. In the figure, “carry-in
controller” adds the carry-out signal from butterfly
counter to the LSB (the shaded area) or its left immediate
bit of the stage counter to alternate the counter step of the
stage counter between one and two; “comparator”
compares stage counter content with the maximum stage
count corresponding to each FFT length and reset all
counters if they are equal; input signal “mode select”
controls the butterfly counter step and maximum stage
count to vary FFT length; “SIB MUX array” denotes
shift-insertion-bypass multiplexer array. It greatly
simplifies the address generator of Fig. 1, as will be
detailed below.  

In our design, we define several functions to simplify
the design to replace those area-consuming barrel shifters
with much simpler multiplexers. The functions include the
required left shift operations, symbol bit insertion
operations, and bypass the remaining bits, for the
realization of the variable-length data address generation
algorithm. Detailed architecture of the
shift-bypass-insertion multiplexer array is shown in Fig. 5.

In the figure, the input signal “symbol” to MUX_n
module can be 00, 01, 10, or 11, where block diagram of
MUX_n is shown in Fig. 6, and function of MUX_n
output is explained in Table 1. Timing and area
comparisons of data address generator between SIB-MUX
array approach and barrel shifter approach are shown in
Table 2, and the result is synthesized by TSMC 0.25μm
standard cell library with Synopsis Design Analyzer. 

 
3.3 The variable-length coefficient address generator 

Instead of using conventional ROM-based twiddle
factor generation scheme, we propose a new twiddle
factor generator, which has a smaller area and a higher
speed than the ROM-based design. The design is
presented in [7]. We will not detail it here. However, if
conventional ROM-based twiddle factor generation is
adopted, we can use the following efficient twiddle factor
address generator, as detailed below. The basic coefficient
address generating function is mainly a counter with an 
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adjustable counting step to realize varying stages and 
allow for varying FFT lengths. Hence, we can realize the 
coefficient address generator based on the content of the 
butterfly counter. Coefficient address w for the i-th 
butterfly of the k-th stage in radix-2, N/2c -point DIF FFT 
can be generated based on the following equation: 
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Fig. 5 The architecture of Shift-insert-bypass MUX array 

Table 1 Output functions of the MUX_n. 
Output Function 
Insert symbol 
0 (I0) 

Select symbol bit 0 as the n-th bit of data 
address. 

Insert symbol 
1 (I1) 

Select symbol bit 1 as the n-th bit of data 
address. 

Bypass (BP) Select the n-th bit of butterfly counter as the 
n-th bit of data address. 

Shift 2 (S2) Select the (n-2)-th bit of butterfly counter as 
the n-th bit of data address. 

 
Table 2 Comparison of DAG units. 

 SIB-MUX array Barrel shifter (Fig.2) 
No. of cells 143 229 

Total gate counts 169 352 
Path delay 5.72ns 7.14ns 

Insert
symbol 0

Insert
symbol 1

Bypass Shift 2

MUX_n MUX_con_n

 
Fig. 6 Block diagram of MUX_n module 
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where N is the longest FFT length and w is from 0 to 
N/2-1  that corresponds to coefficient from 
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NW . As mentioned previously, the content of butterfly 
counter is i*2c , where 2c is the ratio of longest FFT length 

to the current processed FFT length. Hence, coefficient
address w can be derived from 
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where B is the content of butterfly counter. In a
fixed-radix design, equation (6) can be implemented by
shifting the content of butterfly counter to left by an
amount related to the stage counter’s content. Furthermore
the stage counter unit is similar to Fig. 4. The hardware
block diagram which depicts a coefficient address
generator for 512, 256, and 128-point FFT is shown in Fig
7.  
 

4. CONCLUSION 
In the paper, we propose an in-place memory-based
variable-length FFT processor architecture, which can suit
for multi-mode and multi-standard OFDM systems
including 802.11a, 802.16a, DAB, DVB-T, and VDSL.
The design is featured with the following low-complexity
components including: a butterfly PE, a variable-length
data address generator, and a variable-length coefficient
address generator. The design is currently under final
EDA realization and will be reported in the final paper. 
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Abstract—In this paper, based on the property of channel 
frequency response and the concept of interpolation in transform 
domain, we propose two discrete cosine transform (DCT)-based 
pilot-symbol-aided channel estimators, which can mitigate the 
aliasing error and high-frequency distortion of the direct discrete 
Fourier transform (DFT)-based channel estimators when the 
multipath fading channels have non-sample-spaced path delays. 
Both proposed estimators outperform the conventional 
DFT-based channel estimators. Of these two DCT-based 
estimators, one has its performance close to MMSE estimator, 
while the other one has the advantage of easy implementation 
with a little performance degradation. Furthermore, in 
implementation, the DCT-based estimators have the advantages 
of utilizing mature fast DCT algorithms and architectures, which 
is favorable to matrix-based channel estimators. 

Keywords-OFDM; channel estimation; FFT; DCT; interpolation 

I.  INTRODUCTION 
Multicarrier systems have received much attention these days. 

It is a promising technique for high data rate transmission. 
Examples include wireless OFDM systems, such as IEEE 
802.11a wireless LAN, IEEE 802.16a wireless MAN, DAB 
and DVB-T systems, and the wired DMT systems, such as 
ADSL and VDSL systems. They are robust to multipath 
inter-symbol interference (ISI). However, they still suffer from 
multipath frequency-selective fading. To remove the channel 
effect and do accurate data demodulation, one has to perform 
accurate channel estimation. 

The optimal interpolation filtering in minimum mean 
square error (MMSE) sense is a well-known channel estimator 
[1], [2]. However, the statistical characteristics of a channel, 
i.e., autocorrelation matrix of channel frequency response and 
signal-to-noise ratio (SNR), must be obtained in advance. 
Usually this is impossible because of wide-varying channel 
conditions. An alternative is to use recursive least-square 
(RLS) method to track the channel [3]. Although RLS 
algorithm is quite effective, high computation complexity is a 
serious disadvantage. In [1], [2], the authors proposed a robust 
approach in which the actual autocorrelation matrix is replaced 
by a properly approximated matrix with small mismatch and 
performance loss. Although reasonable suboptimal solution is 
achievable using this algorithm, the required computation 
complexity is still very high. Hence it may not be practical.  

Another popular estimator is DFT-based interpolator [4], 
[5]. The DFT-based channel estimator can theoretically 
achieve ideal lowpass interpolation and has the advantage of 

low complexity by exploiting FFT algorithm. This works well
when the interpolated signal is originally band-limited. For
channel frequency response to be interpolated and estimated,
this condition corresponds to time-limited channel impulse
response. This is true when the multipath delays are all integer
multiples of the sampling time and short enough so as not to
cause aliasing error, if it is obtained from the IDFT of a
limited number of pilot frequency responses.  

If there exists any non-sample-spaced path delay, the
equivalent discrete channel impulse response will be
dispersive in time domain. As a result, the DFT-based
interpolation process will be using the aliased data of the
dispersive impulse response. This results in considerable
performance degradation. To alleviate the problem, recently
we proposed a DCT-based channel estimation algorithm [8]
(termed DCT/EIDCT channel estimator), which is much
effective than the conventional DFT-based channel
interpolation algorithms. The algorithm can effectively reduce
the aliasing error and achieve better interpolation performance
than the popular DFT-based methods. In this paper, we will
provide a more generalized and complete treatment on the
DCT-based channel estimation. In addition to reviewing our
recently proposed DCT/EIDCT-based channel estimation
algorithm, we will also propose a fast DCT algorithm for its
low-complexity realization, plus that we will propose another
DCT-based channel estimator (termed IDCT/DCT-based
channel estimator). The new DCT-based channel estimators
also has a much better performance than the conventional
DFT-based channel estimators, while is comparable with the
DCT/EIDCT method. In addition, the new DCT-based channel
estimators have the advantages of utilizing mature fast-DCT
algorithms and architectures. They can be implemented with
even lower complexity compared with DFT-based channel
estimators. 

In section 2, we will describe the OFDM system model and
DFT-based channel estimators. Two new DCT-based channel
estimators will be introduced in section 3, followed by their
simulation results in section 4 and finally the conclusion. 

II. OFDM SYSTEM MODEL AND DFT-BASED CHANNEL 
ESTIMATORS 

A. OFDM System Model 
First, the transmitted data is split into several low-rate

streams and then these data streams are transmitted in different
subcarriers. We assume the data transmitted at the k-th

This work was supported by National Science Council, Taiwan, under the 
grant contracts NSC 92-2219-E-009 -017 and NSC 92-2220-E-009 -021  
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subcarrier is d(k). The multicarrier modulation is done by 
inverse discrete Fourier transform (IDFT) as 
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where N is the total number of subcarriers. Then before 
transmitting )(nx , cyclic prefix is inserted to prevent ISI and 
ICI. 

The time-varying multipath channel can be characterized 
by 
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where ν  is the number of paths, lα  is the path gain and lτ  is 
path time delay. Usually stl )'(α  are modeled as complex 
Gaussian processes with Jakes’ power spectrum [6], and all 
the delay paths are uncorrelated to each other. This is so-called 
the multipath Rayleigh fading channel. The mean-square value 
of )(tlα  is usually described by a exponentially-decayed 
function with respect to the path delay  time lτ , which has 
the form of 
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where σ  is the power delay time constant. Another important 
issue about path gain is the variation along time direction. 
Doppler frequency is commonly used as an indicator of the 
variation rate and is defined as 

 v/ccd ff =  (4) 
where cf  is the carrier frequency, v is the vehicle speed and c 
is velocity of light.  

If the channel length is shorter than the cyclic prefix, the 
received signal can be expressed as  

 1,,2,1,0      )(~)()()( −=+⊗= Nnnnnhnxny Λ  (5) 
where ⊗  denotes circular convolution, )(~ nn  is additive white 
Gaussian noise, and h(n) is the equivalent discrete channel 
impulse response (assuming the channel is fixed over an 
OFDM symbol) as described by [7] 
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where cT  is the sampling period. Then the received signal at 
each subcarrier can be obtained by performing discrete Fourier 
transform (DFT) on y(n) as 
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A. The DFT-Based Channel Estimators [5] 
For simplicity, the DFT-based estimators can be 

summarized by the following steps: 
1) Perform the least-square (LS) estimation [7] of channel 

response at the pilot subcarriers: 
 )(~)((/)()()(/)()(ˆ kNkHkPkNkHkPkYkH pppppp +=+==  (8) 
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where P(k) is the prior known data transmitted at pilot
subcarriers.  

2) Perform phase rotations of the pilot subcarrier channel
response:  
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where ∆  is the minimum integer larger than cT/maxτ , and

maxτ  is the maximum path delay time. The phase shift is
equivalent to time shift by 2/∆−  units of the channel
impulse response. Doing so, the power of channel impulse
response is roughly centered around n = 0. 

3) Perform IDFT of )(ˆ kH p′ : 
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4) Increase channel  samples by padding zeros to )(ˆ nhp
:
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5) Interpolate channel response by performing
DFT[ )(ˆ nh ]: 
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6) Restore the phase of  interpolated channel response: 
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II. THE PROPOSED DCT-BASED CHANNEL ESTIMATORS 
DFT of a set of N-point data is equivalent to the

discrete-time Fourier transform (DTFT) of the infinite-length
periodical signals extended from the original N-point data.
Therefore, if it is discontinuous between two ends of the
N-point data, there will be an abrupt variation in between the
period boundaries. As a result, there are high frequency
components in the DFT results. Under this condition, the DFT
results are quite different from the desired frequency response
of the original aperiodic signal, which has smaller
high-frequency components. In addition, those high-frequency
components will generate large aliasing errors accordingly, in
the channel interpolation process. Therefore, in this case, we
have a high tendency of getting error-prone interpolated
channel frequency samples. As such, those high-frequency
errors should be avoided in the frequency-domain process as
possibly as it can be. To achieve this goal, let’s review the
characteristics of a multipath channel of (6). We can find that
when the multipath time delays are all sample-spaced ( sl 'τ
are all integer multiples of sampling period), the equivalent
channel impulse response is time-limited. Therefore, in this
case, DFT-based channel estimator works well. However,
when the multipath time delays are non-sample-spaced, the
power of channel impulse response is dispersive to the length
of an OFDM symbol. In this case, the number of pilot
subcarriers is normally insufficient and under-sampled. Hence,
the introduced aliasing errors due to the under-sampled pilot 
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channel responses will severely degrade the performance 
of DFT-based channel estimators. 

Discrete cosine transform (DCT) is a well-known technique 
widely used in image processing. Compared with DFT, DCT 
can reduce high-frequency components in the transform 
domain by eliminating the effect of discontinuous edge in 
DFT-based approach, as mentioned before. The reason is that 
operation of an N-point DCT is equivalent to extending the 
original N-point data to 2N points by mirror extension, 
followed by 2N-point DFT of the extended data and their 
constant magnitude and phase compensation. Obviously, the 
operation of mirror extension can solve the signal discontinuity 
problem introduced in the DFT-based interpolation process. 
Therefore, DCT-based interpolation is expected to have better 
power concentration in low-frequency region and a better 
frequency approximation to the frequency response of the 
original channel impulse and lower aliasing error, than the 
DFT-based interpolation. In the following, we will describe the 
DCT-based channel estimators in detail. 

A. The DCT/EIDCT-Based Channel Estimator & Its Fast 
Algorithm 
We already proposed this estimator in [8]. Here for the 

completeness and convenience of later discussion and 
performance comparison we will first review its approach, and 
then propose a fast algorithm for its low-complexity 
realization, as follows. Since the idea is to make the data 
symmetric by mirror-extending the original data to get the 
periodic continuous signal. With the extended data, we can use 
the well-known DFT-based interpolator to estimate the 
channel frequency response with less aliasing effect and 
achieve better interpolation performance. Due to the symmetry 
property of input data, the DFT/IDFT operations in the 
interpolation process can be replaced by DCT-related ones. 
Therefore, we can get the equivalent interpolator based on 
DCT-related operations.  

The DCT-based estimation is depicted in Fig. 1 and described 
by the following operation steps: 

1) First, the same as DFT-based estimator, frequency 
response is estimated by LS method. Then instead of 
performing IDFT operation, DCT is used to transform the 
pilot frequency response as shown below: 
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2) Pad zero to the DCT-transformed data to obtain the 

desired signal in the transform domain: 
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3) Finally, the estimated channel frequency response is 
obtained by performing extendible IDCT (EIDCT) [9] on 

)(ˆ mhN . 
 1,,2,1,0      )

2
/2(cos)(ˆ)()(ˆ

1

0
−=






 +⋅=∑

−

=
Nkm

N
MNkmhmwkH

M

m
c Λπ  (17) 

If N/M is even, this equation can be translated to the 
(N+1)-point type I IDCT [10] with some shift. On the other 

hand, if N/M is odd, this equation is equivalent to conventional
IDCT with shift equal to (N/M-1)/2. Therefore, the EIDCT can
be  

LS estimate
)(kYp )(ˆ kH p

DCT Zero
padding

Extendible
IDCT

)(ˆ nhc )(ˆ kH

 Figure 1. The DCT/EIDCT-based channel estimator. 

implemented efficiently either by conventional fast IDCT
algorithms or by fast type-I IDCT algorithms. 

B. The IDCT/DCT-Based Channel Estimator 
The DCT/EIDCT-based channel estimator has the

advantage of low complexity and can reduce the aliasing error
in channel interpolation compared with DFT-based estimator.
Here, we will propose a different DCT-based channel
estimator whose performance is very close to
DCT/EIDCT-based channel estimator and is also much better
than the DFT-based channel estimators. The advantage of this
estimator is that it can be implemented with conventional DCT
and IDCT software and hardware. Therefore, for the
implementation consideration, this estimator is more favorable
than our previously proposed DCT/EIDCT channel estimator.

The basic idea is still to make the data symmetric so as to
reduce the high-frequency components, but perform IDCT on
channel frequency response instead of DCT. Although direct
mirror-extension is a quite suitable approach, it is not the only
one. Here we adopt a different approach which defines the
extended pilot channel frequency response as  
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The reason for this design is all for the compatibility with the
conventional inverse discrete cosine transform. In the
conventional DCT coefficients, there is always a zero response
at the index M for an M-point DCT and magnitudes of the
DCT coefficients are symmetric with respect to this zero. In
this design, although inserting a zero at k = M would cause a
rapid response dip, the high frequency component would not
be significant due to data symmetry property. Therefore,
interpolation by using )(ˆ

2 kH M  would be better than the
original data )(ˆ kH p

. 

With )(ˆ
2 kH M , we can perform its IDFT-based

interpolation to get the estimated channel frequency response.
Since we have properly designed )(ˆ

2 kH M , the whole
interpolation process can be translated to DCT-based
operation. The new IDCT/DCT-based interpolator is shown in
Fig. 2. 

1) First, multiply )(ˆ kH p
 by a gain factor defined by 
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2) )(ˆ kH p′  is transformed to time domain by IDCT  
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3) Pad zeros to the end of )(nh
∧

 and extend the data to N 
points to obtain the desired signal in time domain.  
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Figure 2. IDCT/DCT-based channel estimator. 

 
4) Transform the extended data to frequency domain by 

N-point DCT.  
5) Finally, a weighted gain is applied to each DCT 

coefficient to obtain the final interpolated channel response as 
shown below  
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We can find that the whole interpolation process only involves 
conventional DCT and IDCT operations. Therefore, it can be 
implemented directly by conventional fast DCT and IDCT 
algorithms and architectures. This is more convenient than our 
previously proposed DCT/EIDCT channel estimation 
algorithm in practical applications. 

As mentioned before, the interpolated channel response 
will go down to zero for the frequency location beyond the last 
pilot frequency position. This is because the corresponding 
DFT-based interpolation puts a zero at k=M (18) due to 
symmetry of time-domain signal, which certainly leads to the 
descent in that region. However, this will not affect other 
region significantly due to the symmetry property. Therefore, 
if we don’t use the subcarriers beyond the last pilot as usually 
is the case, the performance will be close to 
DCT/EIDCT-based interpolator.  

The frequency responses at the pilot subcarrier frequencies 
are the down sampled version of the complete channel 
frequency responses at all the N subcarrier frequencies. To 
avoid severe aliasing, the delay of multipath channel cannot be 
too large. Since the operations of these two DCT-based 
estimators are both real, the interpolations are also real 
processes, that is, the real part and imaginary part of the 
interpolated signal are only dependent on the real part and 
imaginary part of input data respectively. Therefore, the 
Nyquist criterion can be applied in this case. That is  

 2/2//max MDNT fc =<τ  (22) 
where maxτ  is the maximum path delay duration and 

fD  is the 
ratio of N to M. 

I. SIMULATION RESULTS 
We assume a 16QAM OFDM system with a total number 

of subcarriers N = 1024 including 32 equispaced pilot 
subcarriers. The system occupies a bandwidth of 5MHz and 

the sampling period is sTc µ2.0= . The length of cyclic prefix
is 

cg TT 16= and then the duration of an OFDM symbol is
equal to sµ208 . 

As for the transmission environment, a multipath
Rayleigh fading channel is assumed and the channel is
simulated by Jakes’ model [6]. We choose the “Vehicular A”
channel parameters defined by ETSI for the evaluation of
UMTS radio interface proposals [11]. The multipath time
delays sl 'τ and the average power of the multipath gains

sl 'α  of the “Vehicular A” channel are shown in Table 1. The
Doppler frequency is set to 50 Hz, hence 01.0≈Tfd . 

In the simulation, we assume perfect synchronization in
the receiver. Since usually it is hard to estimate the channel
frequency response beyond the last pilot accurately, this
region is assigned as guard band. The system symbol error rate
(SER) is shown in Fig. 3, while the mean-square error (MSE)
of the estimated channel frequency response is shown in Fig. 4
It is obvious that the performances of DCT-based channel
estimators are better than DFT-based channel estimator. In the
DFT-based channel estimator, the aliasing error is large and as
a result, it leads to inaccurate channel estimation and an error
floor for the OFDM systems. In contrast, the DCT-based
channel estimators can reduce the aliasing effect and improve
the symbol error rate under high SNR conditions. In the
figures, we also show the performance of robust LMMSE
channel estimator [2] assuming the following correlation
function of the channel frequency responses  
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This correlation function corresponds to a uniform power
delay profile where the multipath time delays are assumed to
be uniformly and independently distributed over the length of
the guard interval and all paths have the same average power.
The performance of the robust LMMSE channel estimator is
about 1dB better than DCT-based channel estimator, but the
complexity of LMMSE channel estimator is much higher than
the proposed DCT-based channel estimators. 
We also show the SER and MSE for the case that all
subcarriers except pilots are used to transmit data in Fig. 5 and
Fig. 6 respectively. Although DCT-based channel estimator is
still better than DFT-based estimator, there are error floors in
all cases. This is because the aliasing error has significant
effect beyond the last pilot. In this case, we can find that the
performance of IDCT/DCT-based estimator degrades more
compared with DCT/EIDCT-based estimator, due to the
descent effect of the IDCT/DCT-based interpolation process.
Considering this severe aliasing error, usually an OFDM
system would not assign data subcarriers beyond two ending
pilot subcarriers. 

Table 1. Characteristics of ETSI “Vehicle A” channel environment 
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Tap Time delays (μsec) Time delay (T c ) Average Power (dB)

1 0 0 0

2 0.31 1.55 -1

3 0.71 3.55 -9

4 1.09 5.45 -10

5 1.73 8.65 -15

6 2.51 12.55 -20  
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Figure 3. SER of channel estimators. 
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Figure 4. MSEs of channel estimators. 
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Figure 5. SER of channel estimators, all subcarriers are used. 
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Figure 6. MSEs of channel estimators, all subcarriers are used. 
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