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Abstract

There are five intermediate results generated so far from our on-going project. All results
are targeted on the FFT processor design for the modulation and demodulation of OFDM-based
communication systems including DAB, DVB, 802.11a, 802.16 and VDSL systems. The results
are: (1) a data address generator designed for memory-based, variable-length FFT processor; (2)
three new architectures for coefficient index generation, which can work efficiently with the
mentioned variable-length data address generator, where the first two are for fixed-radix FFT
algorithms and the third one is for split-radix 2/4 FFT algorithm; (3) a new coefficient generator
which can replace conventional high-cost coefficient ROM; (4) a variable-length FFT processor
which integrates the advance technologies is proposed in part 4; (5) a high-performance

DCT-based channel estimation algorithm for non-sample spaced channel impulse response.

Keyword: FFT, Address generator, Coefficient generator, OFDM, DAB, DVB.

II



TABLE OF CONTENTS

ABSTRACT ..ttt ettt sttt ettt e e e et e s bt et e bt et e et e satesaeesbe et e emteemteeateebaesbeenbeenbeenseenteeneesneenne !
L INTRODUCTION AND PROJECT GOALS.....oi ittt sttt sttt sttt sttt st st sttt 1
2. DISCUSSION AND RESULTS.....ctittiieisttrieeste sttt sttt st sttt s be st se b st st besbe e ebesbe e ebesbeneebesbeseebesbenensesbeneas 2
2.1 VARIABLE-LENGTH FFT PROCESSOR ......coiutiitteitatieieeiiestiesttente ettt st satestee et et estesseesbeesbeenseenaesmeesseeseeenseenneans 2
2.1.1 Variable-length Data Address GENEFraLor .........ccvereerereiesieseeeereeses e e e s eeeaeseesre st sresse s e eeeseesressesns 2
2.1.2 Variable-length Coefficient AJAress GENEIator ..........cvuveeerererereseseeeeseeseste e se s eeeseesseseeseessesseens 7
2.1.3 Variable-length Processing EIEMENL...........cccveieieiire et et 8
2.1.4 Variable-length CommUEate MOGE............eiueereeeeerese et e e e se e renre e 9
2.1.5 The Proposed Variable-length FFT Processor ArchiteCtUre.........cevevvveieseveeeere e se e seee s e neens 1
2.2 CORDIC-BASED PROCESSING ELEMENT OF FFT PROCESSOR .......ceottiiiiiiiiiiieniienieeieeie et 12
2.2.1 The CORDIC Algorithm and ArChiteCtUIE..........cceieiiieeeeere e 12
2.2.2 The New Angle DecompOSItioN SChEME .......c.voiieieiice et sne s 14
AR F- 1o 1T =0 (8ol 0T[5 o 1=: 01 S 15
2.2.4 On-line variable factor COMPENSALION. .........ccueiirereriseseee e e st re e eesre e seesreereeneenes 16
2.2.5The Overall OpPeration FIOW ........cccvii i see st sre st sse e e ese e e seesresneeneenes 16
2.2.6 SMUIBLTONS RESUILS .....c.veeetiiteeeee ettt ettt et b e sttt se st et ese b e s beseeneebeseenentens 17
3. CONCLUSION ...ttt sttt sttt sttt sttt st se bt s b e st b et e s e e bt s b e seeb e s b e s e eb e e Ee e ek e s b e e ebeebeneebeebeseeseebeneeneebeneeneebens 18
4. REFERENCES ...ttt ettt ettt b bt b bbbt b b e b b e b b et bt b e b e me bt s e eneeb e b e n e eb e st e e enennn 18
B APPENDI X L.ttt sttt sttt etk b ARt R AR e bt SE e R e Rt e e R e Rt nE e ke Ee e e bt beneeRe e b e ne e Rt ebeneene et s 21

III



1. Introduction and Project Goals
(OFDM) (software

defined radio) FFT/IFFT
(DAB) FFT/IFFT

(OFDM) OFDM DAB DVB 802.11a
HyperLAN 802.16 OFDM 3G
(ADSL)
FFT
FFT/IFFT OFDM
DAB DVB 802.11a HyperLAN ADSL software defined radio
FFT/IFFT
FFT
FFT/IFFT
FFT/IFFT DAB FFT/IFFT
FFT/IFFT DAB OFDM
(soft IP) FPGA
FFT/IFFT
FPGA

FFT/IFFT



2. Discussion and Results

2.1 Variable-length FFT Processor

In order to realize multi-mode and multi-standard OFDM communication systems, the FFT
processor must support length-independent computation and meet the worst-case hardware
requirement. Consequently, the FFT processor design must contains an efficient processing

element, a variable-length data address generator and a variable-length twiddle factor generator.
2.1.1 Variable-length Data Address Generator

In in-place memory-based FFT processor design, data address generator is decided by the
order of butterfly operations. A conventional processing order and control scheme for radix-2
FFT are proposed by Cohen (1976) [1], and the algorithm was then extended and generalized by
[2], [3], [4], [5]. However, we can find out that Cohen’s scheme is not suitable for a
variable-length FFT when analyzing a sub-segment of signal flow graph for a shorter-length FFT.
To give an example of 16-point radix-2 DIF FFT operation, the direct-order scheme processes
butterflies from top to down and from left stage to right stage as marked by the numbers on the
right-hand sides of ellipses in Fig. 2.1. On the other hand, since the main idea of Cohen’s
processing order is grouping butterflies associated with the same twiddle factor together to
reduce signal switching frequency of the coefficient circuits, it results in decimation in butterfly
(DIB) order as marked by the numbers on the left-hand sides of ellipses in Fig. 2.1.

e Othstage i Iststage | q 2nd stage 3rd stage _>|

16-point 8-point 4-point

‘s.

Fig. 2.1 DIF butterfly processing sequence for fixed-length and variable-length memory

based FFT processors
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Table 2.1 Data addresses needed for butterfly PE in direct processing order.

BF 0 BF 1 BF 2 BF 3 BF 4 BF 5 BF 6 BF 7
Stage 1 | <0,8> | <1,9> | <2,10> | <3, 11> | <4,12> | <5, 13> | <6, 14> | <7, 15>
Stage2 | <0,4> | <1,5> | <2,6> | <3,7> | <8, 12> | <9, 13> | <10, 14>| <11, 15>
Stage3 | <0,2> | <1,3> | <4,6> | <5,7> | <8, 10> | <9, 11> |<12, 14>|<13, 15>
Stage4 | <0,1> | <2,3> | <4,5> | <6,7> | <§,9> |<I10,11>|<12, 13>|<14, 15>

Table 2.2 data address pairs for butterfly PE in Cohen’s scheme.

BF 0 BF 1 BF 2 BF 3 BF 4 BF 5 BF 6 BF 7
Stage 1 | <0,8> | <1,9> | <2,10> | <3,11> | <4,12> | <5, 13> | <6, 14> | <7, 15>
Stage2 | <0,4> | <§, 12> | <1,5> | <9,13> | <2,6> |<10,14>| <3,7> |<I1, 15>
Stage3 | <0,2> | <4,6> | <§, 10> |<12,14>| <1,3> | <5,7> | <9, 11> |<13, 15>
Stage4 | <0,1> | <2,3> | <4,5> | <6,7> | <§,9> |<I10,11>|<12, 13>|<14, 15>

In Fig 2.1, when we isolate the sub-SFG of a shorter-length FFT from the longer SFG, the
Cohen’s butterfly order is unmatchable with the variable-length FFT design concept. On the
contrary, the direct processing order is suited to the varied FFT lengths, and therefore the
architecture of Cohen’s data address generator has to be modified to deal with the operations of
different lengths FFT.

In the example shown above, the data addresses needed for butterfly PE in direct processing
order and in Cohen’s processing order are listed in Table 2.1 and Table 2.2 respectively. In the
table, <s, t> denotes data address pair for both input and output data for radix-2 butterfly PE, and
s and t are indices of one dimension memory array. Note that the address translation and
mapping from one dimension index to multi-bank memory system are considered later.

Data address pair <s, t> needed for the i-th butterfly of the k-th stage in Cohen’s scheme can
be described as (2.1), while the operator ROTATE,(X, m) circularly rotates X right by m bits
within n bits.

n=1log, N

s= ROTATE, (i,k) @.1)

t = ROTATE, (i +%, K)

To realize equation (2.1), Cohen proposed the efficient address generator architecture as
shown in Fig. 2.2. The main idea is appending 0 and 1 to MSB of the content of butterfly counter

then using barrel shifters to realize the rotation.



Stage Butterfly
counter counter
1
1 v 0 v
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Fig. 2.2 Data address generator for radix-2 FFT in Cohen’s scheme

We can modify Cohen’s DIB-ordered addressing scheme to direct ordered addressing
scheme to suit with variable-length FFT design. The data address pair <s, t> can be described as
the following equation (2.2) composed of the contents of the butterfly counter and the stage

counter.

S= {ilog(N)—Z’ ilog(N)—3""’ DN P PSRN PN 1Y

t= {ilog(N)—Z’ilog(N)—3""’ik—lﬂl’ik—Z’ik—3""’il’io}

I =[10g, (N)-2110g, (N)3 12111, ], : bit - wise butterfly counter content (2.2)
k : the stage counter content

N : the longest FFT length supported

Chang [6] proposed a variable-length data address generator, which was modified from
Cohen’s fixed-length data address generator. Chang’s design includes an extra barrel shifter that
rotates the content of butterfly counter circular left before bit appending operations and then
rotates circular right followed by bit appending operations. This design not only alternates
Cohen’s scheme to direct butterfly operation order, but also adapts to varying FFT lengths. The

block diagram is shown in Fig. 2.3.

Stage

Butterfly counter
counter

'
C Barrel _Shifter )

Shift Lefg Circular

v 0 l

N~ e

—>C Barrel Shifter 1 ) Barrel _Shifter_0 )

Shift Right| Circular Shift Right| Circular
— =1

1

v v
t S

Fig. 2.3 Chang’s variable-length data address generator.
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In order to achieve high-performance variable-length FFT operations and data accesses, we
propose the following data address generator. The design covers seven different FFT lengths
including 64, 256, 512, 1024, 2048, 4096, and 8192 points, which cover all the required FFT
lengths by 802.11a, 802.16a, DAB, DVB-T, VDSL and ADSL. Furthermore, the proposed data
address generator significantly improves the address generator mentioned above, by considering
radix-2* DIF FFT algorithm and variable-length FFT operations, and by simplifying the original
area-consuming barrel-shifter based designs with simpler multiplexer-based addressing
functions.

The four addresses required by radix-2* butterfly PE correspond to the 4 different banks.
The addresses are denoted as <s, t, u, v> which can be calculated by the equation (2.3), where N

is the longest FFT length supported, k is the stage counter content, and

| = [iog, (Ny2Jiogy(Ny-3 +++-- J2Ji Jol, 1s butterfly counter content.

S:[jlogN—l jlogN—Z jlogN—K 00 jlogN—K—l jlogN—K—Z jl j0]2
t:[jlogN—l jlogN—Z jlogN—K 01 jlogN—K—l jlogN—K—Z jl j0]2
u :[jlogN—l jlogN—Z jlogN—K 10 jlogN—K—l jlogN—K—Z jl j0]2

V=[j10gN—1 jlogN—Z jlogN—K 11 jlogN—K—l jlogN—K—Z jl j0]2 (23)

Mode select

!
MUX

Carry-in
controller

13— f
12— Stage B .
1 —> é Countis : Butterfly counter [10:0]
o = ‘
8 ]
6 —
v ) 4 + ) 4 +
Comparator SIB MUX SIB MUX
array 00 array 01
Reset Signal |
L > s [12:0]
vy v v *L t[12:0]
SIB MUX SIB MUX
array 10 array 11
> u [12:0]
v [12:0]

Fig. 2.4 Block diagram of the proposed variable-length data address generator

The hardware block diagram of variable-length data address generator is shown in Fig. 2.4.
In the figure, “carry-in controller” adds the carry-out signal from butterfly counter to the LSB or
its left immediate bit of the stage counter to alternate the counter step of the stage counter

between one and two; “comparator” compares stage counter content with the maximum stage
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count corresponding to each FFT length and reset all counters if they are equal; input signal
“mode select” controls the butterfly counter step and maximum stage count to vary FFT length;
“SIB MUX array” denotes shift-insertion-bypass multiplexer array. It greatly simplifies the
address generator of Fig. 2.5 and Fig. 2.6, as will be detailed below.

[

Insert Insert Bypass Shift 1
symbol O symbol 1

MUX_n |[-——— MUX_con_n

l

Fig. 2.5 Block diagram of MUX n module

Butterfly counter [10:0]
Symbol
[1:0]

nAvEE 1 MUX|con_11
A 4

MUX_kon

MUX_10 177

Data address [12:0]

Fig. 2.6 The architecture of Shift-insert-bypass MUX array

In our design, we define several functions to simplify the design to replace those
area-consuming barrel shifters with much simpler multiplexers. The functions include the
required left shift operations, symbol bit insertion operations, and bypass the remaining bits, for
the realization of the variable-length data address generation algorithm. Detailed architecture of
the shift-bypass-insertion multiplexer array is shown in Fig. 2.6. In the figure, the input signal
“symbol” to MUX n module can be 00, 01, 10, or 11, where block diagram of MUX n is shown
in Fig. 2.5, and function of MUX n out-put is explained in Table 2.3. Timing and area
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comparisons of data address generator between SIB-MUX array approach and barrel shifter
approach are shown in Table 2.4, and the result is synthesized by TSMC 0.25um standard cell
library with Synopsis Design Analyzer.

Table 2.3 Output functions of the MUX n.

Output Function
Insert symbol 0 (I0) Select symbol bit 0 as the n-th bit of data address.
Insert symbol 1 (I1) Select symbol bit 1 as the n-th bit of data address.
Bypass (BP) Select the n-th bit of butterfly counter as the n-th bit of data address.
Shift 2 (S2) Select the (n-2)-th bit of butterfly counter as the n-th bit of data address.
Table 2.4 Comparison of DAG units.
SIB-MUX array Barrel shifter (Fig.2.3)
No. of cells 143 229
Total gate counts 169 352
Path delay 5.72ns 7.14ns

2.1.2 Variable-length Coefficient Address Generator

The basic coefficient address generating function is mainly a counter with an adjustable

counting step to realize varying stages and allow for varying FFT lengths. Hence, we can realize

the coefficient address generator based on the content of the butterfly counter.

In fig. 2.7, we give an example of coefficient address generator which sustains 8192, 4096,

and 1024-point FFT.

Mode control

11—

24><:

4——»

carry

D

ontroller

Carry-in

A i
Stage Counter

‘ Butterfly Counter[11:0] ‘

Shift amount ‘
"

Barrel Shifter ‘

-

Coefficient address [11:0]

Fig. 2.7 The block diagram of variable-length coefficient index generator



2.1.3 Variable-length Processing Element

Although our design is based on radix-2> DIF FFT algorithm, we can still compute a general
power-of-2 FFT by adding some minor modification to the radix-2° datapath. The unified
radix-2%/2 datapath is shown in Fig. 2.8 and Fig. 2.9. In the fig. 2.8, the control line “select=0"
programs the PE to as radix-2® mode so as to execute radix-2> algorithm, otherwise, in fig. 2.9,
the four adders on the right hand side and the multiplier Wy is bypassed so that the PE is
configured as radix-2 mode such that two radix-2 butterflies are processed simultaneously. The
“swap 1/i” unit, that interchanges real part with imaginary part, is to implement the required
multiplication with “-j”. This shared hardware design does not increase the complexity of data

address generator.

Radix-22%/2
select

Data in O ey —+ :<_|_> - z
= B Data out 0
L <
‘ >6 !
Data in 1 :‘ - : - >< §> -0
N é—»Dataoutl
W L

Data in 2
»?» Data out 2

W

Data in Se—

Data out 3

n
W w

Fig. 2.8 The radix-2® mode datapath of the PE

Radix-2%/2
select

Data in O g —+ ﬁ—v 0 Z
(e} B Data out 0
-1 1| ><
‘ p!
Data in 1 j = : = X - z
on § p=> Data out 1
WO .
Data in 2 »é ﬁ—' 0
E Data out 2
1, ><
— . W
Data in st OZ
. % Data out 3
MUX

Fig. 2.9 The radix-2* mode datapath of the PE
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2.1.4 Variable-length Commutate Mode

The memory access bandwidth is the critical issue in memory-based FFT processor design.

An N-point memory-based FFT processor based on radix-r algorithm needs glogr N PE

operations to transform one N-point symbol. Further, each PE operation needs 2r memory
accesses to read data from memory and write back to it, so that each N-point symbol requires
2Nlog, N memory accesses. In order to handle this requirement, there are two solutions:

1. Use a higher-radix algorithm to reduce total memory accesses.

2. Increase memory access bandwidth by distributing memory accesses into several memory

banks or multiple memory ports.

However, it is expense to increase the arithmetic complexity. Further, the number of
memory ports is not controlled by architecture designer but cell library provider and device
vendor, and the desirable case of the in-place design is simultaneously delivering r complex data
from memory to radix-r butterfly PE and writing back r complex data from output ports of
butterfly PE to the data memory. Therefore, the solution of memory access bandwidth is to
partition memory into r banks, and than assign r input data for radix-r butterfly PE to proper
memory banks for conflict-free memory access.

There are several efforts on memory partition and addressing methods to achieve
conflict-free memory access [2], [3]. The general conflict-free memory partition scheme [2] that
translates sequential data count into bank index and data index of each bank is shown in equation
(2.4).

n=[log, N
Data_count=[d,_d, _,.....d,d,d,],

n-1 2.4
Bank _index =()_d,)modr 4)

t=0

Data_index=[d,_d _,.....d,d ]

n-1

Similar result can also be found in Lo’s scheme derived by vertex coloring rule [3]. For
radix-r butterfly PE, this allocation algorithm can access r data from r different banks
simultaneously at proper addresses according to the original data addresses. The original data
address data_count can be generated according to the content of the butterfly counter and the
stage counter of FFT processing. The data index is the new address assigned to each memory
bank.

The bank index generator of our design is shown in Fig. 2.10. The commutate modes of the

commutator which supports the variable-length FFT mentioned above are shown in Table 2.5.



Table 2.5 Four different commutator configuration linking desired data access port index to

All A9 Al0 AS8

iy

Al A2 A0

L

Sum_Mod4 u Mod4 Sum_Mod4
0 Al2
l l f Y Y Y
Sum_Mod4 Sum_Mod4

Yy Y vYY

Sum_Mod4

M1 MO

Fig. 2.10 Block diagram of bank index generator

bank index of data.

Desired . Desired Desired ' Desired
write data Data order in read data write data Data order in read data
order memory banks _ order order memory banks order
D—» D »D D—»r D »D
0 O C > C »C C _>><_ B | —»C
B—» B »B B— H ¢ H Y-»B
A—» A A A—P> A > A
Desired ) Desired Desired ' Desired
write data Data order in read data write data Data order in read data
order memory banks order order memory banks order
D— +~ C [\ D D—» +~{ B M D
C—»\ /1 B —\ [—>C C—» C »C
0|1
B—\IH A H/Y}»B B—f \H A HJ/ VB
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Desired ‘ Desired Desired _ Desired
write data Data order in read data write data Data order in read data
order memory banks order order memory banks order
D — B — —» D D—» — C — —»D
C — A — —» C C—r — A — —»C
1|0
B — D — —» B B — — D — —» B
A — C — —» A A—Pp — B — —» A
Desired Desired Desired ' Desired
write data Data order in read data write data Data order in read data
order memory banks order order memory banks order
D—\ A — +—»D D—/»\ [ A 1 D
111 cC—\ M D H\f>cC CA /1 D \r—>¢
B H ¢ H B B— B >B
A— YH B HH A A— H C H PH»A
2.1.5 The Proposed Variable-length FFT Processor Architecture
o | Bank 3 - > I
: |- Bank 2 : |-
S Bank 1 SE
= e Bank 0 - © I
J * [
Reg Reg |
Reg . 2 Reg
- Radix-2°/2 BF —
Reg coefficients "3 Reg
; Variable-Length
ffi t
Coefficien Data Address Generator
generator

f

1

Variable-Length
Coefficient Address Generator

Controller

Fig. 2.11 Block diagram of the proposed FFT processor

A general memory-based FFT processor structure mainly consists of a PE, a main memory,
ROM for twiddle factor storage, and a controller. The main memory stores processed data. The
controller contains three functional units: data memory address generator, coefficient index

generator, and operation state controller. The Butterfly PE is responsible for the butterfly
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operations required by FFT operations.

Inside the FFT processor, operation can be divided into three major parts: memory read, data
processing, and memory write back. These three parts are isolated by two sets of register so that
they can operate simultaneously and independently without conflict. The FFT operation diagram
of our design example is shown in Fig. 2.12.

MEM P P MEM
READ Ay = Ay WRITE
[
= B —
MEM P P MEM
READ Ay =2 A WRITE
[ b
F
MEM P P MEM
READ B = WRITE
E

Fig. 2.12 Pipelined data path and shared devices of FFT processor

2.2 CORDIC-based Processing Element of FFT Processor
2.2.1 The CORDIC Algorithm and Architecture

In many FFT applications, the butterfly processing element (PE) often is realized with
complex multipliers which have characteristics of high complexity and huge amount of area.
Further, for the requirement of the twiddle factor multiplications, the twiddle factors must be
stored in a look-up table which is generally implemented by ROM in advance. However, since
long-length FFTs are commonly used in modern applications such as 8192-point FFT in DVB-T,
the look-up table approach becomes inefficient because of enormous chip area cost. For example,
even if we employ the symmetric property of the sinusoid function, the total ROM space
requirement is 2*12*8192 /8 = 24576(bits) =~ 3(KB) in an 8192-point FFT with 12-bit accuracy.
For this reason, the CORDIC (Coordinate Rotation Digital Computer) algorithm is proposed here
to substitute for conventional complex multiplier and look-up table approach.

The CORDIC algorithm developed by Volder [7] in 1959 is a generalized algorithm that can
perform vectoring and rotation operations of a two dimensional vector. The rotation operation is
to compute the target vector of the initial vector and the given rotation angle 6, while the
intention of the vectoring operation is to compute the angle between the start vector and the end
vector. Furthermore, there are three different kinds of coordinate systems: the linear coordinate
system, the circular coordinate system, and the hyperbolic coordinate system. Walther [8] extend
the algorithm to compute multiplication, division, and hyperbolic functions. The applications of
CORDIC-based are 3-D graphic [9], [10], adaptive filter [11], floating point unit, DSP processor,
and so on.
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When employing CORDIC algorithm to FFT PE, we only investigate the most popular
circular coordinate system and the rotation mode operations. The basic theory of the CORDIC
algorithm is reviewed as follows section.

The rotation operations are approached by a sequence of micro-rotations (elementary angles)
using only shift-and-add operations, and therefore it is very suited for VLSI implementation and
DSP applications. There have been numerous improved CORDIC algorithms and structures
proposed ever since its introduction. Most of the CORDIC algorithms assume a constant scale
factor for the ease of scale factor compensation. However, they have to rotate even when the
residual rotation angles have converged [12], [13], [14], [15]. In some cases, they either have to
do accurate but slow decision operations for rotation directions or do rough direction decisions at
the expense of extra compensation operations [12], [13]. To speedup CORDIC operations, the
following techniques are widely used: (1) use carry-free redundant addition scheme [12], [13],
[16-19]; (2) fast decision of rotation directions with only a few most significant digits (MSDs) of
the control parameters [12], [13], [16-19]; (3) skip unnecessary rotations; (4) effectively recode
rotation angles for saving rotation iterations [20]; (5) apply radix-4 rotation schemes [17], [21],
[22], [23], to reduce iteration numbers; and (6) predict the rotation sequence for parallel and
pipelined processing.

Some of the mentioned techniques result in variable scale factors. Variable scale factors
have the trouble of complicated scale factor computation followed by penalty compensation [18],
[19]. Due to the considerable overhead generated by variable scale factor, most of the existing
radix-4 CORDIC algorithms resort to constant scale factor approach [17], [22]. However, these
constant-scale-factor CORDICs are basically hybrid radix-2 and radix-4 algorithms. As a result,
their iteration numbers are not fully reduced. Recently, we proposed CORDIC algorithms with
variable scale factors [21] skip unnecessary rotations and at the same time perform
low-complexity on-line decompositions and compensations for the variable scale factors.
Specifically, the radix-4 algorithm costs less iteration (including rotations and compensations)
than the existing radix-4 algorithms. The radix-4 CORDIC algorithm proposed in [23] is similar
to the one in [21], except the ways they handle variable scale factors. Both designs share the
same low iteration number of 0.8n. Although the very high-radix CORDIC algorithm has an
extremely small iteration number, it is irregular in realization which needs
multiplication-and-accumulation circuits. Its efficiency is high dependent on practical circuit
optimization.

To reduce the shift-and-add operations of both rotation iterations and scale factor
compensations, we will present a new table lookup recoding scheme for rotation angles and
variable scale factors. The new method can speedup both the convergence rates of the residual
rotation angles and our fast variable scale factor decomposition and compensation algorithm
[21]. For more reduction of iteration number, the new CORDIC algorithm also applies the
leading-one bit detection operations to both residual rotation angles and decomposition of

variable scale factors.

13



2.2.2 The New Angle Decomposition Scheme

For speeding up convergence, first we detect the leading-one (leading-zero) bit positions,
for positive (negative) residual angle z;, respectively, in the i-th iteration. This action can avoid
unnecessary rotations required by conventional CORDIC algorithms. Then the most significant r
bits (denoted as z;, ), counted from the leading-one (or leading-zero) bit of z;, are used to access
Om and o, information from a table. These two retrieved parameters correspond to a combined
rotation angle tan™'2™ + tan'2™ that best matches zi; (in a least-square error sense), which makes
Zir— ( tan'2™ + tan™'2™ ) as close to zero as possible. This approach corresponds to the following
iteration operation (2.5), and this iteration results in a variable scale factor described as the

following equation (2.6).

{X'm =% -2y, _ {x =X, 2"y

Yia =Y +27X Yia = Y 27" X0y, (2.5)
Xy =% (1=2"M")—y (2™ +27)
Vi =Y, (1=27"" )+ x (27" +27)
K = [T cosd. cosf, = [1—— ! (2.6)
= COS COS = .
|_1| mee I_1| J14272M (142720

In generalization, we may include more than two 0,’s to speedup the convergence rate.
However, the computational complexity increases significantly, and therefore we only investigate
the case of two combined direction parameters here. Similar techniques can be extended to the
general case. Based on equation (2-5), some lookup tables for the residual rotation angles can be
constructed by computer search with the closest match as mentioned before. In a sense, it
approximately amounts to a radix-2" CORDIC algorithm, by examining the MSB part z;, of the
residual rotation angle z;. Since an optimal table depends on the iteration index 1i, it is better to
have an optimized lookup table for each i. However, it will increase the table size accordingly.
From easy Taylor expansion, we can get tan'27 = 27 when i>>0. Then, in computer simulations,
we find that it is enough to have good results by using only two different tables, as shown below.

Here, we take r= 4 bits (i.e., radix-2") as a design example. Table 2.6 shows the stored
optimized m and n of the d,, and 3, patterns, corresponding to the z;, information. From Taylor’s
expansion of Oy = tan'27% | we find that the binary patterns of 6y and 0, are noticeably different
from those of the 0y’s, k>1. Therefore, two different tables are used for the cases of k= {0,1} and
k>1, respectively, where k is the leading-one (or leading-zero) bit position of the residual rotation

angle z;.
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Table 2.6 Recoding table for the decomposition of residual rotation angle

Optimized patterns of m and n

0;(2%~27"2) k=0,1 k>1
m n m n
1000 k k+3 k k+4
1001 k k+2 k k+3
1010 k k+2 k k+2
1011 k k+1 k k+1
1100 k k+1 k k+1
1101 Unused , for 0,=0 ~ /4 k k+1
1110 Unused , for 0,=0 ~ /4 k-1 k+5
1111 Unused , for 0;=0 ~ /4 k-1 k+3

2.2.3 Table reducing scheme

In above description of new angle encoding scheme, the given table size does not include
the term n*p for {tan'12'i, 1=0,1,2,...,n-1}, required by conventional CORDIC algorithms. We

can find the equation (2.7) in Taylor expansion.

tan™ X = x—

3

X
(1+x7)’

+0O(x), where O(x") is the max error range

2.7)

Table 2.7 the table of tan™'27 value for the 12-bit accuracy

tan' 2" ( degree )

i tan"' 2" (radius )

1 0.463867 ( 001110110110, ) 26.565051 ( 110101001000, )
2 0.245117 ( 000111110110, ) 14.036243 ( 111000001001, )
3 0.124512 ( 000011111111, 7.125016 ( 111001000000 )

4 0.062500 ( 000010000000, ) 3.576334 ( 111001001110, )

5 0.031250 ( 000001000000, ) 1789911 ( 011100101000, )

6 0.015625 (000000100000, ) 0.895174 (001110010100, )
7 0.007813 ( 000000010000, ) 0.447614 (000111001010, )
8 0.003906 ( 000000001000, ) 0.223811 ( 0000111001015, )
9 0.001953 ( 000000000100, ) 0.111906 ( 000001110010, )

10 0.000977 ( 000000000010, ) 0.055953 (0000001110015 )
11 0.000488 ( 0000000000015, ) 0.027976 ( 000000011100, )
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In equation (2.7), if we need n bit output precision and x = 27 we can ignore the second
item when 1 > n/3. Then, we can get the tan"'27 value by shifting tan 270D By the method, we
only need n/3 words to store the angle tan" 127 replacing the traditional n words. For instance, the
terms of tan'2" value which have be stored in ROM are 4 and 5 for radius and degree

representation respectively.
2.2.4 On-line variable factor compensation

For low-complexity on-line variable scale factor compensation described by equation (2.6),
here we further improve and speedup our previous efficient variable scale factor algorithm, by
using a on-line variable factor compensation. The whole improved algorithm is detailed below.

Rewriting equation (2.6), K can be first transformed to

« = 1 1

" (2.8)

The same in Taylor, we can find K; = (1-2"®™)(1-2°@"D)+02" ™) From this expansion,
the K; will approximate to 1 when i > (n/2)-1. Therefore, we can get the most suitable scale
factor compensation values when we get the rotation items o, and d,. And the compensation
computation can also be calculated by shift-and-add operation. In every time scale factor
compensation, we will have an error item 0(2'(4“”1)), when 1 < (n/4)-1. The error will be store

and than be compensated just after the rotation operations 1 > (n/2)-1.
2.2.5 The Overall Operation Flow

In summary, by combing the leading-one bit detection scheme, the residual recoding
technique, and the on-line variable scale factor compensation, we have a CORDIC algorithm as
detailed by the following steps:
(1) Set the initial iteration number | = 0, initial residual angle z, = 0, initial rotation vector
(X0, Yo) = (X, y), and initial exponent residual To = 0. If 6 = 0, then (x’, y’) = (X, y), and
exit the rotation iteration. Otherwise, proceed to step (2).

(2) Check leading-one bit position k and obtain z;, of z;. If z#0, go to step (3). Otherwise, z;
= (: rotation operations are completed and set the total iteration number I=i-1; go to step
(5).

(3) Using z;, retrieve the optimized m and n of 8, and d,, and then get the value of tan 2™

and tan™'2™ from lookup tables. To perform the iteration as shown in equation (2.5) and

Ziv1 = zi— ( tan 2™ + tan’ 12" ). And the scale variable compensation:
X, = Xia(1 =273

Ifi<(n/4-1), : ool +
Vi = Yin(1=2720")

We will store the compensation error, § =m).

16



X = Xior (1 +273)

Ifi>(n/4-1), ,
Dy =y r g2 )

(4) Seti=i+1, go to step (2).

(5) Calculation complete and the output values are (Xj+1, Yi+1)-

Fig. 2.13 shows the architecture for our new CORDIC processor. However, for the
consideration of high-speed operations, they can be put in a pipelined structure in cascade. The
pipelined structure is particularly efficient for the applications that require intensive and

sustaining vector rotation operations.

Scale factor error

:_ > accumulator T(i)

| |

: ROM 1 T(i+1)
|

|

)

\ 4

In(cos(tar’ 27))-In(1—27@*D) H

|
|
| I 03i+2)
|
| Residue
l— ! Angle 5] ROM
0(i+1) 7l an'2
Detect ROM
leading-one =] (Angle encode ) ¢ >
Circuit table) I m(i+1)
_ m@i) | I nd+D)
= 0 !
|

R 4
] |
| |
] |
] |
1 |
[ g
—_——» x(G)

Barrel Shifter -H Barrel Shifter ,‘ Barrel Shifter

Barrel Shifter Barrel Shifter Barrel Shifter
1= v HERVEE))
| |
| |
| |
| |

Fig. 2.13 The structure of new CORDIC algorithm

2.2.6 Simulations Results

Based on the structures shown in Fig. 2.13, we performed fixed-point hardware simulations
using Matlab & Verilog hardware description language, assuming 8-bit, 12-bit and 16-bit
accuracy (including 2-bit integer part). Exhausted simulations were conducted for all the rotation

angles in the range of 0°~ 45°. The simulation result will be shown in the table 2.8.
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Table 2.8 Simulation results in different output bits precision with our new CORDIC algorithm

Output precision 8 12 16
Angle composition 1.835 2.727 3.644
Average Scale factor composition 1.786 3.092 4.153
Overall iteration 2.437 3.482 4.424
Angle composition 3 4 5
Worst case Scale factor composition 4 5 6
Overall iteration 4 5 6

3. Conclusion

In section 2.1, we propose an in-place memory-based variable-length FFT processor
architecture, which is suited for multi-mode and multi-standard OFDM systems including
802.11a, 802.16a, DAB, DVB-T, and VDSL. The design is featured with the following
low-complexity components including: a butterfly PE, a variable-length data address generator,
and a variable-length coefficient address generator. The design is published in ISCAS’04 and
currently under final EDA realization. The design will be taped out soon in a few weeks. Due to
page limitation, we just include our results on channel estimation in the appendix. The result is a
high-performance DCT-based channel estimation algorithms which is accepted by ICC04.

In addition, the new CORDIC algorithm considerably reduces the iteration number
efficiently. It is achieved by combining several design techniques, including efficient high radix
rotation scheme, angle encoding, leading-one bit detection, and on-line variable factor
compensation. Our further work is to implement this new CORDIC-based PE for FFT processors
of OFDM systems.
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ABSTRACT

In this paper, we propose an efficient variable-length
FFT processor architecture suitable for multi-mode and
multi-standard OFDM communication systems. The FFT
processor is based on radix-2> DIF FFT algorithm and also
supports non-power-of-4 FFT computation. The design
contains an efficient processing element (PE), which can
execute radix-2> butterfly (BF) operations, as well as
radix-2 BF operations. Moreover, in order to achieve
high-performance variable-length FFT operations and data
accesses, an efficient variable-length address generator
and twiddle factor generator are designed. The design has
the merits of low complexity and high speed performance.
The designs consider seven different FFT lengths
including 64, 256, 512, 1024, 2048, 4096, and 8192 points,
which cover all the required FFT lengths by 802.11a,
802.16a, DAB, DVB-T, VDSL and ADSL.

1. INTRODUCTION

Fast Fourier Transform (FFT) unit, is one of the critical
components in OFDM (orthogonal frequency division
multiplexing) systems. Because of high real-time
throughput rate demand by current OFDM systems, such
as ADSL, VDSL, 802.11a, 802.16, DAB, and DVB-T, an
efficient FFT processor is required for real-time
operations.

FFT architectures can be categorized as two types: the
pipelined  architectures and the memory-based
architectures [1], [2], [3]. For hardware simplicity, this
work only focuses on memory-based designs.
Memory-based architectures generally include a single
butterfly PE (or more than one to enhance computation
power), a centralized memory block to store input or
intermediate data, and a control unit to handle memory
accesses and data flow direction.

Since the existing OFDM communication systems all
have similar baseband architectures and FFT/IFFT
operations, it is advantageous to design a single
variable-length memory-based FFT/IFFT module suitable
for multi-mode and multi-standard operations. With this
consideration, there are many design problems to be
addressed and overcome for the realization of an efficient
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variable-length FFT/IFFT processor. Some of the key
design issues include: (1) a high-performance PE capable
of executing FFT butterfly operations for various FFT
algorithms; (2) a high-performance data-address generator
that supports in-place variable FFT length data accesses;
(3) an efficient multi-bank memory structure that support
low cycle-count conflict-free data accesses; (4) an
efficient address generator for variable-length twiddle
factor accesses or generations .

There are some PE designs in the literature [1], [4], [5].
Here we adopt the conventional multiplier-and-adder
based butterfly structure, based on radix-4 FFT algorithm,
and also consider general power-of-two FFT operations.
For the complex multiplication, four real multipliers are
replaced by three multipliers. For the design of
variable-length address generator, not much was proposed
in the past. However, there are some efficient conflict-free
in-place memory addressing schemes [2], [3], [5], [6]. All
these designs require area-consuming barrel shifters. We
will propose a much efficient design which has a small
area, meanwhile supports variable-length FFT data
addressing. Correspondingly, we will also need a
four-bank memory that matches the in-place memory
address generator for high-bandwidth data access.

For twiddle factor addressing and generation, we
propose an on-line generation design, which has a much
smaller area and higher speed than conventional
ROM-based designs. The design is detailed in [7].

2.MEMORY-BASED FFT ARCHITECTURES

A general memory-based FFT processor structure mainly
consists of a PE, a main memory, ROM for twiddle factor
storage, and a controller. The main memory stores
processed data. The controller contains three functional
units: data memory address generator, coefficient index
generator, and operation state controller. The Butterfly PE
is responsible for the butterfly operations required by FFT
operations.

For performance consideration, ideally the PE should
simultaneously fetch r complex data from memory then
write back r complex computed output data to the data
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Fig. 2 Block diagram of the proposed variable-length FFT
processor

memory. Therefore, memory design should consider
multi-bank data addressing and partition the memory into
r banks for r concurrent conflict-free data accesses. There
are some efforts on memory partition and addressing
methods to achieve conflict-free memory access [5], [6].
In summary, those approaches can be described by the
following efficient functions [5]:

n=[log, N|

Deta  cout

z[dnfldnfz """ dzdld()]r

(1)
Bk iroex =(§dt)rmd r

t=0
Deta i< =[d,,d, ... d,d,],

Those mapping functions are efficient in that they are
regular and simple for varying butterfly operations and
conflict-free memory accesses. They can be realized by
the data address generator structure shown in Fig. 1 [5]. In
the figure, data_index_n is the new address in the assigned
memory bank. The butterfly counter value indicates the
sequence number of a butterfly operation from 0 to N/r.
This counter value is appended a symbol value to its LSB,
ranging from 0 to r-1, and shifted left by an amount equal
to the content of the stage counter.

These r input data addresses for butterfly PE are
translated to r corresponding bank indices and addresses
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Fig. 3 Data path of radix-2%/2 processing element
within the memory banks. This facilitates r simultaneous
conflict-free read operations from the r memory banks.
Although this address generator is very efficient, it is area
consuming, and it is only suitable for fixed-length FFT
operations. Later, we will propose a variable-length
address generator with smaller area than the design of Fig.
L.

Dataln_1 DataO

Dataln_2

Dataln_3 DataO

3. THE PROPOSED VARIABLE-LENGTH FFT
ARCHITECTURES

Our design is an 8192-point variable-length FFT processor
suited for various FFT lengths of 802.11a, 802.16, DAB,
DVB-T, and VDSL. Block diagram of our design is
shown in Fig. 2.

3.1 TheButterfly PE

Although our design is based on radix-2* DIF FFT
algorithm, we can still compute a general power-of-2 FFT
by adding some minor modification to the radix-2>
datapath. The unified radix-2%/2 datapath is shown in Fig.
3. In the figure, the control line “select=0" programs the
PE as radix-2* mode so as to execute radix-2> algorithm,
otherwise, the four adders on the right hand side and the

multiplier Wi is bypassed so that the PE is configured as
radix-2 mode such that two radix-2 butterflies are
processed simultaneously. The “swap r/i” unit, that
interchanges real part with imaginary part, is to implement
the required multiplication with “-j”. This shared
hardware design does not increase the complexity of data
address generator.

3.2 Thevariable-length data address generator (DAG)
The proposed data address generator significantly
improves the address generator mentioned in section 2, by
considering  radix-2° DIF FFT algorithm and
variable-length FFT operations, and by simplifying the
original area-consuming barrel-shifter based designs with
a few simpler multiplexer-based addressing functions. The
four addresses required by radix-2* butterfly PE in
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Fig .4 Block diagram of the proposed variable-length data
addresses of the generator addresses are denoted as <s, t, u,
v> which can be calculated by the following equations.

S:[ilog, N-2 ilog, N-3 "'ilog4 N-1-k 0i10g,N—2—k ilog, N-3-k Il i0]4

t :[ilogAN—2 ilagAN—s "'ilo&N—l—k 1ilogN—2—k ilog4N—3—k gy

u :[ilag, N-2 ilog,, N-3 "'ilog, N-ink 2 ilog,, N-2-k ilog,N—s—k gy
V:[i10g4N—2 ilog‘N—3 "'ilogN—l—k 3ilog‘N—2—k ilog4 N-3-k Il i0]4 (2)
where i :[i'°g4("‘)‘2 i'°g4('\‘)‘3 """ ol is the

butterfly counter content, and Kk is the stage counter
content.

On the other hand, in non-power-of-4 point FFT
operations, the radix-2? butterfly should be reconfigured
as two radix-2 butterflies in the first stage of FFT
operations. Hence, the data address generator should
provide two different address-generation modes to
accommodate both power-of-4 and non-power-of-4 point
FFT operations.

In the first stage of non-power-of-4 FFT operations,
data addresses <s, t, u, v> required by butterfly PE are
generated by the following equations.

s=[00 jlqg N-—1 qug Nz = Ja J1 dola
t=[o01 jlog N-1 jlog N2 = 2 J1 Jola
u=[10 jlng N-—1 qug Nz - J2 Ji Jols

v =[11 jlog N—1 jlog N-2 -

where | is bit-wise representation of butterfly counter
content and N is the longest FFT length supported. The
generalized data address generation equations are:

j2 jl j0]2 (3)
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S:[jlogN—l legN—Z “'jlogN—K OojlogN—K—l jlogN—K—Z jl j0]2

t

[jlogN—l jlogN—2 jlogN—K O 1 jlogN—K—l jlogN—K—2 jl j0]2

u :[jlogN—l jlogN—2 "'jlogN—K 10 jlogN—K—l jlogN—K—2 Jl j[)]2
V:[jlogN—l jlogN—2 "'jlogN—K 1 1 legN—K—l legN—K—2 Jl j()]Z
4)

where K is a special stage counter content, which is
increased by one each time when all the radix-2 butterfly
operations within the current stage are completed, or
increased by two after one stage of radix-2> butterfly
operations is completed.

The hardware block diagram of variable-length data
address generator for our FFT processor capable of
executing 8192, 4096, 2048, 1024, 512, 256, and 64-point
FFTs is shown in Fig. 4. In the figure, “carry-in
controller” adds the carry-out signal from butterfly
counter to the LSB (the shaded area) or its left immediate
bit of the stage counter to alternate the counter step of the
stage counter between one and two; “comparator”
compares stage counter content with the maximum stage
count corresponding to each FFT length and reset all
counters if they are equal; input signal “mode select”
controls the butterfly counter step and maximum stage
count to vary FFT length; “SIB MUX array” denotes
shift-insertion-bypass multiplexer array. It greatly
simplifies the address generator of Fig. 1, as will be
detailed below.

In our design, we define several functions to simplify
the design to replace those area-consuming barrel shifters
with much simpler multiplexers. The functions include the
required left shift operations, symbol bit insertion
operations, and bypass the remaining bits, for the
realization of the variable-length data address generation
algorithm. Detailed architecture of the
shift-bypass-insertion multiplexer array is shown in Fig. 5.

In the figure, the input signal “symbol” to MUX n
module can be 00, 01, 10, or 11, where block diagram of
MUX n is shown in Fig. 6, and function of MUX n
output is explained in Table 1. Timing and area
comparisons of data address generator between SIB-MUX
array approach and barrel shifter approach are shown in
Table 2, and the result is synthesized by TSMC 0.25y4 m
standard cell library with Synopsis Design Analyzer.

3.3 Thevariable-length coefficient address gener ator
Instead of using conventional ROM-based twiddle
factor generation scheme, we propose a new twiddle
factor generator, which has a smaller area and a higher
speed than the ROM-based design. The design is
presented in [7]. We will not detail it here. However, if
conventional ROM-based twiddle factor generation is
adopted, we can use the following efficient twiddle factor
address generator, as detailed below. The basic coefficient
address generating function is mainly a counter with an



adjustable counting step to realize varying stages and
allow for varying FFT lengths. Hence, we can realize the
coefficient address generator based on the content of the
butterfly counter. Coefficient address w for the i-th
butterfly of the k-th stage in radix-2, N/2° -point DIF FFT

can be generated based on the following equation:
Butterfly counter [10:0]

L L]

Symbol
[1:0]

Data address [12:0]
Fig. 5 The architecture of Shift-insert-bypass MUX array
Table 1 Output functions of the MUX n.

Output Function

Insert symbol
0 (10)

Select symbol bit 0 as the n-th bit of data
address.

Insert symbol
1(11)

Select symbol bit 1 as the n-th bit of data
address.

Bypass (BP) |Select the n-th bit of butterfly counter as the

n-th bit of data address.

Shift 2 (S2)  [Select the (n-2)-th bit of butterfly counter as

the n-th bit of data address.

Table 2 Comparison of DAG units.
SIB-MUX array | Barrel shifter (Fig.2)

No. of cells 143 229

Total gate counts 169 352

Path delay 5.72ns 7.14ns

I T

Insert Insert Bypass Shift 2
symbol O symbol 1

MUX_ N

l

Fig. 6 Block diagram of MUX_n module
W= (i X 2% ) mod( E)
2 (5)

where N is the longest FFT length and w is from 0 to
N/2-1  that corresponds to coefficient from W
N

W, 2

|-4——— MUX_con_n

to

. As mentioned previously, the content of butterfly
counter is i*2°, where 2° is the ratio of longest FFT length

to the current processed FFT length. Hence, coefficient
address w can be derived from

W:(BXZk)mod(g)

1
2— €
4 —»
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Fig. 7 The variable-length coefficient index generator.
where B is the content of butterfly counter. In a
fixed-radix design, equation (6) can be implemented by
shifting the content of butterfly counter to left by an
amount related to the stage counter’s content. Furthermore
the stage counter unit is similar to Fig. 4. The hardware
block diagram which depicts a coefficient address
generator for 512, 256, and 128-point FFT is shown in Fig
7.

4. CONCLUSION

In the paper, we propose an in-place memory-based
variable-length FFT processor architecture, which can suit
for multi-mode and multi-standard OFDM systems
including 802.11a, 802.16a, DAB, DVB-T, and VDSL.
The design is featured with the following low-complexity
components including: a butterfly PE, a variable-length
data address generator, and a variable-length coefficient
address generator. The design is currently under final
EDA realization and will be reported in the final paper.
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Abstract—In this paper, based on the property of channel
frequency response and the concept of interpolation in transform
domain, we propose two discrete cosine transform (DCT)-based
pilot-symbol-aided channel estimators, which can mitigate the
aliasing error and high-frequency distortion of the direct discrete
Fourier transform (DFT)-based channel estimators when the
multipath fading channels have non-sample-spaced path delays.
Both proposed estimators outperform the conventional
DFT-based channel estimators. Of these two DCT-based
estimators, one has its performance close to MM SE estimator,
while the other one has the advantage of easy implementation
with a little performance degradation. Furthermore, in
implementation, the DCT-based estimators have the advantages
of utilizing mature fast DCT algorithms and ar chitectures, which
isfavorableto matrix-based channel estimators.

Keywords-OFDM; channel estimation; FFT; DCT; interpolation

L INTRODUCTION

Multicarrier systems have received much attention these days.

It is a promising technique for high data rate transmission.
Examples include wireless OFDM systems, such as IEEE
802.11a wireless LAN, IEEE 802.16a wireless MAN, DAB
and DVB-T systems, and the wired DMT systems, such as
ADSL and VDSL systems. They are robust to multipath
inter-symbol interference (ISI). However, they still suffer from
multipath frequency-selective fading. To remove the channel
effect and do accurate data demodulation, one has to perform
accurate channel estimation.

The optimal interpolation filtering in minimum mean
square error (MMSE) sense is a well-known channel estimator
[1], [2]. However, the statistical characteristics of a channel,
i.e., autocorrelation matrix of channel frequency response and
signal-to-noise ratio (SNR), must be obtained in advance.
Usually this is impossible because of wide-varying channel
conditions. An alternative is to use recursive least-square
(RLS) method to track the channel [3]. Although RLS
algorithm is quite effective, high computation complexity is a
serious disadvantage. In [1], [2], the authors proposed a robust
approach in which the actual autocorrelation matrix is replaced
by a properly approximated matrix with small mismatch and
performance loss. Although reasonable suboptimal solution is
achievable using this algorithm, the required computation
complexity is still very high. Hence it may not be practical.

Another popular estimator is DFT-based interpolator [4],
[5S]. The DFT-based channel estimator can theoretically
achieve ideal lowpass interpolation and has the advantage of

This work was supported by National Science Council, Taiwan, under the
grant contracts NSC 92-2219-E-009 -017 and NSC 92-2220-E-009 -021
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low complexity by exploiting FFT algorithm. This works well
when the interpolated signal is originally band-limited. For
channel frequency response to be interpolated and estimated,
this condition corresponds to time-limited channel impulse
response. This is true when the multipath delays are all integer
multiples of the sampling time and short enough so as not to
cause aliasing error, if it is obtained from the IDFT of a
limited number of pilot frequency responses.

If there exists any non-sample-spaced path delay, the
equivalent discrete channel impulse response will be
dispersive in time domain. As a result, the DFT-based
interpolation process will be using the aliased data of the
dispersive impulse response. This results in considerable
performance degradation. To alleviate the problem, recently
we proposed a DCT-based channel estimation algorithm [8]
(termed DCT/EIDCT channel estimator), which is much
effective than the conventional DFT-based channel
interpolation algorithms. The algorithm can effectively reduce
the aliasing error and achieve better interpolation performance
than the popular DFT-based methods. In this paper, we will
provide a more generalized and complete treatment on the
DCT-based channel estimation. In addition to reviewing our
recently proposed DCT/EIDCT-based channel estimation
algorithm, we will also propose a fast DCT algorithm for its
low-complexity realization, plus that we will propose another
DCT-based channel estimator (termed IDCT/DCT-based
channel estimator). The new DCT-based channel estimators
also has a much better performance than the conventional
DFT-based channel estimators, while is comparable with the
DCT/EIDCT method. In addition, the new DCT-based channel
estimators have the advantages of utilizing mature fast-DCT
algorithms and architectures. They can be implemented with
even lower complexity compared with DFT-based channel
estimators.

In section 2, we will describe the OFDM system model and
DFT-based channel estimators. Two new DCT-based channel
estimators will be introduced in section 3, followed by their
simulation results in section 4 and finally the conclusion.

II.  OFDM SYSTEM MODEL AND DFT-BASED CHANNEL

ESTIMATORS

A. OFDM System Model

First, the transmitted data is split into several low-rate
streams and then these data streams are transmitted in different
subcarriers. We assume the data transmitted at the k-th



subcarrier is d(K). The multicarrier modulation is done by
inverse discrete Fourier transform (IDFT) as

N-1
X(n)=ﬁzd(k)e“’”k/” n=0,2,A ,N-1 Q)
k=0

where N is the total number of subcarriers. Then before
transmitting x(n), cyclic prefix is inserted to prevent ISI and

ICL.

The time-varying multipath channel can be characterized
by

ht,7) = Zi a,()o(T-1,) 2

where v is the number of paths, g, is the path gain and 7, is

path time delay. Usually g,(t)'s are modeled as complex

Gaussian processes with Jakes’ power spectrum [6], and all
the delay paths are uncorrelated to each other. This is so-called
the multipath Rayleigh fading channel. The mean-square value
of g, (t) is usually described by a exponentially-decayed

function with respect to the path delay time 7,, which has
the form of

n
Eﬁa, (t)\z] =e ®)
where ¢ is the power delay time constant. Another important
issue about path gain is the variation along time direction.
Doppler frequency is commonly used as an indicator of the
variation rate and is defined as
“)

fq = fv/c
where f, is the carrier frequency, v is the vehicle speed and ¢
is velocity of light.

If the channel length is shorter than the cyclic prefix, the
received signal can be expressed as

y(n) =x(n)Oh(n)+fn) n=0,2,A ,N-1 ®)

where 0 denotes circular convolution, fi(n) is additive white

Gaussian noise, and h(n) is the equivalent discrete channel

impulse response (assuming the channel is fixed over an
OFDM symbol) as described by [7]

NE sin(7a(r, /T, =n)/N)

where T_ is the sampling period. Then the received signal at

n=0,2A ,N-1 (©)

each subcarrier can be obtained by performing discrete Fourier
transform (DFT) on y(n) as

Y(k) = Nzify(n)e'”'"k/N = X(KH(K) + N(k)

= Q)
P S £ N-1
H(k) =Y ae "™ , Nkk) =D Ame ™™, k=012A,N-1
1=0 n=0
A. TheDFT-Based Channel Estimators[5]
For simplicity, the DFT-based estimators can be

summarized by the following steps:
1) Performthe least-square (LS) estimation [7] of channel
response at the pilot subcarriers:
H,(K) =Y, (k) / P(k) = H (k) + N, (k) / P(k = H (k) + N (k) (8)
Y, (k) =Y(Nk/M) k=0L2A M -1 9
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where P(K) is the prior known data transmitted at pilot
subcarriers.

2) Perform phase rotations of the pilot subcarrier channel
response:

X

M

Hik=H (k) xe (10)
where A is the minimum integer larger than Tow ! Too and
r,,. 1s the maximum path delay time. The phase shift is

equivalent to time shift by —A/2 units of the channel
impulse response. Doing so, the power of channel impulse
response is roughly centered around n= 0.

3) PerformIDFTof H!(k):

-2mk

Ay () = IDFT{H: k) =ﬁ§|—];(k)e‘7
k=0

4) Increasechannel samples by padding zerosto ﬁp(n) :

n=012A,M-1 (11

h,(n) 0snsM/2-1
h i (12)
h(n)=40 otherwise
h(M+n-N) N-M/2<snsN-1
5) Interpolate channel response by performing
DFTLh(m)]:
N-1 _jﬂ
H'(k)=> h(me " k=012,A,N-1 (13)
n=0

6) Restorethephaseof interpolated channel response:
k
(14)

THE PROPOSED DCT-BASED CHANNEL ESTIMATORS

Al

Hk)=H'(kyxe ™ k=012A.N-1

II.

DFT of a set of N-point data is equivalent to the
discrete-time Fourier transform (DTFT) of the infinite-length
periodical signals extended from the original N-point data.
Therefore, if it is discontinuous between two ends of the
N-point data, there will be an abrupt variation in between the
period boundaries. As a result, there are high frequency
components in the DFT results. Under this condition, the DFT
results are quite different from the desired frequency response
of the original aperiodic signal, which has smaller
high-frequency components. In addition, those high-frequency
components will generate large aliasing errors accordingly, in
the channel interpolation process. Therefore, in this case, we
have a high tendency of getting error-prone interpolated
channel frequency samples. As such, those high-frequency
errors should be avoided in the frequency-domain process as
possibly as it can be. To achieve this goal, let’s review the
characteristics of a multipath channel of (6). We can find that
when the multipath time delays are all sample-spaced (7,'s

are all integer multiples of sampling period), the equivalent
channel impulse response is time-limited. Therefore, in this
case, DFT-based channel estimator works well. However,
when the multipath time delays are non-sample-spaced, the
power of channel impulse response is dispersive to the length
of an OFDM symbol. In this case, the number of pilot
subcarriers is normally insufficient and under-sampled. Hence,
the introduced aliasing errors due to the under-sampled pilot



channel responses will severely degrade the performance
of DFT-based channel estimators.

Discrete cosine transform (DCT) is a well-known technique
widely used in image processing. Compared with DFT, DCT
can reduce high-frequency components in the transform
domain by eliminating the effect of discontinuous edge in
DFT-based approach, as mentioned before. The reason is that
operation of an N-point DCT is equivalent to extending the
original N-point data to 2N points by mirror extension,
followed by 2N-point DFT of the extended data and their
constant magnitude and phase compensation. Obviously, the
operation of mirror extension can solve the signal discontinuity
problem introduced in the DFT-based interpolation process.
Therefore, DCT-based interpolation is expected to have better
power concentration in low-frequency region and a better
frequency approximation to the frequency response of the
original channel impulse and lower aliasing error, than the
DFT-based interpolation. In the following, we will describe the
DCT-based channel estimators in detail.

A. TheDCT/EIDCT-Based Channel Estimator & Its Fast
Algorithm

We already proposed this estimator in [8]. Here for the
completeness and convenience of later discussion and
performance comparison we will first review its approach, and
then propose a fast algorithm for its low-complexity
realization, as follows. Since the idea is to make the data
symmetric by mirror-extending the original data to get the
periodic continuous signal. With the extended data, we can use
the well-known DFT-based interpolator to estimate the
channel frequency response with less aliasing effect and
achieve better interpolation performance. Due to the symmetry
property of input data, the DFT/IDFT operations in the
interpolation process can be replaced by DCT-related ones.
Therefore, we can get the equivalent interpolator based on
DCT-related operations.

The DCT-based estimation is depicted in Fig. 1 and described
by the following operation steps:

1) First, the same as DFT-based estimator, frequency
response is estimated by LS method. Then instead of
performing IDFT operation, DCT is used to transform the
pilot frequency response as shown below:

he(m) = w(m)MZIH p(k)cos(2k2+$

wm) =1/4/M, m=0; wm)=+2/M, m#0
15

m=0,LA ,M -1

2) Pad zero to the DCT-transformed data to obtain the
desired signal in the transform domain:
ﬁN(m):{hc(m) 0<msM -1 (16)
0 M<ms<N-1
3) Finally, the estimated channel frequency response is
obtained by performing extendible IDCT (EIDCT) [9] on

hy ().
H(k) = Mz“_lw(m)ﬁc(m) BOS((WVFH} k=0,,2,A ,N-1 17

If N/M is even, this equation can be translated to the
(N+1)-point type I IDCT [10] with some shift. On the other
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hand, if N/M is odd, this equation is equivalent to conventional
IDCT with shift equal to (N/M-1)/2. Therefore, the EIDCT can
be

Y, (k)
—

H » (k) A Extendible Hk)

IDCT

Zero

LS estimate padding

DCT

Figure 1. The DCT/EIDCT-based channel estimator.

implemented efficiently either by conventional fast IDCT
algorithms or by fast type-I IDCT algorithms.

B. ThelDCT/DCT-Based Channel Estimator

The DCT/EIDCT-based channel estimator has the
advantage of low complexity and can reduce the aliasing error
in channel interpolation compared with DFT-based estimator.
Here, we will propose a different DCT-based channel
estimator whose performance is very close to
DCT/EIDCT-based channel estimator and is also much better
than the DFT-based channel estimators. The advantage of this
estimator is that it can be implemented with conventional DCT
and IDCT software and hardware. Therefore, for the
implementation consideration, this estimator is more favorable
than our previously proposed DCT/EIDCT channel estimator.

The basic idea is still to make the data symmetric so as to
reduce the high-frequency components, but perform IDCT on
channel frequency response instead of DCT. Although direct
mirror-extension is a quite suitable approach, it is not the only
one. Here we adopt a different approach which defines the
extended pilot channel frequency response as

H, (k) 0<ksM -1
. _ B (18)
H,y (k) =10 owsy k=M

H,2M -ke ™ M+1<k<2M -1

The reason for this design is all for the compatibility with the
conventional inverse discrete cosine transform. In the
conventional DCT coefficients, there is always a zero response
at the index M for an M-point DCT and magnitudes of the
DCT coefficients are symmetric with respect to this zero. In
this design, although inserting a zero at k= M would cause a
rapid response dip, the high frequency component would not
be significant due to data symmetry property. Therefore,
interpolation by using |—A|2M (k) would be better than the

original data H ,(K)-

With |:|2M (k) , we can perform its IDFT-based
interpolation to get the estimated channel frequency response.
Since we have properly designed H,, (k) , the whole

interpolation process can be translated to DCT-based
operation. The new IDCT/DCT-based interpolator is shown in
Fig. 2.

1) First, multiply H o (K) by a gain factor defined by

b

H_(k k=0
Aro=]d2 (1)
eMH (k) 1sksM-1

2) I—"|’p(k) is transformed to time domain by IDCT



2k +1)n

2M

3) Pad zeros to the end of ﬁ(n) and extend the data to N
points to obtain the desired signal in time domain.

ﬁ(n) = Miw(k)ﬁ 5 (k) cos m=0LA ,M -1 (20)
k=0

Y, (k) H, k) i A k)
—" % LSestimate ’ Weng_hted ? IDCT
gain
Q)
Hik i H'(k
47( ) Wi;g‘.r:e‘j 0 DCT Zero-padding

Figure 2. IDCT/DCT-based channel estimator.

4) Transform the extended data to frequency domain by
N-point DCT.

5) Finally, a weighted gain is applied to each DCT
coefficient to obtain the final interpolated channel response as
shown below

\/@H'(k) k=0
Hio={ I M

N iy

m (k) 1sksN-1
We can find that the whole interpolation process only involves
conventional DCT and IDCT operations. Therefore, it can be
implemented directly by conventional fast DCT and IDCT
algorithms and architectures. This is more convenient than our
previously proposed DCT/EIDCT channel estimation
algorithm in practical applications.

(2]

As mentioned before, the interpolated channel response
will go down to zero for the frequency location beyond the last
pilot frequency position. This is because the corresponding
DFT-based interpolation puts a zero at k=M (18) due to
symmetry of time-domain signal, which certainly leads to the
descent in that region. However, this will not affect other
region significantly due to the symmetry property. Therefore,
if we don’t use the subcarriers beyond the last pilot as usually
is the case, the performance will be close to
DCT/EIDCT-based interpolator.

The frequency responses at the pilot subcarrier frequencies
are the down sampled version of the complete channel
frequency responses at all the N subcarrier frequencies. To
avoid severe aliasing, the delay of multipath channel cannot be
too large. Since the operations of these two DCT-based
estimators are both real, the interpolations are also real
processes, that is, the real part and imaginary part of the
interpolated signal are only dependent on the real part and
imaginary part of input data respectively. Therefore, the
Nyquist criterion can be applied in this case. That is

7, /T.<N/2D, =M /2 (22)
where 7 is the maximum path delay duration and D, is the

ratio of N to M.

I.  SIMULATION RESULTS

We assume a 16QAM OFDM system with a total number
of subcarriers N 1024 including 32 equispaced pilot
subcarriers. The system occupies a bandwidth of SMHz and

28

the sampling period is T, = 0.2us. The length of cyclic prefix
is Tg =16T, and then the duration of an OFDM symbol is

equal to 208us.

As for the transmission environment, a multipath
Rayleigh fading channel is assumed and the channel is
simulated by Jakes’ model [6]. We choose the “Vehicular A”
channel parameters defined by ETSI for the evaluation of
UMTS radio interface proposals [11]. The multipath time
delays r7,'s and the average power of the multipath gains

a,'s of the “Vehicular A” channel are shown in Table 1. The
Doppler frequency is set to 50 Hz, hence f 4T =0.01.

In the simulation, we assume perfect synchronization in
the receiver. Since usually it is hard to estimate the channel
frequency response beyond the last pilot accurately, this
region is assigned as guard band. The system symbol error rate
(SER) is shown in Fig. 3, while the mean-square error (MSE)
of the estimated channel frequency response is shown in Fig. 4
It is obvious that the performances of DCT-based channel
estimators are better than DFT-based channel estimator. In the
DFT-based channel estimator, the aliasing error is large and as
a result, it leads to inaccurate channel estimation and an error
floor for the OFDM systems. In contrast, the DCT-based
channel estimators can reduce the aliasing effect and improve
the symbol error rate under high SNR conditions. In the
figures, we also show the performance of robust LMMSE
channel estimator [2] assuming the following correlation
function of the channel frequency responses

__-j2m(Ty (k=1)/TN)

TN

This correlation function corresponds to a uniform power
delay profile where the multipath time delays are assumed to
be uniformly and independently distributed over the length of
the guard interval and all paths have the same average power.
The performance of the robust LMMSE channel estimator is
about 1dB better than DCT-based channel estimator, but the
complexity of LMMSE channel estimator is much higher than
the proposed DCT-based channel estimators.

We also show the SER and MSE for the case that all
subcarriers except pilots are used to transmit data in Fig. 5 and
Fig. 6 respectively. Although DCT-based channel estimator is
still better than DFT-based estimator, there are error floors in
all cases. This is because the aliasing error has significant
effect beyond the last pilot. In this case, we can find that the
performance of IDCT/DCT-based estimator degrades more
compared with DCT/EIDCT-based estimator, due to the
descent effect of the IDCT/DCT-based interpolation process.
Considering this severe aliasing error, usually an OFDM
system would not assign data subcarriers beyond two ending
pilot subcarriers.

ETH (K)H ()] = kel (3

Table 1. Characteristics of ETSI “Vehicle A” channel environment
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Symbol error rate

Mean square error

Tap | Time delays (u sec) | Time delay (Tc) | Average Power (dB)
1 0 0 0
2 031 155 -1
3 071 355 -9
4 1.09 5.45 -10
5 173 8.65 -15
6 251 1255 -20
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Figure 4. MSEs of channel estimators.
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