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Increases in circuit density and clock speed in modern system-on-chip
(SoC) designs have brought power issues into the spotlight of high-speed
integrated circuit design. Local overheating in one spot of a high-density
circuit can cause a whole system to crash. Clock synchronization problems,
parameter mismatching and other coefficient changes due to temperature
gradients generated by high power density and uneven heat-up of a chip are
one of the major reasons for system failure. With the increasing size of
integrated circuitry, the total power of a typica SoC design increase
dramatically, that escalates the problem and system cost by introducing a
complicated design in package and system integration. On the other hand, a
modern mobile device tends to integrated heterogeneous functional blocks
into a chip: different IP cores have been integrated in a platform-based SoC
design flow to provide more functions. However, the battery power, form
factors, and weight of such a device are often limited. Thus, power
management has become a key design issue in the modern low power and/or
high performance SoC designs. In the modern mobile devices, Feed Error
Correction (FEC) is widely used in communication system and storage
networks. FEC has become a necessary part in modern wireless
communication systems. However, previous research has indicated that FEC
is designed for the worst channel condition and might not be necessary in
most data communication process. Thus, this research proposed a detection
mechanism integrate with the power management mechanism. The detection
mechanism will detect the errors in the codeword during the communication
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and the power management mechanism can turn off the FEC while it is not
necessary to save the precious battery power.

This project integrates the FEC and power management mechanism to
achieve the lowest power dissipation and highest battery life for a mobile
system. Power and thermal problems for the targeting FEC design and
mobile communication systems are reviewed in the beginning of this project.
Then, the trends of both academia and industry solution are reviewed. At
last, a design based on the combination of power management system and
different type of feedback mechanism such as power sensor, temperature
sensor, and error detection is proposed. Sub-circuits will be developed, such
as sensors, FEC unit and power-management IP. Finally, system integration
of these components and a targeting system will be performed in the last
year of this project. The proposed design targets nominal power dissipation
and requires the system to actively manage its power activities. The
architecture will be encapsulated to an IP (Intellectual Property) module or a
virtual component of the modern system-on-chip design flow, which yields
a systematic solution crossing the application/system/circuit/device layers
that will link up the architecture and cell circuitry design to provide a
complete solution for SOC power management. By the delicate power/speed
controlling of FEC or other modules on an mobile communication system,
this design not only nominates the overall power consumption, but aso
maximizes the performance of target system in designed power budget.

Keywords: System-on-chip, VLSI, therma management, power management,
intellectual property Forward Error Correction(FEC)
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Figure 1. Roadmap to system-on-chip design

FEC

Scrambl er
pseudo noise  sequence

1 0

I nterl eaver

burst error
interleaver frame  codeword
Block
interleaver Convolutiona interleaver
interleaver memory address
memory

interleaver/de-interleave

De-interleaver



memory access

° Error Control Codes ECC

Reed-Solomon RS codes

RS codes
convolutional codes
i.e. SIN ratio punctured convolutional
code convolutional code punctured matrix code
rate convolutional code Viterbi
decoding algorithm Turbo codes
Turbo
codes Low-Complexity Parity Check
LDPC codes
' Pucture
H l matrix
]
]
G1=(25) ! 0001
]
]
Input : ‘ i Output Data
Data :
i
G2=(37) '
:
]
]

[ 1111

Figure 2 The puctured convolutional code of rate 3/4.
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Table 1 Circuit summary

Thermal management 100 MHz
oper ation frequency

SM B slave and master 500kHz
oper ation frequency

Multi-level controller 10kHz

oper ation frequency

Technology TSMC 0.25um Mixed Signal (1P5M) CMOS
Power Consumption 10mWwW
Transistor/Gate Count 152340.484375/17.28 = 8816
Pins Total: 104 pins
DC Power: 21 pins (Core power)
AC Power: 11 pins (Pad Power)
System signals: 72 pins
() TM and SMBdlave (2) SMBmaster
input: 39 pins input: 13 pins
output: 7 pins output: 13pins
Package Type CQFP128
. . LU UL
H H Hebal
e :
AT |
I== =

Figure 13
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