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中文摘要 
網際網路的迅速成長，為資訊檢索系統的設計，帶來了高效能與低成本的挑戰。為了服

務網路上每秒成千上萬個的使用者需求，資訊檢索系統需要索引結構來加速資料的搜尋。這
個報告針對目前最熱門的索引結構─轉置檔案，提出一個新的壓縮機制。在轉置檔案中，每
一個字彙都有一個相對應的文件編號串列(稱為轉置串列)來指示那一個文件包含這個字彙。
我們觀察到在一個轉置串列中，文件編號的分佈具有群聚性。一個好的轉置檔案壓縮法不但
必須能夠妥善地利用這種文件編號的群聚性來達到有效率的壓縮，更要能夠快速的解壓縮。
在這個報告中，我們提出了一個新的壓縮法，它以內插編碼法為基礎，並透過γ編碼法與
Golomb編碼法等 d-gap 壓縮法來加快編碼/解碼速度。這個新的壓縮法，我們稱為『單一順
序(unique-order)的內插編碼法』。與內插編碼法比較，我們所提的方法在編碼/解碼的過程中
並不需要利用 stack，因此編碼/解碼的速度都較內插法來得快。並且這個新的壓縮方法也可
以妥善地利用文件編號的群聚性，因此壓縮效率也相當地好。與其他已知的壓縮法比較，我
們所提的壓縮法提供了快速的解壓縮與良好的壓縮效能。我們也觀察到這個方法可以很容易
地支援 self-indexing strategy，大幅加快查詢的處理速度。我們相信此一新的壓縮方法可以應
用於高效能與低成本的資訊檢索系統設計。 

 
關鍵字: 轉置索引壓縮, 轉置檔案, prefix-free 編碼法, 內插編碼法, 快速解碼 
 
 
 
 
 
英文摘要 

The rapid growth on Internet brings challenges on not only high performance but also low cost 
for information retrieval system (IRS) design. To service thousands of requests arriving for one 
second, IRSes require an indexing structure so that the desired data can be located quickly. This report 
presents a size reduction method for the inverted file, the most suitable indexing structure for an 
information retrieval system (IRS). We notice that in an inverted file the document identifiers for a 
given word are usually clustered. While this clustering property can be used in reducing the size of 
the inverted file, good compression scheme as well as easy decompression must both be available. In 
this report, we present a method that can facilitate coding and decoding processes for interpolative 
coding using only simple and high-speed models such as γ coding and Golomb coding in d-gap 
technique. We call this method the unique-order interpolative coding. It can calculate the lower and 
upper bounds of every document identifier for a binary code without using a stack, hence the 
decompression time can be greatly reduced. Moreover, it also can exploit document identifiers 
clustering and compress the inverted file efficiently. Compared with the other well-known 
compression methods, our method does provide fast decoding speed and excellent compression result. 
This method can also be used to support the self-indexing strategy. Therefore our research work in 
this paper provides a feasible way to build a fast and space-economical IRS. 
 
Keywords: inverted index compression, inverted file, prefix-free coding, interpolative coding, fast 
decoding
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Abstract 

 
The word positions for any given word in the whole 

collection are arranged in clusters. If we can use the 
method that can take advantage of clustering, excellent 
results can be achieved in compression of inverted file. 
However, the mechanisms of decoding in all the 
well-known compression methods that can exploit 
clustering are more complex, which reduce the ability 
of searching performance in information retrieval 
system (IRS) at some degree. In this paper, we 
proposed a new method that can facilitate coding and 
decoding of interpolative code by using the simply 
applied and high-speed models such as γ code and 
Golomb code in d-gap technique. This new method 
can exploit clustering well, and the experimental 
results confirm that our method can provide fast 
decoding speed and excellent compression efficiency. 
 
 
1. Introduction 
 

An inverted file contains, for each distinct term t in the 
collection, an inverted list of the form ILt = <ft; id1, 
id2,…,idft>, where frequency ft is the total number of 
documents in which t appears, and idi is the identifier of 
the document that contains t. To process a query, the 
information retrieval system (IRS) retrieve the inverted 
lists of the terms appearing in the query, and then perform 
some set operations, such as intersection (∩) and union 
(U), on the inverted lists to obtain the answer list [1][2]. 

A popular compression technique is to sort the 
document identifiers of each inverted list in increasing 
order, and then replace each document identifier with the 
number subtracted it from its predecessor to form a list of 
d-gaps [2][3]. Although every document identifier is 
distinct, their d-gaps could still form some probability 
distributions. Some prefix-free coding methods, such as 
unary code [4], γ code [4], Golomb code [5][6], skew  

This work was support by National Science Council, ROC: 
NSC92-2213-E009-065. 

Golomb code [7], and the batched LLRUN code [8], have 
been proposed for compressing inverted lists by the 
estimates for these d-gaps probability distributions. 

The methods for compressing inverted file can yield 
excellent results if taking the possibility of clustering into 
account [9]. Although d-gap technique is not specially 
designed for using clustering in compression, many 
well-known prefix-free coding methods such as skew 
Golomb code, and the batched LLRUN code can achieve 
satisfied compression performance via accurate estimates 
to capture clusters. However, the estimates in these 
methods are relatively sophisticated, which require more 
decompression time so that they cannot be applied in real 
IRSes. Therefore, considering search performance, until 
now most models such as γ code and Golomb code of 
d-gap technique applied in real IRS are simple and unable 
to exploit clustering well to achieve good compression 
[2]. 

Recently, Moffat and Stuiver have proposed an 
interpolative coding [9]. Compared with the prefix-free 
coding methods, the interpolative compression scheme 
does not require the estimates for the d-gaps probability 
distributions. Based on using clustering with a recursive 
process of calculating ranges and codes in an interpolative 
order, superior compression performance yields. However, 
it is computational expensive due to a stack required in its 
implementation, which prohibit it from being widely used 
in the real-world IRSes. 

In this paper, we develop a new method based on 
interpolative compression scheme facilitated by d-gap 
compression scheme is called unique-order interpolative 
code. It can calculate ranges and codes without using a 
stack, and hence the decompression time can be greatly 
reduced. Moreover, it also can exploit clustering well and 
compress the inverted file efficiently. 

This paper is organized as follows. In Section 2, we 
present the interpolative code that is the most compact 
method to compress inverted file. In Section 3, we present 
the unique-order interpolative code. Then we show the 
quantitative analysis and the simulation results in Section 
4 and Section 5. Finally, Section 6 presents our 
conclusion. 
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2. Interpolative code 
 
Moffat and Stuiver have proposed an elegant 

compression technique called interpolative code [9]. It 
can make full use of the clustering in a recursive process 
of calculating ranges and codes, which demonstrates 
superior compression performance. In this method, the 
order as well as lower bound lo and upper bound hi of 
every document identifier x in an inverted list is 
calculated and then function Binary_code(x, lo, hi) is 
called to encode x. The detailed algorithm is described in 
Figure 1. For example, consider the inverted list <7; 1, 2, 
5, 6, 8, 10, 13> in a collection of N=20 documents. The 
full sequence of (x, lo, hi) triples processed by function 
Binary_code are (6,4,17), (2,2,4), (1,1,1), (5,3,5), (10,8, 
19), (8,7,9), and (13,11,20). The simplest encoding 
mechanism can use binary code to encode x and the above 
triples require 4, 2, 0, 2, 4, 2, and 4 bits, respectively. 

The major problem of interpolative coding method is 
that recursive process is used to calculate the order of 
every document identifier and its range as well. Although 
recursive process can be converted to non-recursive one 
by some well-known techniques [10], the converted codes 
require a stack to facilitate, which makes the coding and 
decoding very slow. 

However, we observed that calculation of the order and 
range for every document identifier could be accelerated 
by using memory to store part of results. Consider a 
general inverted list ILt=<ft; id1, id2, …, idft>, where ft is 
the number of documents containing term t, idk<idk+1, and 
all document identifiers are in the range 1…N. Using the 
interpolative coding method in Figure 1, for each ft , we 
can obtain the full sequence of triples processed for the 
general list ILt. Some examples are shown in Table 1. 
Now, consider a specific inverted list IL=<3; 1, 2, 7> in a 
collection of N=10 documents, and its triples can be 
calculated via corresponding triples of ft = 3 in Table 1. 
Therefore, the full sequence of triples for IL are (id2,2,N-1) 
= (2,2,9), (id1,1,id2-1) = (1,1,1),  (id3,id2+1,N) = (7,3,10). 
Compared with the method in Figure 1, this one is able to 
not use a stack to calculate the order and range of each 
document identifier, which then can save a large amount 
of time in the calculation. 

The corresponding triples of general inverted list ILt 
for each ft can be easily represented as a two-dimensional 
array I_Triple consisting of ft rows and 5 columns. An 
example is clarified in Figure 2. The algorithm in Figure 3 
can be used to generate the corresponding I_Triple[ft][5] 
for each ft. If a sub inverted list IL[index…index+k-1] 
among idlo_index+lo and idhi_index+hi, Compute_I_Triple 
(index, k, lo_index, lo, hi_index, hi) can be called to 
generate the corresponding  I_Triple. 

Although the procedure Compute_I_Triple in Figure 3  
still uses recursive process to generate I_Triple, it can be 
processed off-line and store corresponding I_Triple of 

different ft in memory, which decrease the calculation 
time of decoding on-line dramatically. After getting 
corresponding I_Triple in inverted list, we can directly 
apply binary code in encoding inverted list, which is 
shown as following: 

for m:=1 to ft do 
output bitstring by invoking Binary_code( 

 IL[I_Triple[m][1]], 
IL[I_Triple[m][2]]+I_Triple[m][3], 
IL[I_Triple[m][4]]+I_Triple[m][5] ); 

However, this improved method still requires large 
memory space. This makes it impossible using memory to 
accelerate coding and decoding of interpolative coding in 
real IRSes. 

Algorithm Interpolative_Code(IL, f, lo, hi); 
Input: IL (IL[1…f]is a sorted list of f document indetifiers, all 

 in the range lo...hi) 
Output: bitstring to represent IL[1…f]  
begin 

if f = 0 then return; 
if f = 1 then output bitstring by invoking 

            Binary_code(IL[1], lo, hi) and 
then return; 

 
h:=(f div 2)+1; 
f1:=h-1; 
f2:=f-h; 
IL1:=IL[1..(h-1)]; 
IL2:=IL[(h+1)…f]; 
Output bitstring by invoking Binary_code(IL[h], lo+f1, hi-f2); 

 
Call interpolative_code(IL1, f1, lo, IL[h]-1); 
Call interpolative_code(IL2, f2, IL[h]+1, hi); 

end 
Figure 1. Interpolative coding. 
Table 1. Some examples of the full sequence of triples 

processed for the general inverted list. 
ft The full sequence of triples processed for the general 

inverted list 
1 (id1, 1, N) 
2 (id2, 2, N), (id1, 1, id2-1) 
3 (id2, 2, N-1), (id1, 1, id2-1), (id3 , id2+1, N) 

 
The general inverted list as ft=3:(3;id1,id2,id3), and set idft+1= 
id4=0 and idft+2= id5=N.  
The corresponding triples: (id2,2,N-1), (id1,1,id2-1), 
(id3,id2+1,N). 

    lo_index  hi_index 
             index    offset   offset 
 

I_Triple[m][n] n=1 n=2 n=3 n=4 n=5 
m=1 2 4 2 5 -1 
m=2 1 4 1 2 -1 
m=3 3 2 1 5 0 

         
   1st element      2nd element    3rd element 

of the triple     of the triple   of the triple 
Figure 2. An example to illustrate two-dimensional 
array I_Triple[m][n] for representing triples. 

1st triple
2nd triple

3rd triple
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Algorithm Generate_I_Triple(IL, f, N); 
Input: IL ( [ ]fIL ..1  is a sorted list of f document identifiers, all 

in the range 1...N, and to simplify the algorithm we set 
[ ]1+fIL  to 0, and [ ]2+fIL  to N) 

Output: I_Triple[f ][5] to represent the triples 
begin 

n:=1;  /* n is a global variable*/ 
Compute_I_Triple(1, f, f+1, 1, f+2, 0);  /* generate  

I_Triple[f ][5] */ 
return I_Triple; 

end 
 
procedure Compute_I_Triple(index, k, lo_index, lo, hi_index, hi) 
begin 

if k=0 then return; 
if k=1 then  

I_Triple[n][1]:=index; 
I_Triple[n][2]:=lo_index; 
I_Triple[n][3]:=lo; 
I_Triple[n][4]:=hi_index; 
I_Triple[n][5]:=hi; 
n++; 
return; 

     
h:=k/2; 
f1:=h; 
f2:=k-h-1; 
I_Triple[n][1]:=h+index; 
I_Triple[n][2]:=lo_index; 
I_Triple[n][3]:=lo+f1; 
I_Triple[n][4]:=hi_index; 
I_Triple[n][5]:=hi-f2; 
n++; 
 
Compute_I_Triple (index, f1, lo_index, lo, index+h, -1); 
Compute_I_Triple (index+h+1, f2, index+h, 1, hi_index, hi); 

end 

Figure 3. The algorithm for calculating I_Triple. 
 
3. Unique-order interpolative code 
 

We developed a new method called unique-order 
interpolative code in which only one I_Triple is required 
for whole coding and decoding process of all inverted 
lists no matter how many different values of ft present. 
Then we introduced loop unrolling to replace I_Triple 
with constant values. The numbers of memory access for 
I_Triple therefore can be reduced, which accelerate the 
whole process. 

3.1. Coding method 
 

In an inverted list IL=<ft; id1, id2, …, idft>,  ft is the 
number of documents containing term t, idk<idk+1 and all 
document identifiers are in the range 1…N. A group size g 
is first determined. Then according to g, IL is divided into 

 gfm /=  blocks, each of the first (m-1) blocks has 
exactly g document identifiers, and the last block has 1... 
g document identifiers. The first document identifier in 
each block is defined as boundary pointer, the document 
identifiers between boundary pointer and boundary 
pointer as inner pointers, and those in last block except 
boundary pointer as residual pointers. The boundary 
pointers and residual pointers can be regarded as an 
inverted list and the models in d-gap technique with high 
decoding speed such as γ code and Golomb code to 
perform compression, while the inner pointers in each 
block are compressed via interpolative coding method. 
This new method (Figure 4) contains the constant number 
of inner pointers g-1, which makes it possible to use only 
one I_Triple to coding and decoding. Compared with 
previous interpolative coding method, this new method 
can let document identifiers store in a fixed order, why we 
called it unique-order interpolative code. When ft ≤ g or 
m=1 or g=1, we only apply d-gap technique in 
compression because of no inner pointers present. 

Consider a general inverted list ILt = <ft; id1, id2,…, 
idft> encoded by unique-order interpolative code with 
group size g=4, the ILt can be represented as <ft; id1, 
id5-id1-g-1, [id2,id3,id4], id9-id5-g-1, [id6,id7,id8], 
id13-id9-g-1, [id10,id11,id12], …>, where id1, id5-id1-g-1, 
id9-id5-g-1, id13-id9-g-1 are encoded with some prefix-free 
code and [id2,id3,id4], [id6,id7,id8], [id10,id11,id12] are 
encoded with interpolative code. The example list can be 
further represented (using triple representation in Section 
2) as  
<ft; id1,  
id5-id1-g+1,(id3,id1+2,id5-2),(id2,id1+1,id3-1),(id4,id3+1,id5-1), 
id9-id5-g+1,(id7,id5+2,id9-2),(id6,id5+1,id7-1),(id8,id7+1,id9-1), 
id13-id9-g+1,(id11,id9+2,id13-2),(id10,id9+1,id11-1),(id12,id11+1,id13-1)
, 
…>. 

IL=<ft; id1, id2, …, idft> 
Group size g, and  
m=  gf /  blocks 

 
id1   id2 … idg     idg+1  idg+2 … id2g      id2g+1  ……   id(m-1)g+1   ……idft 

 
 
 

Figure 4. Illustration of unique-order interpolative code 

The inner pointers 
encoded by 
interpolative code 

The inner pointers 
encoded by 
interpolative code 

d-gap d-gap d-gapd-gap d-gap

The residual pointers 
encoded by d-gap 
technique 

: block  
 

: boundary pointers  
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Algorithm unique_order_interpolative_code(IL, f, N, g); 
Input: IL (IL[1...f] is a sorted list of document numbers,  

all in the range 1...N), and group size g(an integer); 
Output: Bitstring (the compressed inverted list IL) 
begin 

if  f ≤ g then  // no inner pointers,  
// encoded by Golomb code 

 fNb /69.0: ×= ; 
prev_document_identifier:=0; 
for i:=1 to f 

append Golomb code ( 
IL[i]-prev_document_identifier, b) to Bitstring; 

prev_document_identifier:= IL[i]; 
else  // encode by unique-order interpolative code 

       gfm /= ;  
       ))1()1(/(69.0: −×−−×= gmfNb ; 
             

// encode the first boundary pointer 
append Golomb_code(IL[1], b) to Bitstring;   

         
// compute I_Triple 
n:=0;  /* n is a global variable */ 
I_Triple:=Compute_I_Triple(2, g-1, 1, 1, g+1, -1); 

     
for i:=0 to (m-2) do 

         index:=i×g; 
                 

// encode boundary pointer 
        append Golomb_code( 

IL[index+g+1]-IL[index+1]-g+1, b) to Bitstring; 
                  

// encode inner pointers 
for j:=1 to g-1 do     

            append Binary_code( 
          IL[index+I_Triple[j][1]], 
              IL[index+I_Triple[j][2]]+I_Triple[j][3], 
          IL[index+I_Triple[j][4]]+I_Triple[j][5]) to  

Bitstring;  
              

// encode residual pointers 
for i:=(m-1)×g+2 to f 

        append Golomb_code(IL[i]-IL[i-1],b) to Bitstring; 
 

return BitString;  
end 

Figure5. The unique-order interpolative coding 
method (facilitated by Golomb code) 
The indexes in I_Triples for [id2,id3,id4], [id6,id7,id8], 
[id10,id11,id12] are differentiated by the value of 4 which is 
the value of g, while the values of offset are the same. 
Therefore, only one I-Triple is required in coding and 
decoding, which accelerate the whole process. If we use 
Golomb code to encode boundary pointers and residual 
pointers, this new method can be shown as the above 
program in Figure 5. 
 
3.2. Discussion 
 

Compared with interpolative code, the new method can  

avoid the calculations of I-Triples, but a boundary pointer 
must be set to every certain number of document 
identifiers, which will enlarge the distance among 
boundary pointers and reduce compression efficiency. 
Therefore, a suitable prefix-free code is required to 
encode boundary pointers and residual pointers to 
improve compression efficiency. 

In this paper, two prefix-free codes are used for 
boundary pointers and residual pointers, which are 
Golomb code and γ code. Golomb code is very suitable to 
encode the d-gaps in unique-order interpolative code, 
since the d-gap extracted from every certain amount of 
document identifiers is roughly the same length. Using γ 
code is also relatively economical choice when the 
document identifiers in an inverted list are more 
concentrated, which can achieve relatively small d-gaps. 

By the way, once the group size g is determined, the 
program in Figure 5 can be further accelerated by using 
loop unrolling technique to replace I_Triple with constant 
values. For example, group size g=4, the following 
paragraph program in Figure 5: 

// encode inner pointers, 8 times memory accesses 
// of array IL and I_Triple are required for each  
// inner pointer 
for j:=1 to g-1 do     

       append Binary_code( 
 IL[index+I_Triple[j][1]], 
  IL[index+I_Triple[j][2]]+I_Triple[j][3], 
      IL[index+I_Triple[j][4]]+I_Triple[j][5]) to  

Bitstring; 

can be converted to  
// loop unrolling, only 3 times memory accesses of 
// array IL are required for each inner pointer 

    append Binary_code( IL[index+3], IL[index+1]+2,  
IL[index+5]-2) to Bitstring; 

    append Binary_code( IL[index+2], IL[index+1]+1,  
IL[index+3]-1) to Bitstring; 

    append Binary_code( IL[index+4], IL[index+3]+1,  
IL[index+5]-1) to Bitstring; 

In another word, once group size g has been determined, 
the I_Triple in loop can be replaced with constant values. 
So the 5(=8-3) times memory accesses for each document 
identifier can be avoided, which in turn accelerate the 
whole process. 
 
4. Coding method analysis 
 

To understand the characteristics of unique-order 
interpolative code, we made two experiments. We used 
the encoding methods such as Golomb code, skew 
Golomb code, batched LLRUN code, interpolative code, 
unique-order interpolative code 1 (group size g=4; 
boundary pointers and residual pointers by Golomb code), 
unique-order interpolative code 2 (group size g=4; 
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boundary pointers and residual pointers by γ code) in 
compression. In the first experiment (Table 2(a)), f = 
1,000,000 gaps were drawn from a geometric distribution 
and compressed using the six methods. The Golomb code 
performs the best, since it is a minimum-redundancy code 
for geometric distribution [6]. Compared with other 
methods, unique-order interpolative code 1 is not suitable 
for geometric distribution. But when N/f  increases, the 
performance of unique-order interpolative code 1 
becomes better and better. When N/f ≤ 2, the results of 
unique-order interpolative code 2 are satisfied.  

In the second experiment, for each value of N/f the 
sequence of f = 1,000,000 geometrically distributed gaps 
was broken into chunks of 200 contiguous values. The 
chunks were then placed in groups of five. In the first 
three chunks of each group, each gap was multiplied by a 
factor of 0.1; while in the other two chunks each gap was 
multiplied by a factor of 2.35. This process created 
artificial cluster of gaps much less than the average, and 
about 60% of the values are coded into these clusters, but 
certain overall average gap are retained. This is relatively 
close to the distribution of real collections. Unique-order 
interpolative code has good skew geometric distribution 
(Table 2(b)). Compared with other methods, the 
compression the compression efficiency of Golomb code 
is not as good as others which means the compression can 
be improved with clustering property. When N/f ≤ 32, we 
would better use unique-order interpolative code 2 to 
encode; while N/f > 32, we suggest unique-order 
interpolative code 1. Same with Table 2(a), while the 
value of N/f becomes larger, the unique-order 
interpolative code 1 performs better and better. In Table 
2(b), the interpolative code can even achieve better 

compression than self-entropy. This is due to interpolative 
code does not directly use gap value in encoding, which 
instead uses minimal binary code to encode after every 
gap is converted to triples. 
 
5. Experiments 
 

An experimental information retrieval system was 
implemented to compare various coding methods and 
techniques. Experiments have been performed on some 
real-life document collections, and query processing time 
and the storage requirement for each coding method were 
measured. 
 
5.1. Document collection and query generation 
 

Three document collections are used in the 
experiments. The statistics are listed in Table 3. Collection 
FBIS (Foreign Broadcast Information Service) and LAT 
(LA Times), are disk 5 of the TREC-6 collection that is 
used internationally as a test bed for research in 
information retrieval techniques [11]. The final collection 
TREC includes the FBIS and LAT collections. 

Since the effective coding methods rely on the 
clustering, inverted files are developed for each collection 
with Greedy-NN algorithm [12]. We followed the method 
[13] to evaluate performance with random queries. For 
each document collection, 1000 documents are randomly 
selected to generate a query set. All experiments 
described in the paper are carried out on Intel P4 2.4GHz 
machine with 256MB of DDR memory running the Linux 

Table 2. Compression results for geometric and skew geometric distributions of f = 1,000,000 gaps: average bits per gap 
(a) Geometric distribution 

Average gap（N/f）, Geometric Distribution Coding Methods 
1 2 4 8 16 32 64 128 256 512 1024 2048

Golomb code 1.00 2.33 3.30 4.39 5.43 6.45 7.46 8.47 9.47 10.47 11.47 12.47
Skew Golomb code 1.00 2.53 3.51 4.60 5.64 6.66 7.67 8.68 9.68 10.68 11.68 12.68
Batched LLRUN code 1.00 2.27 3.46 4.50 5.53 6.52 7.52 8.52 9.52 10.52 11.52 12.53
Interpolative code 0.00 2.15 3.45 4.59 5.66 6.69 7.70 8.71 9.71 10.71 11.71 12.72
Unique-order interpolative code 1 3.00 4.19 5.13 5.97 6.76 7.53 8.29 9.06 9.89 10.77 11.68 12.77
Unique-order interpolative code 2 0.25 2.33 3.91 5.31 6.64 7.92 9.19 10.45 11.70 12.96 14.21 15.46
Self-entropy 0.00 2.00 3.24 4.35 5.40 6.42 7.43 8.44 9.44 10.44 11.43 12.43

(b)Skew geometric distribution 
Average gap（N/f）, Skewed Distribution Coding Methods 

1 2 4 8 16 32 64 128 256 512 1024 2048
Golomb 1.40 2.60 3.30 4.29 5.33 6.37 7.39 8.40 9.40 10.40 11.40 12.41
Skew Golomb 1.80 2.31 2.92 3.76 4.80 5.79 6.80 7.82 8.82 9.83 10.83 11.83
Batched LLRUN 1.40 2.31 2.86 3.60 4.61 5.66 6.70 7.71 8.71 9.71 10.70 11.71
Interpolative 0.84 1.53 2.07 2.90 3.97 5.07 6.15 7.19 8.21 9.23 10.23 11.24
Unique-order interpolative code 1 3.60 3.96 4.30 4.80 5.51 6.30 7.11 7.94 8.76 9.60 10.51 11.62
Unique-order interpolative code 2 1.25 1.90 2.47 3.33 4.53 5.88 7.21 8.53 9.81 11.07 12.33 13.60
Self-entropy 0.97 1.77 2.30 3.05 4.06 5.10 6.15 7.18 8.19 9.19 10.19 11.20
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Table 3. Statistics of document collections 
                      Collection 

 FBIS LAT TREC 

Documents N 130471 131896 262367

Number of terms F 72922893 72087460 145010353
Distinct terms n 214310 168251 317393
Number of doc. identifiers f 28628698 32483656 61112354
Average gap size N·n/f 977 683 1363 
Total size(MB) 470 475 945 
 
operating system 2.4.12. The size of hard disk is 40GB, 
and the data transfer rate is about 25MB/sec. Other 
processes and disk activity were minimized during timing 
experiments, that is, the machine was under light-load. 
 
5.2. Compression performance of unique-order 
interpolative code 
 

In this experiment, Golomb code is used to code 
boundary pointers and residual pointers. As the average 
gap size in Table 3 is relatively big, Golomb code was 
used according to section 4.  

The result is shown in Table 4, and the metric is the 
average number of bits per document identifier (BPI), 
defined as follows: 
 

. 
When group size g=4 and g=8, unique-order interpolative 
code achieves good compression. Considering about the 
convenience of application, we suggest to select group 
size g=4. In the following experiments, without specified 
indication, encoding of unique-order interpolative code is 
facilitated by Golomb code with group size g=4. 

Table 4. Compression performance (BPI) of unique-order 
interpolative code with different group size g 

Group Size g Collection 
 FBIS LAT TREC 

g=1 5.27 5.31 5.49 
g=2 4.84 4.91 4.99 
g=3 4.80 4.89 4.94 
g=4 4.66 4.74 4.78 
g=5 4.71 4.80 4.82 
g=6 4.71 4.79 4.81 
g=7 4.65 4.74 4.75 
g=8 4.59 4.68 4.69 
g=9 4.64 4.72 4.73 

 g=10 4.67 4.75 4.76 
 
5.3. Compression performance of different coding 
methods 
 

We now show the effectiveness of the different coding 
methods. The metric is BPI defined in Section 5.2. The 
results (Table 5) showed that: 1.Ihe compression 
efficiency of γ code and Golomb code is relatively low 

because of the simple models they use; 2.The 
compression efficiency of batched LLRUN code, skew 
Golomb code, interpolative code, unique order 
interpolative code is relatively good because they use 
clustering to compress; 3.It is confirmed that unique-order 
interpolative code can take advantage of clustering 
property. Using clustering, the compression efficiency of 
unique-order interpolative code is only lower than 
interpolative code. 

Table 5. Compression performance of different 
coding methods 

           CollectionCoding Methods 
FBIS LAT TREC

γ code 5.38 5.63 5.63
Golomb code 5.27 5.31 5.49
Batched LLRUN code 4.63 4.78 4.84
Skew Golomb code 5.04 5.07 5.10
Interpolative code 4.58 4.65 4.62
Unique-order interpolative code 4.66 4.74 4.78
 
5.4. Search performance of different coding 
methods 
 

The query processing time includes (1) disk access 
time, (2) decompression time, and (3) document 
identifiers comparison time. According to the 
experimental results, disk access time and decompression 
time occupy more than 90% of query processing time. 
And document identifier comparison time is not affected 
by coding method. Therefore performance metric is 
defined as 

Processing Time (PT) =  Disk Access Time (AT) +  
Decompression Time (DT). 

Based on Execution Time of Golomb code, speed-up (SP) 
of each test collection in various coding methods was 
calculated. 

In this experiment, all decoding mechanisms has 
undergone the best process as following: 1.Remove 
nested function calls; 2.Replace subroutines with macros; 
3.Replace log function with fast bit-shift; 4.Set compiler 
optimization flag, such as –O, -O1, -O2; 5.Take advantage 
of 32-bit CPU characteristics: use 32-bit long register to 
hold and process compressed data.  

Except of the above process, the Huffman code of 
batched LLRUN code uses canonical prefix codes to 
accelerate the process [14]. While interpolative coding 
method uses certain well-known technique to convert 
recursive process to non-recursive process, but it still 
requires an explicit stack in practice [10]. 
The results are shown in Table 6. Compared with other 
traditional encoding methods such as batched LLRUN 
code, skew Golomb code, interpolative code, the 
processing time of γ code, Golomb code is shorter. 
Although the processing time of γ code is shorter than 
Golomb code, its compression efficiency in large-scale 

.
 identfiersdocument   totalThe

file inverted compressed  theof size The
f

BPI =
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databases such as FBIS, LAT, TREC is worse than Golomb 
code. Considering about search performance and 
compression ratio in IRS, Golomb code is used to coding 
and compression of inverted files. And the query 
processing time of unique-order interpolative code is 
shortest. 

Table 6. Average query processing time of different 
coding methods 

           
Collection 

Coding Methods 

FBIS LAT TREC
γ code PT(us) 2596 2662 4800
 SP 1.07 1.07 1.08
Golomb code PT(us) 2789 2851 5174
 SP 1.00 1.00 1.00
Batched LLRUN code PT(us) 3137 3212 5700
 SP 0.89 0.89 0.91
Skew Golomb code PT(us) 2841 2960 5192
 SP 0.98 0.96 1.00
Interpolative code PT(us) 4214 4362 7687
 SP 0.66 0.65 0.67
Unique-order interpolative code PT(us) 2493 2494 4603
 SP 1.12 1.14 1.12

The results in Table 7 show that the ratio of disk access 
time to decompression time occupied is relatively equal 
for Golomb code and γ code. Therefore, a good encoding 
method must be characterized by high compression 
efficiency as well as high decoding velocity. The unique 
interpolative code is such kind of good method. So it can 
take place of Golomb code in IRS. 

Table 7. The ratio of disk access time and 
decompression time of different coding methods 

           
Collection 

Coding Methods 

FBIS LAT TREC
γ code AT(%) 43 44 45
 DT(%) 57 56 55
Golomb code AT(%) 46 46 47
 DT(%) 54 54 53
Batched LLRUN code AT(%) 36 36 37
 DT(%) 64 64 63
Skew Golomb code AT(%) 39 38 40
 DT(%) 61 62 60
Interpolative code AT(%) 24 23 25
 DT(%) 76 77 75
Unique-order interpolative code AT(%) 43 43 44
 DT(%) 57 57 56
 
6. Conclusion 
 

This paper proposes a novel coding method, 
unique-order interpolative code, for compressing inverted 
files in IRSes. The new method is much easier to 
implement than the interpolative code, however, it is also 
suited to situations in which clustering is anticipated, and 
experiments with the inverted files of three test databases 

show the method to yield superior performance for both 
fast querying and space-efficient indexing. This work 
shows a feasible way to build a fast and space-economical 
IRS. 
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計畫成果自評 
 本計畫規劃了一系列的研究，探討如何以最小的資源成本建置符合需求的叢集式資訊檢索
系統，並透過動態的資源管理機制，讓系統在面對各種不同的外界環境時，能夠動態地調整系

統的資源配置，將系統的資源發揮最大的效能，期以最小的資源成本提供使用者一個高效能和

高服務品質的資訊檢索環境。在本年度的研究中，為了能夠有效增進系統效能與儲存空間利用

率，我們發展了一個新的轉置檔案壓縮機制。實驗證明此一壓縮機制的壓縮率好，解碼速度快，

並且可以支援 self-indexing strategy，使得資料查詢的處理速度大幅的提升。此一研究成果已經
在 ITCC2004國際會議上發表，並投稿到 Information processing and management國際期刊等待
審查。未來在此研究基礎上，本計畫將持續探討叢集式資訊檢索系統的負載、快取與資料管理

方法，期能以最小的成本滿足給定的執行效能需求。並發展一資訊檢索雛型系統，實作並驗證

所提各項技術之可行性。 
 


