(1/{3)

NSC92-2213-E-009-065-
92 08 01 93 07 31

93 S 14



Golomb d-gap /
(unique-order) /
stack /

self-indexing strategy

, , prefix-free , ,

The rapid growth on Internet brings challenges on not only high performance but also low cost
for information retrieval system (IRS) design. To service thousands of requests arriving for one
second, IRSes require an indexing structure so that the desired data can be located quickly. This report
presents a size reduction method for the inverted file, the most suitable indexing structure for an
information retrieval system (IRS). We notice that in an inverted file the document identifiers for a
given word are usually clustered. While this clustering property can be used in reducing the size of
the inverted file, good compression scheme as well as easy decompression must both be available. In
this report, we present a method that can facilitate coding and decoding processes for interpolative
coding using only simple and high-speed models such as y coding and Golomb coding in d-gap
technique. We call this method the unique-order interpolative coding. It can calculate the lower and
upper bounds of every document identifier for a binary code without using a stack, hence the
decompression time can be greatly reduced. Moreover, it also can exploit document identifiers
clustering and compress the inverted file efficiently. Compared with the other well-known
compression methods, our method does provide fast decoding speed and excellent compression result.
This method can also be used to support the self-indexing strategy. Therefore our research work in
this paper provides a feasible way to build a fast and space-economical IRS.

Keywords: inverted index compression, inverted file, prefix-free coding, interpolative coding, fast
decoding



(Presented at Proceedings of ITCC 2004 International Conference on Information
Technology: Coding and Computing, Vol. 2, pp. 229-235, Apr. 2004, Las Vegas, Nevada, USA.)

A Unique-Order Interpolative Code for Fast Querying and Space-Efficient
Indexing in Information Retrieval Systems

Cher-Sheng Cheng, Jean Jyh-Jiun Shann, and Chung-Ping Chung
Department of Computer Science and Information Engineering,
National Chiao-Tung University, Hsinchu 30050, Taiwan.
{jerry, jjshann, cpchung} @csie.nctu.edu.tw

Abstract

The word positions for any given word in the whole
collection are arranged in clusters. If we can use the
method that can take advantage of clustering, excellent
results can be achieved in compression of inverted file.
However, the mechanisms of decoding in all the
well-known compression methods that can exploit
clustering are more complex, which reduce the ability
of searching performance in information retrieval
system (IRS) at some degree. In this paper, we
proposed a new method that can facilitate coding and
decoding of interpolative code by using the simply
applied and high-speed models such as y code and
Golomb code in d-gap technique. This new method
can exploit clustering well, and the experimental
results confirm that our method can provide fast
decoding speed and excellent compression efficiency.

1. Introduction

An inverted file contains, for each distinct term t in the
collection, an inverted list of the form IL; = <f; idy,
idy,...,ide>, where frequency f; is the total number of
documents in which t appears, and id; is the identifier of
the document that contains t. To process a query, the
information retrieval system (IRS) retrieve the inverted
lists of the terms appearing in the query, and then perform
some set operations, such as intersection (N) and union
(U), on the inverted lists to obtain the answer list [1][2].

A popular compression technique is to sort the
document identifiers of each inverted list in increasing
order, and then replace each document identifier with the
number subtracted it from its predecessor to form a list of
d-gaps [2][3]. Although every document identifier is
distinct, their d-gaps could still form some probability
distributions. Some prefix-free coding methods, such as
unary code [4], y code [4], Golomb code [5][6], skew

This work was support by National Science Council, ROC:
NSC92-2213-E009-065.

Golomb code [7], and the batched LLRUN code [8], have
been proposed for compressing inverted lists by the
estimates for these d-gaps probability distributions.

The methods for compressing inverted file can yield
excellent results if taking the possibility of clustering into
account [9]. Although d-gap technique is not specially
designed for using clustering in compression, many
well-known prefix-free coding methods such as skew
Golomb code, and the batched LLRUN code can achieve
satisfied compression performance via accurate estimates
to capture clusters. However, the estimates in these
methods are relatively sophisticated, which require more
decompression time so that they cannot be applied in real
IRSes. Therefore, considering search performance, until
now most models such as y code and Golomb code of
d-gap technique applied in real IRS are simple and unable
to exploit clustering well to achieve good compression
[2].

Recently, Moffat and Stuiver have proposed an
interpolative coding [9]. Compared with the prefix-free
coding methods, the interpolative compression scheme
does not require the estimates for the d-gaps probability
distributions. Based on using clustering with a recursive
process of calculating ranges and codes in an interpolative
order, superior compression performance yields. However,
it is computational expensive due to a stack required in its
implementation, which prohibit it from being widely used
in the real-world IRSes.

In this paper, we develop a new method based on
interpolative compression scheme facilitated by d-gap
compression scheme is called unique-order interpolative
code. It can calculate ranges and codes without using a
stack, and hence the decompression time can be greatly
reduced. Moreover, it also can exploit clustering well and
compress the inverted file efficiently.

This paper is organized as follows. In Section 2, we
present the interpolative code that is the most compact
method to compress inverted file. In Section 3, we present
the unique-order interpolative code. Then we show the
quantitative analysis and the simulation results in Section
4 and Section 5. Finally, Section 6 presents our
conclusion.



2. Interpolative code

Moffat and Stuiver have proposed an elegant
compression technique called interpolative code [9]. It
can make full use of the clustering in a recursive process
of calculating ranges and codes, which demonstrates
superior compression performance. In this method, the
order as well as lower bound 10 and upper bound hi of
every document identifier X in an inverted list is
calculated and then function Binary code(X, lo, hi) is
called to encode x. The detailed algorithm is described in
Figure 1. For example, consider the inverted list <7; 1, 2,
5, 6, 8, 10, 13> in a collection of N=20 documents. The
full sequence of (X, 10, hi) triples processed by function
Binary code are (6,4,17), (2,2,4), (1,1,1), (5,3,5), (10,8,
19), (8,7,9), and (13,11,20). The simplest encoding
mechanism can use binary code to encode X and the above
triples require 4, 2, 0, 2, 4, 2, and 4 bits, respectively.

The major problem of interpolative coding method is
that recursive process is used to calculate the order of
every document identifier and its range as well. Although
recursive process can be converted to non-recursive one
by some well-known techniques [10], the converted codes
require a stack to facilitate, which makes the coding and
decoding very slow.

However, we observed that calculation of the order and
range for every document identifier could be accelerated
by using memory to store part of results. Consider a
general inverted list IL=<fy; idy, idy, ..., idy>, where f; is
the number of documents containing term t, ide<idy.1, and
all document identifiers are in the range 1...N. Using the
interpolative coding method in Figure 1, for each f;, we
can obtain the full sequence of triples processed for the
general list IL;. Some examples are shown in Table 1.
Now, consider a specific inverted list IL=<3; 1,2, 7>in a
collection of N=10 documents, and its triples can be
calculated via corresponding triples of f, = 3 in Table 1.
Therefore, the full sequence of triples for IL are (idy,2,N-1)
=(2,2,9), (idy,1,id>-1) = (1,1,1), (ids,idy+1,N) =(7,3,10).
Compared with the method in Figure 1, this one is able to
not use a stack to calculate the order and range of each
document identifier, which then can save a large amount
of time in the calculation.

The corresponding triples of general inverted list IL;
for each f; can be easily represented as a two-dimensional
array 1 Triple consisting of f; rows and 5 columns. An
example is clarified in Figure 2. The algorithm in Figure 3
can be used to generate the corresponding I_Triple[f{][5]
for each f. If a sub inverted list IL[index...index+k-1]
among i, jngeH0 and iy jngexthi, Compute_I_Triple
(index, k, lo_index, 1o, hi_index, hi) can be called to
generate the corresponding I Triple.

Although the procedure Compute I Triple in Figure 3
still uses recursive process to generate I Triple, it can be
processed off-line and store corresponding I Triple of

different f, in memory, which decrease the calculation
time of decoding on-line dramatically. After getting
corresponding I Triple in inverted list, we can directly
apply binary code in encoding inverted list, which is
shown as following:
for m:=1 to f; do
output bitstring by invoking Binary code(
IL[I_Triple[m][1]],
IL[I Triple[m][2]]+] Triple[m][3],
IL[I Triple[m][4]]+] Triple[m][5]);
However, this improved method still requires large
memory space. This makes it impossible using memory to
accelerate coding and decoding of interpolative coding in
real IRSes.

Algorithm Interpolative_Code(IL, f, |0, hi);
Input: IL (IL[1...f]is a sorted list of f document indetifiers, all
in the range lo...hi)

Output: bitstring to represent IL[1...f]
begin

if f =0 then return;

if f =1 then output bitstring by invoking

Binary_code(IL[1], lo, hi) and

then return;

h:=(f div 2)+1;
fi:=h-1;
fo:=f-h;
ILy=IL[1..(h-1)];
ILy=IL[(h+1).. f];
Output bitstring by invoking Binary_code(IL[h], o+, hi-f,);
Call interpolative_code(IL,, fy, lo, IL[h]-1);
Call interpolative_code(IL,, f5, IL[h]+1, hi);
end
Figure 1. Interpolative coding.

Table 1. Some examples of the full sequence of triples
processed for the general inverted list.

f,  The full sequence of triples processed for the general
inverted list

1 (idy, 1, N)
2 (idy, 2, N), (idy, 1, id,-1)
3 (idp, 2, N-1), (idy, 1, idy-1), (id3, idyt+1, N)

The general inverted list as f=3:(3;id,,id,id,), and set id.1=
id,=0 and idg. ;= id=N.

The  corresponding  triples:  (idp,2,N-1),  (idy,1,idy-1),
(ids,id+1,N).
lo_index hi_index
index offset ffset
I Triple[m][n] n=1 n=2 n=3 n=4 n=5
m=1 20425 ]|-1 11" triple
m=2 1 a1 [ 2| »2iple
m=3 31211 ]5]01P»3mple
1* elefment 2" element 3 element
of the triple of the triple  of the triple

Figure 2. An example to ilusirate two-dimensional
array |_Triplefm][n] for representing triples.



Algorithm Generate I Triple(IL, f, N);
Input: IL (||_[1,, f] is a sorted list of f document identifiers, all
in the range 1...N, and to simplify the algorithm we set
IL[f +1] t00,and |L[f +2] toN)
Output: I Triple[f][5] to represent the triples
begin
n:=1; /*nis a global variable*/
Compute I Triple(1, f, f+1, 1, f+2, 0); /* generate
I Triple[f][5] */
return I_Triple;
end

procedure Compute I Triple(index, k, lo_index, lo, hi_index, hi)
begin
if k=0 then return;
if k=1 then
I Triple[n][1]:=index;
I Triple[n][2]:=l0_index;
1_Triple[n][3]:=lo;
I Triple[n][4]:=hi_index;
I Triple[n][5]:=hi;
n++;

return;

h:=k/2;

fi:=h;

fo:=k-h-1;

I_Triple[n][1]:=h+index;

I Triple[n][2]:=lo_index;

I Triple[n][3]:=lo+fy;

I Triple[n][4]:=hi_index;

I_Triple[n][5]:=hi-f,;

n++;
Compute I Triple (index, f,, lo_index, lo, index+h, -1);
Compute I Triple (index+h+1, f,, index+h, 1, hi_index, hi);

end

Figure 3. Thealgorithm for calculating|_Triple.

3. Unique-order interpolative code

We developed a new method called unique-order
interpolative code in which only one I Triple is required
for whole coding and decoding process of all inverted
lists no matter how many different values of f; present.
Then we introduced loop unrolling to replace I Triple
with constant values. The numbers of memory access for
I Triple therefore can be reduced, which accelerate the
whole process.

3.1. Coding method

In an inverted list IL=<f; idy, id,, ..., idg>, f; is the
number of documents containing term t, id<idy.1 and all
document identifiers are in the range 1...N. A group size g
is first determined. Then according to g, IL is divided into
m= |'f /g—| blocks, each of the first (m-1) blocks has

exactly g document identifiers, and the last block has 1...
g document identifiers. The first document identifier in
each block is defined as boundary pointer, the document
identifiers between boundary pointer and boundary
pointer as inner pointers, and those in last block except
boundary pointer as residual pointers. The boundary
pointers and residual pointers can be regarded as an
inverted list and the models in d-gap technique with high
decoding speed such as y code and Golomb code to
perform compression, while the inner pointers in each
block are compressed via interpolative coding method.
This new method (Figure 4) contains the constant number
of inner pointers g-1, which makes it possible to use only
one I Triple to coding and decoding. Compared with
previous interpolative coding method, this new method
can let document identifiers store in a fixed order, why we
called it unique-order interpolative code. When f; < g or
m=1 or g=1, we only apply d-gap technique in
compression because of no inner pointers present.
Consider a general inverted list IL;= <f;; idy, id,,...,
idg> encoded by unique-order interpolative code with
group size g=4, the IL; can be represented as <fy; idy,
ids-id;-g-1,  [idpids,ids],  idg-ids-g-1,  [ide,idz,idg],
id13-idg-g-1, [idlo,idll,idlz], >, where idl, ids-idl-g-l,
idg-ids-g-1, idy3-idg-g-1 are encoded with some prefix-free
code and [idz,idg,id4], [ide,id7,id8], [idlo,idn,idlz] are
encoded with interpolative code. The example list can be
further represented (using triple representation in Section
2) as
<fy;idy,
ids-idy-g+1,(id3,id;+2,ids-2),(idp,idy+1,ids-1),(idg,idat 1ids-1),
idg-ids-gt1,(1d7,idst2,idg-2),(idg,idst1,id7-1),(idg,id7+1,idg-1),
idy3-ido-grt1,(idy,idgt2,idy3-2),(idyg,i dgt 1,idy-1),(1dpp,i Ay +1,id3-1)

s

L

TL=<f; idy, iy, ..

., ide>

Group size g, and

m=|f/g blocks
d—|— a -‘ d-ga

O : boundary pointers

i :block

d-gap d-gap p d-gap
Q@ iy ..idy | (idger) i0geo ity (iged) woooor C iGgmipgrs) oo id, |
Y . . . - .
The inner pointers The inner pointers The residual pointers
encoded by encoded by encoded by d-gap

interpolative code interpolative code

technique

Figure4. lllustration of unique-order interpolative code



Algorithm unique_order_interpolative_code(IL, f, N, g);
Input: IL (IL[1...f] is a sorted list of document numbers,
all in the range 1...N), and group size g(an integer);
Output: Bitstring (the compressed inverted list L)
begin
if f<gthen //no inner pointers,
// encoded by Golomb code
b:=[0.69xN/f;
prev_document _identifier:=0;
fori:=1tof
append Golomb code (
IL[i]-prev_document_identifier, b) to Bitstring;
prev_document_identifier:= IL[i];
else // encode by unique-order interpolative code
m=[f/g]
b:=[0.69xN/(f —(m-1)x(g—-1))];

// encode the first boundary pointer
append Golomb_code(IL[1], b) to Bitstring;

// compute I Triple
n:=0; /*nis a global variable */
I Triple:=Compute I Triple(2, g-1, 1, 1, g+1,-1);

for i:=0 to (m-2) do
index:=ixg;

// encode boundary pointer
append Golomb_code(
IL[index+g+1]-IL[index+1]-g+1, b) to Bitstring;

// encode inner pointers
for j:=1 to g-1 do
append Binary_code(
IL[index+1_Triple[j][1]],
IL[index+1_Triple[j][2]]+]_Triple[j][3],
IL[index+1_Triple[j][4]]+]_Triple[j][5]) to
Bitstring;

// encode residual pointers
for i:=(m-1)xg+2 to f
append Golomb_code(IL[i]-IL[i-1],b) to Bitstring;

return BitString;
end

Figure5. The unique-order interpolative coding
method (facilitated by Golomb code)

The indexes in I Triples for [idy,ids,id,], [ide,id,idsg],
[idy0,id11,idy5] are differentiated by the value of 4 which is
the value of g, while the values of offset are the same.
Therefore, only one I-Triple is required in coding and
decoding, which accelerate the whole process. If we use
Golomb code to encode boundary pointers and residual
pointers, this new method can be shown as the above
program in Figure 5.

3.2. Discussion

Compared with interpolative code, the new method can

avoid the calculations of I-Triples, but a boundary pointer
must be set to every certain number of document
identifiers, which will enlarge the distance among
boundary pointers and reduce compression efficiency.
Therefore, a suitable prefix-free code is required to
encode boundary pointers and residual pointers to
improve compression efficiency.

In this paper, two prefix-free codes are used for
boundary pointers and residual pointers, which are
Golomb code and y code. Golomb code is very suitable to
encode the d-gaps in unique-order interpolative code,
since the d-gap extracted from every certain amount of
document identifiers is roughly the same length. Using y
code is also relatively economical choice when the
document identifiers in an inverted list are more
concentrated, which can achieve relatively small d-gaps.

By the way, once the group size g is determined, the
program in Figure 5 can be further accelerated by using
loop unrolling technique to replace I_Triple with constant
values. For example, group size g=4, the following
paragraph program in Figure 5:

encode inner pointers, 8 times memory accesses
// of array IL and I Triple are required for each
// inner pointer
for j:=1 to g-1 do

append Binary code(
IL[index+I_Triple[j][1]],
IL[index+1_Triple[j][2]]+] Triple[j][3],
IL[index+1_Triple[j][4]]+]1 Triple[j][5]) to
Bitstring;

can be converted to

// 1oop unrolling, only 3 times memory accesses of

// array IL are required for each inner pointer

append Binary code( IL[index+3], IL[index+1]+2,
IL[index+5]-2) to Bitstring;

append Binary code( IL[index+2], IL[index+1]+1,
IL[index+3]-1) to Bitstring;

append Binary code( IL[index+4], IL[index+3]+1,
IL[index+5]-1) to Bitstring;

In another word, once group size g has been determined,
the I Triple in loop can be replaced with constant values.
So the 5(=8-3) times memory accesses for each document
identifier can be avoided, which in turn accelerate the
whole process.

4. Coding method analysis

To understand the characteristics of unique-order
interpolative code, we made two experiments. We used
the encoding methods such as Golomb code, skew
Golomb code, batched LLRUN code, interpolative code,
unique-order interpolative code 1 (group size g=4;
boundary pointers and residual pointers by Golomb code),
unique-order interpolative code 2 (group size g=4;



boundary pointers and residual pointers by y code) in
compression. In the first experiment (Table 2(a)), f =
1,000,000 gaps were drawn from a geometric distribution
and compressed using the six methods. The Golomb code
performs the best, since it is a minimum-redundancy code
for geometric distribution [6]. Compared with other
methods, unique-order interpolative code 1 is not suitable
for geometric distribution. But when N/f increases, the
performance of unique-order interpolative code 1
becomes better and better. When N/f < 2, the results of
unique-order interpolative code 2 are satisfied.

In the second experiment, for each value of N/f the
sequence of f = 1,000,000 geometrically distributed gaps
was broken into chunks of 200 contiguous values. The
chunks were then placed in groups of five. In the first
three chunks of each group, each gap was multiplied by a
factor of 0.1; while in the other two chunks each gap was
multiplied by a factor of 2.35. This process created
artificial cluster of gaps much less than the average, and
about 60% of the values are coded into these clusters, but
certain overall average gap are retained. This is relatively
close to the distribution of real collections. Unique-order
interpolative code has good skew geometric distribution
(Table 2(b)). Compared with other methods, the
compression the compression efficiency of Golomb code
is not as good as others which means the compression can
be improved with clustering property. When N/f < 32, we
would better use unique-order interpolative code 2 to
encode; while N/f > 32, we suggest unique-order
interpolative code 1. Same with Table 2(a), while the
value of N/f becomes larger, the unique-order
interpolative code 1 performs better and better. In Table
2(b), the interpolative code can even achieve better

compression than self-entropy. This is due to interpolative
code does not directly use gap value in encoding, which
instead uses minimal binary code to encode after every
gap is converted to triples.

5. Experiments

An experimental information retrieval system was
implemented to compare various coding methods and
techniques. Experiments have been performed on some
real-life document collections, and query processing time
and the storage requirement for each coding method were
measured.

5.1. Document collection and query generation

Three document collections are used in the
experiments. The statistics are listed in Table 3. Collection
FBIS (Foreign Broadcast Information Service) and LAT
(LA Times), are disk 5 of the TREC-6 collection that is
used internationally as a test bed for research in
information retrieval techniques [11]. The final collection
TREC includes the FBISand LAT collections.

Since the effective coding methods rely on the
clustering, inverted files are developed for each collection
with Greedy-NN algorithm [12]. We followed the method
[13] to evaluate performance with random queries. For
each document collection, 1000 documents are randomly
selected to generate a query set. All experiments
described in the paper are carried out on Intel P4 2.4GHz
machine with 256MB of DDR memory running the Linux

Table 2. Compression results for geometric and skew geometric distributions of f = 1,000,000 gaps: average bits per gap

(a) Geometric distribution

Coding Methods Average gap N/f , Geometric Distribution

1 2 4 8 16 32 64 128 256 512 1024 2048
Golomb code 1.00 233 330 439 543 645 746 847 947 1047 1147 1247
Skew Golomb code 1.00 2.53 351 460 564 666 7.67 8.68 9.68 10.68 11.68 12.68
Batched LLRUN code 1.00 227 346 450 553 652 752 852 952 1052 11.52 12.53
Interpolative code 0.00 2.15 345 459 566 6.69 770 871 971 1071 11.71 12.72
Unique-order interpolative code 1 3.00 419 513 597 676 753 829 9.06 9.89 10.77 11.68 12.77
Unique-order interpolative code 2 025 233 391 531 664 792 9.19 1045 11.70 1296 1421 1546
Self-entropy 0.00 2.00 324 435 540 642 743 844 944 1044 1143 1243
(b)Skew geometric distribution
Coding Methods Average gap N/f , Skewed Distribution

1 2 4 8 16 32 64 128 256 512 1024 2048
Golomb 140 2.60 330 429 533 637 739 840 940 1040 11.40 1241
Skew Golomb 1.80 231 292 376 480 579 6.80 7.82 882 9.83 10.83 11.83
Batched LLRUN 140 231 286 360 461 566 670 771 871 971 10.70 11.71
Interpolative 084 1.53 207 290 397 507 6.15 7.19 821 923 1023 11.24
Unique-order interpolative code 1 360 396 430 480 551 630 7.11 794 876 9.60 10.51 11.62
Unique-order interpolative code 2 125 190 247 333 453 588 721 853 981 11.07 12.33 13.60
Self-entropy 097 1.77 230 305 4.06 510 6.15 7.8 8.19 9.19 10.19 11.20




Table 3. Statistics of document collections

Collection
FBIS LAT TREC
DocumentsN 130471 131896 262367

Number of terms F 72922893 72087460 145010353
Distinct terms n 214310 168251 317393
Number of doc. identifiers f 28628698 32483656 61112354
Average gap size N-n/f 977 683 1363
Total size(MB) 470 475 945

operating system 2.4.12. The size of hard disk is 40GB,
and the data transfer rate is about 25MB/sec. Other
processes and disk activity were minimized during timing
experiments, that is, the machine was under light-load.

5.2. Compression performance of unique-order
interpolative code

In this experiment, Golomb code is used to code
boundary pointers and residual pointers. As the average
gap size in Table 3 is relatively big, Golomb code was
used according to section 4.

The result is shown in Table 4, and the metric is the
average number of bits per document identifier (BPI),
defined as follows:

BP| = The size of the compressed inverted file

The total document identfiers f
When group size g=4 and g=8, unique-order interpolative
code achieves good compression. Considering about the
convenience of application, we suggest to select group
size g=4. In the following experiments, without specified
indication, encoding of unique-order interpolative code is
facilitated by Golomb code with group size g=4.

Table 4. Compression performance (BPI) of unique-order
interpolative code with different group size g

Group Size g Collection

FBIS LAT TREC
o=1 5.27 5.31 5.49
g=2 4.84 491 4.99
g=3 4.80 4.89 4.94
g=4 4.66 4.74 4.78
g=5 4.71 4.830 4.82
g=6 4.71 4.79 4.81
o=7 4.65 4.74 4.75
o=8 4.59 4.68 4.69
g=9 4.64 4.72 4.73
g=10 4.67 4.75 4.76

5.3. Compression performance of different coding
methods

We now show the effectiveness of the different coding
methods. The metric is BPI defined in Section 5.2. The
results (Table 5) showed that: 1.IThe compression
efficiency of y code and Golomb code is relatively low

because of the simple models they wuse; 2.The
compression efficiency of batched LLRUN code, skew
Golomb code, interpolative code, unique order
interpolative code is relatively good because they use
clustering to compress; 3.1t is confirmed that unique-order
interpolative code can take advantage of clustering
property. Using clustering, the compression efficiency of
unique-order interpolative code is only lower than
interpolative code.

Table 5. Compression performance of different
coding methods

Coding Methods Collection
FBIS LAT TREC
Y code 5.38 5.63 5.63
Golomb code 5.27 5.31 5.49
Batched LLRUN code 4.63 4.78 4.84
Skew Golomb code 5.04 5.07 5.10
Interpolative code 4.58 4.65 4.62
Unique-order interpolative code 4.66 4.74 4.78

5.4. Search performance of different coding
methods

The query processing time includes (1) disk access
time, (2) decompression time, and (3) document
identifiers comparison time. According to the
experimental results, disk access time and decompression
time occupy more than 90% of query processing time.
And document identifier comparison time is not affected
by coding method. Therefore performance metric is
defined as

Processing Time (PT) = Disk Access Time (AT) +

Decompression Time (DT).
Based on Execution Time of Golomb code, speed-up (SP)
of each test collection in various coding methods was
calculated.

In this experiment, all decoding mechanisms has
undergone the best process as following: 1.Remove
nested function calls; 2.Replace subroutines with macros;
3.Replace log function with fast bit-shift; 4.Set compiler
optimization flag, such as -0, -O1, -O2; 5.Take advantage
of 32-bit CPU characteristics: use 32-bit long register to
hold and process compressed data.

Except of the above process, the Huffman code of
batched LLRUN code uses canonical prefix codes to
accelerate the process [14]. While interpolative coding
method uses certain well-known technique to convert
recursive process to non-recursive process, but it still
requires an explicit stack in practice [10].

The results are shown in Table 6. Compared with other
traditional encoding methods such as batched LLRUN
code, skew Golomb code, interpolative code, the
processing time of y code, Golomb code is shorter.
Although the processing time of y code is shorter than
Golomb code, its compression efficiency in large-scale



databases such as FBIS LAT, TREC is worse than Golomb
code. Considering about search performance and
compression ratio in IRS, Golomb code is used to coding
and compression of inverted files. And the query
processing time of unique-order interpolative code is
shortest.

Table 6. Average query processing time of different
coding methods

Coding Methods
Collection
FBIS LAT TREC

Y code PT(us) 2596 2662 4800
sP .07 1.07 1.8
PT(us) 2789 2851 5174
sP .00 1.00 1.00
PT(us) 3137 3212 5700
sP 0.89 0.89 091
PT(us) 2841 2960 5192
sP 098 0.96 1.00

PT(us) 4214 4362 7687

Golomb code

Batched LLRUN code

Skew Golomb code

Interpolative code

SP 0.66 0.65 0.67
Unique-order interpolative code PT(us) 2493 2494 4603
SP .12 1.14 1.12

The results in Table 7 show that the ratio of disk access
time to decompression time occupied is relatively equal
for Golomb code and y code. Therefore, a good encoding
method must be characterized by high compression
efficiency as well as high decoding velocity. The unique
interpolative code is such kind of good method. So it can
take place of Golomb code in IRS.

Table 7. The ratio of disk access time and
decompression time of different coding methods

Coding Methods
Collection

FBIS LAT TREC

y code AT (%) 43 44 45

DT (%) 57 56 55

Golomb code AT (%) 46 46 47

DT (%) 54 54 53

Batched LLRUN code AT (%) 36 36 37
DT (%) 64 64 63
Skew Golomb code AT (%) 39 38 40

DT (%) 61 62 60

Interpolative code AT (%) 24 23 25

DT (%) 76 7175

Unique-order interpolative code AT (%) 43 43 44
DT (%) 57 57 56

6. Conclusion

This paper proposes a novel coding method,
unique-order interpolative code, for compressing inverted
files in IRSes. The new method is much easier to
implement than the interpolative code, however, it is also
suited to situations in which clustering is anticipated, and
experiments with the inverted files of three test databases

show the method to yield superior performance for both
fast querying and space-efficient indexing. This work
shows a feasible way to build a fast and space-economical
IRS.

References

[1] W. B. Frankes and R. Baeza-Yates, Information Retrieval:
Data Structures and Algorithms. Prentice Hall, Englewood
Cliffs, NJ, 1992.

[2] 1. H. Witten, A. Moffat, and T. C. Bell, Managing
Gigabytes: Compressing and Indexing on Documents and
Images. Morgan Kaufmann, San Francisco, California,
second edition, 1999.

[3] A. Moffat and J. Zobel, "Parameterised compression for
sparse bitmaps," Proceedings of 15th annual international
ACM-SGIR Conference on Research and Development in
Information Retrieval, pp. 274-285, Copenhagen, June
1992. ACM Press, New York.

[4] P. Elias, "Universal codeword sets and representations of
the integers," |EEE Transactions on Information Theory,
\ol. IT-21, No. 2, pp. 194-203, 1975.

[51 S. W. Golomb, "Run Length Encoding," |EEE Transactions
on Information Theory, Vol. IT-12, No. 3, pp. 399-401,
1966.

[6] R. G. Gallager and D. C. Van Voorhis, "Optimal source
codes for geometrically distributed alphabets," IEEE
Transactions on Information Theory, Vol. IT-21, No. 2, pp.
228-230, Mar. 1975.

[7] J. Teuhola, "A Compression method for clustered
bit-vectors," Information Processing Letters, Vol. 7, No. 6,
pp-308-311, Oct. 1978.

[8] A. S. Fraenkel and S. T. Klein, "Novel Compression of
sparse bit-string Preliminary report,” in: A. Apostolico
and Z. Galil, editors, Combinatorial Algorithms on Wbrds,
\ol. 12, NATO ASI Serials F, pp. 169-183, Berlin, 1985.
Springer-Verlag.

[9] A. Moffat, and L. Stuiver, "Binary interpolative coding for
effective index compression," Information Retrieval, \Vol. 3,
No. 1, pp. 25-47, July 2000.

[10] A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, Data
structures using C. Englewood CLiffs, N.J. 07632,
Prentice-Hall, 1990.

[11] E. Voorhees, and D. Harman, "Overview of the sixth text
retrieval conference (TREC-6)," Proceedings of the 6th
Text Retrieval Conference, pp. 1-24, 1998. NIST Special
Publication 500-240.

[12] Wann-Yun Shieh, Tien-Fu Chen, Jean Jyh-Jiun Shaun and
Chung-Ping Chung, "Inverted file compression through
document identifier reassignment," Information Processing
and Management, \Vol. 39, No. 1, pp. 117-131, 2003.

[13] A. Moftat and J. Zobel, "self-indexing inverted files for fast
text retrieval," ACM Transactions on Information Systems,
\ol. 14, No. 4, pp. 349-379, 1996.

[14] A. Turpin, "Efficient prefix coding," PhD thesis, University

of Melbourne, 1998.



self-indexing strategy
ITCC2004 Information processing and management



