
行政院國家科學委員會專題研究計畫 期中進度報告

具有動態資源管理之高效能叢集式資訊檢索系統設計(1/3)

計畫類別：個別型計畫

計畫編號：NSC92-2213-E-009-065-

執行期間：92年08月01日至93年07月31日

執行單位：國立交通大學資訊工程學系

計畫主持人：單智君

共同主持人：鍾崇斌

計畫參與人員：鄭哲聖

報告類型：精簡報告

報告附件：出席國際會議研究心得報告及發表論文

處理方式：本計畫可公開查詢

中 華 民 國 93年5月14日

 I

中文摘要
網際網路的迅速成長，為資訊檢索系統的設計，帶來了高效能與低成本的挑戰。為了服

務網路上每秒成千上萬個的使用者需求，資訊檢索系統需要索引結構來加速資料的搜尋。這
個報告針對目前最熱門的索引結構─轉置檔案，提出一個新的壓縮機制。在轉置檔案中，每
一個字彙都有一個相對應的文件編號串列(稱為轉置串列)來指示那一個文件包含這個字彙。
我們觀察到在一個轉置串列中，文件編號的分佈具有群聚性。一個好的轉置檔案壓縮法不但
必須能夠妥善地利用這種文件編號的群聚性來達到有效率的壓縮，更要能夠快速的解壓縮。
在這個報告中，我們提出了一個新的壓縮法，它以內插編碼法為基礎，並透過γ編碼法與
Golomb編碼法等 d-gap 壓縮法來加快編碼/解碼速度。這個新的壓縮法，我們稱為『單一順
序(unique-order)的內插編碼法』。與內插編碼法比較，我們所提的方法在編碼/解碼的過程中
並不需要利用 stack，因此編碼/解碼的速度都較內插法來得快。並且這個新的壓縮方法也可
以妥善地利用文件編號的群聚性，因此壓縮效率也相當地好。與其他已知的壓縮法比較，我
們所提的壓縮法提供了快速的解壓縮與良好的壓縮效能。我們也觀察到這個方法可以很容易
地支援 self-indexing strategy，大幅加快查詢的處理速度。我們相信此一新的壓縮方法可以應
用於高效能與低成本的資訊檢索系統設計。

關鍵字: 轉置索引壓縮, 轉置檔案, prefix-free 編碼法, 內插編碼法, 快速解碼

英文摘要

The rapid growth on Internet brings challenges on not only high performance but also low cost
for information retrieval system (IRS) design. To service thousands of requests arriving for one
second, IRSes require an indexing structure so that the desired data can be located quickly. This report
presents a size reduction method for the inverted file, the most suitable indexing structure for an
information retrieval system (IRS). We notice that in an inverted file the document identifiers for a
given word are usually clustered. While this clustering property can be used in reducing the size of
the inverted file, good compression scheme as well as easy decompression must both be available. In
this report, we present a method that can facilitate coding and decoding processes for interpolative
coding using only simple and high-speed models such as γ coding and Golomb coding in d-gap
technique. We call this method the unique-order interpolative coding. It can calculate the lower and
upper bounds of every document identifier for a binary code without using a stack, hence the
decompression time can be greatly reduced. Moreover, it also can exploit document identifiers
clustering and compress the inverted file efficiently. Compared with the other well-known
compression methods, our method does provide fast decoding speed and excellent compression result.
This method can also be used to support the self-indexing strategy. Therefore our research work in
this paper provides a feasible way to build a fast and space-economical IRS.

Keywords: inverted index compression, inverted file, prefix-free coding, interpolative coding, fast
decoding

 1

報告內容： (Presented at Proceedings of ITCC 2004 International Conference on Information
Technology: Coding and Computing, Vol. 2, pp. 229-235, Apr. 2004, Las Vegas, Nevada, USA.)

A Unique-Order Interpolative Code for Fast Querying and Space-Efficient

Indexing in Information Retrieval Systems

Cher-Sheng Cheng, Jean Jyh-Jiun Shann, and Chung-Ping Chung
Department of Computer Science and Information Engineering,

National Chiao-Tung University, Hsinchu 30050, Taiwan.
{jerry, jjshann, cpchung}@csie.nctu.edu.tw

Abstract

The word positions for any given word in the whole

collection are arranged in clusters. If we can use the
method that can take advantage of clustering, excellent
results can be achieved in compression of inverted file.
However, the mechanisms of decoding in all the
well-known compression methods that can exploit
clustering are more complex, which reduce the ability
of searching performance in information retrieval
system (IRS) at some degree. In this paper, we
proposed a new method that can facilitate coding and
decoding of interpolative code by using the simply
applied and high-speed models such as γ code and
Golomb code in d-gap technique. This new method
can exploit clustering well, and the experimental
results confirm that our method can provide fast
decoding speed and excellent compression efficiency.

1. Introduction

An inverted file contains, for each distinct term t in the
collection, an inverted list of the form ILt = <ft; id1,
id2,…,idft>, where frequency ft is the total number of
documents in which t appears, and idi is the identifier of
the document that contains t. To process a query, the
information retrieval system (IRS) retrieve the inverted
lists of the terms appearing in the query, and then perform
some set operations, such as intersection (∩) and union
(U), on the inverted lists to obtain the answer list [1][2].

A popular compression technique is to sort the
document identifiers of each inverted list in increasing
order, and then replace each document identifier with the
number subtracted it from its predecessor to form a list of
d-gaps [2][3]. Although every document identifier is
distinct, their d-gaps could still form some probability
distributions. Some prefix-free coding methods, such as
unary code [4], γ code [4], Golomb code [5][6], skew

This work was support by National Science Council, ROC:
NSC92-2213-E009-065.

Golomb code [7], and the batched LLRUN code [8], have
been proposed for compressing inverted lists by the
estimates for these d-gaps probability distributions.

The methods for compressing inverted file can yield
excellent results if taking the possibility of clustering into
account [9]. Although d-gap technique is not specially
designed for using clustering in compression, many
well-known prefix-free coding methods such as skew
Golomb code, and the batched LLRUN code can achieve
satisfied compression performance via accurate estimates
to capture clusters. However, the estimates in these
methods are relatively sophisticated, which require more
decompression time so that they cannot be applied in real
IRSes. Therefore, considering search performance, until
now most models such as γ code and Golomb code of
d-gap technique applied in real IRS are simple and unable
to exploit clustering well to achieve good compression
[2].

Recently, Moffat and Stuiver have proposed an
interpolative coding [9]. Compared with the prefix-free
coding methods, the interpolative compression scheme
does not require the estimates for the d-gaps probability
distributions. Based on using clustering with a recursive
process of calculating ranges and codes in an interpolative
order, superior compression performance yields. However,
it is computational expensive due to a stack required in its
implementation, which prohibit it from being widely used
in the real-world IRSes.

In this paper, we develop a new method based on
interpolative compression scheme facilitated by d-gap
compression scheme is called unique-order interpolative
code. It can calculate ranges and codes without using a
stack, and hence the decompression time can be greatly
reduced. Moreover, it also can exploit clustering well and
compress the inverted file efficiently.

This paper is organized as follows. In Section 2, we
present the interpolative code that is the most compact
method to compress inverted file. In Section 3, we present
the unique-order interpolative code. Then we show the
quantitative analysis and the simulation results in Section
4 and Section 5. Finally, Section 6 presents our
conclusion.

 2

2. Interpolative code

Moffat and Stuiver have proposed an elegant

compression technique called interpolative code [9]. It
can make full use of the clustering in a recursive process
of calculating ranges and codes, which demonstrates
superior compression performance. In this method, the
order as well as lower bound lo and upper bound hi of
every document identifier x in an inverted list is
calculated and then function Binary_code(x, lo, hi) is
called to encode x. The detailed algorithm is described in
Figure 1. For example, consider the inverted list <7; 1, 2,
5, 6, 8, 10, 13> in a collection of N=20 documents. The
full sequence of (x, lo, hi) triples processed by function
Binary_code are (6,4,17), (2,2,4), (1,1,1), (5,3,5), (10,8,
19), (8,7,9), and (13,11,20). The simplest encoding
mechanism can use binary code to encode x and the above
triples require 4, 2, 0, 2, 4, 2, and 4 bits, respectively.

The major problem of interpolative coding method is
that recursive process is used to calculate the order of
every document identifier and its range as well. Although
recursive process can be converted to non-recursive one
by some well-known techniques [10], the converted codes
require a stack to facilitate, which makes the coding and
decoding very slow.

However, we observed that calculation of the order and
range for every document identifier could be accelerated
by using memory to store part of results. Consider a
general inverted list ILt=<ft; id1, id2, …, idft>, where ft is
the number of documents containing term t, idk<idk+1, and
all document identifiers are in the range 1…N. Using the
interpolative coding method in Figure 1, for each ft , we
can obtain the full sequence of triples processed for the
general list ILt. Some examples are shown in Table 1.
Now, consider a specific inverted list IL=<3; 1, 2, 7> in a
collection of N=10 documents, and its triples can be
calculated via corresponding triples of ft = 3 in Table 1.
Therefore, the full sequence of triples for IL are (id2,2,N-1)
= (2,2,9), (id1,1,id2-1) = (1,1,1), (id3,id2+1,N) = (7,3,10).
Compared with the method in Figure 1, this one is able to
not use a stack to calculate the order and range of each
document identifier, which then can save a large amount
of time in the calculation.

The corresponding triples of general inverted list ILt
for each ft can be easily represented as a two-dimensional
array I_Triple consisting of ft rows and 5 columns. An
example is clarified in Figure 2. The algorithm in Figure 3
can be used to generate the corresponding I_Triple[ft][5]
for each ft. If a sub inverted list IL[index…index+k-1]
among idlo_index+lo and idhi_index+hi, Compute_I_Triple
(index, k, lo_index, lo, hi_index, hi) can be called to
generate the corresponding I_Triple.

Although the procedure Compute_I_Triple in Figure 3
still uses recursive process to generate I_Triple, it can be
processed off-line and store corresponding I_Triple of

different ft in memory, which decrease the calculation
time of decoding on-line dramatically. After getting
corresponding I_Triple in inverted list, we can directly
apply binary code in encoding inverted list, which is
shown as following:

for m:=1 to ft do
output bitstring by invoking Binary_code(

 IL[I_Triple[m][1]],
IL[I_Triple[m][2]]+I_Triple[m][3],
IL[I_Triple[m][4]]+I_Triple[m][5]);

However, this improved method still requires large
memory space. This makes it impossible using memory to
accelerate coding and decoding of interpolative coding in
real IRSes.

Algorithm Interpolative_Code(IL, f, lo, hi);
Input: IL (IL[1…f]is a sorted list of f document indetifiers, all

 in the range lo...hi)
Output: bitstring to represent IL[1…f]
begin

if f = 0 then return;
if f = 1 then output bitstring by invoking

 Binary_code(IL[1], lo, hi) and
then return;

h:=(f div 2)+1;
f1:=h-1;
f2:=f-h;
IL1:=IL[1..(h-1)];
IL2:=IL[(h+1)…f];
Output bitstring by invoking Binary_code(IL[h], lo+f1, hi-f2);

Call interpolative_code(IL1, f1, lo, IL[h]-1);
Call interpolative_code(IL2, f2, IL[h]+1, hi);

end
Figure 1. Interpolative coding.
Table 1. Some examples of the full sequence of triples

processed for the general inverted list.
ft The full sequence of triples processed for the general

inverted list
1 (id1, 1, N)
2 (id2, 2, N), (id1, 1, id2-1)
3 (id2, 2, N-1), (id1, 1, id2-1), (id3 , id2+1, N)

The general inverted list as ft=3:(3;id1,id2,id3), and set idft+1=
id4=0 and idft+2= id5=N.
The corresponding triples: (id2,2,N-1), (id1,1,id2-1),
(id3,id2+1,N).

 lo_index hi_index
 index offset offset

I_Triple[m][n] n=1 n=2 n=3 n=4 n=5
m=1 2 4 2 5 -1
m=2 1 4 1 2 -1
m=3 3 2 1 5 0

 1st element 2nd element 3rd element

of the triple of the triple of the triple
Figure 2. An example to illustrate two-dimensional
array I_Triple[m][n] for representing triples.

1st triple
2nd triple

3rd triple

 3

Algorithm Generate_I_Triple(IL, f, N);
Input: IL ([]fIL ..1 is a sorted list of f document identifiers, all

in the range 1...N, and to simplify the algorithm we set
[]1+fIL to 0, and []2+fIL to N)

Output: I_Triple[f][5] to represent the triples
begin

n:=1; /* n is a global variable*/
Compute_I_Triple(1, f, f+1, 1, f+2, 0); /* generate

I_Triple[f][5] */
return I_Triple;

end

procedure Compute_I_Triple(index, k, lo_index, lo, hi_index, hi)
begin

if k=0 then return;
if k=1 then

I_Triple[n][1]:=index;
I_Triple[n][2]:=lo_index;
I_Triple[n][3]:=lo;
I_Triple[n][4]:=hi_index;
I_Triple[n][5]:=hi;
n++;
return;

h:=k/2;
f1:=h;
f2:=k-h-1;
I_Triple[n][1]:=h+index;
I_Triple[n][2]:=lo_index;
I_Triple[n][3]:=lo+f1;
I_Triple[n][4]:=hi_index;
I_Triple[n][5]:=hi-f2;
n++;

Compute_I_Triple (index, f1, lo_index, lo, index+h, -1);
Compute_I_Triple (index+h+1, f2, index+h, 1, hi_index, hi);

end

Figure 3. The algorithm for calculating I_Triple.

3. Unique-order interpolative code

We developed a new method called unique-order
interpolative code in which only one I_Triple is required
for whole coding and decoding process of all inverted
lists no matter how many different values of ft present.
Then we introduced loop unrolling to replace I_Triple
with constant values. The numbers of memory access for
I_Triple therefore can be reduced, which accelerate the
whole process.

3.1. Coding method

In an inverted list IL=<ft; id1, id2, …, idft>, ft is the
number of documents containing term t, idk<idk+1 and all
document identifiers are in the range 1…N. A group size g
is first determined. Then according to g, IL is divided into

 gfm /= blocks, each of the first (m-1) blocks has
exactly g document identifiers, and the last block has 1...
g document identifiers. The first document identifier in
each block is defined as boundary pointer, the document
identifiers between boundary pointer and boundary
pointer as inner pointers, and those in last block except
boundary pointer as residual pointers. The boundary
pointers and residual pointers can be regarded as an
inverted list and the models in d-gap technique with high
decoding speed such as γ code and Golomb code to
perform compression, while the inner pointers in each
block are compressed via interpolative coding method.
This new method (Figure 4) contains the constant number
of inner pointers g-1, which makes it possible to use only
one I_Triple to coding and decoding. Compared with
previous interpolative coding method, this new method
can let document identifiers store in a fixed order, why we
called it unique-order interpolative code. When ft ≤ g or
m=1 or g=1, we only apply d-gap technique in
compression because of no inner pointers present.

Consider a general inverted list ILt = <ft; id1, id2,…,
idft> encoded by unique-order interpolative code with
group size g=4, the ILt can be represented as <ft; id1,
id5-id1-g-1, [id2,id3,id4], id9-id5-g-1, [id6,id7,id8],
id13-id9-g-1, [id10,id11,id12], …>, where id1, id5-id1-g-1,
id9-id5-g-1, id13-id9-g-1 are encoded with some prefix-free
code and [id2,id3,id4], [id6,id7,id8], [id10,id11,id12] are
encoded with interpolative code. The example list can be
further represented (using triple representation in Section
2) as
<ft; id1,
id5-id1-g+1,(id3,id1+2,id5-2),(id2,id1+1,id3-1),(id4,id3+1,id5-1),
id9-id5-g+1,(id7,id5+2,id9-2),(id6,id5+1,id7-1),(id8,id7+1,id9-1),
id13-id9-g+1,(id11,id9+2,id13-2),(id10,id9+1,id11-1),(id12,id11+1,id13-1)
,
…>.

IL=<ft; id1, id2, …, idft>
Group size g, and
m=  gf / blocks

id1 id2 … idg idg+1 idg+2 … id2g id2g+1 …… id(m-1)g+1 ……idft

Figure 4. Illustration of unique-order interpolative code

The inner pointers
encoded by
interpolative code

The inner pointers
encoded by
interpolative code

d-gap d-gap d-gapd-gap d-gap

The residual pointers
encoded by d-gap
technique

: block

: boundary pointers

 4

Algorithm unique_order_interpolative_code(IL, f, N, g);
Input: IL (IL[1...f] is a sorted list of document numbers,

all in the range 1...N), and group size g(an integer);
Output: Bitstring (the compressed inverted list IL)
begin

if f ≤ g then // no inner pointers,
// encoded by Golomb code

 fNb /69.0: ×= ;
prev_document_identifier:=0;
for i:=1 to f

append Golomb code (
IL[i]-prev_document_identifier, b) to Bitstring;

prev_document_identifier:= IL[i];
else // encode by unique-order interpolative code

  gfm /= ;
  ))1()1(/(69.0: −×−−×= gmfNb ;

// encode the first boundary pointer
append Golomb_code(IL[1], b) to Bitstring;

// compute I_Triple
n:=0; /* n is a global variable */
I_Triple:=Compute_I_Triple(2, g-1, 1, 1, g+1, -1);

for i:=0 to (m-2) do

 index:=i×g;

// encode boundary pointer
 append Golomb_code(

IL[index+g+1]-IL[index+1]-g+1, b) to Bitstring;

// encode inner pointers
for j:=1 to g-1 do

 append Binary_code(
 IL[index+I_Triple[j][1]],
 IL[index+I_Triple[j][2]]+I_Triple[j][3],
 IL[index+I_Triple[j][4]]+I_Triple[j][5]) to

Bitstring;

// encode residual pointers
for i:=(m-1)×g+2 to f

 append Golomb_code(IL[i]-IL[i-1],b) to Bitstring;

return BitString;
end

Figure5. The unique-order interpolative coding
method (facilitated by Golomb code)
The indexes in I_Triples for [id2,id3,id4], [id6,id7,id8],
[id10,id11,id12] are differentiated by the value of 4 which is
the value of g, while the values of offset are the same.
Therefore, only one I-Triple is required in coding and
decoding, which accelerate the whole process. If we use
Golomb code to encode boundary pointers and residual
pointers, this new method can be shown as the above
program in Figure 5.

3.2. Discussion

Compared with interpolative code, the new method can

avoid the calculations of I-Triples, but a boundary pointer
must be set to every certain number of document
identifiers, which will enlarge the distance among
boundary pointers and reduce compression efficiency.
Therefore, a suitable prefix-free code is required to
encode boundary pointers and residual pointers to
improve compression efficiency.

In this paper, two prefix-free codes are used for
boundary pointers and residual pointers, which are
Golomb code and γ code. Golomb code is very suitable to
encode the d-gaps in unique-order interpolative code,
since the d-gap extracted from every certain amount of
document identifiers is roughly the same length. Using γ
code is also relatively economical choice when the
document identifiers in an inverted list are more
concentrated, which can achieve relatively small d-gaps.

By the way, once the group size g is determined, the
program in Figure 5 can be further accelerated by using
loop unrolling technique to replace I_Triple with constant
values. For example, group size g=4, the following
paragraph program in Figure 5:

// encode inner pointers, 8 times memory accesses
// of array IL and I_Triple are required for each
// inner pointer
for j:=1 to g-1 do

 append Binary_code(
 IL[index+I_Triple[j][1]],
 IL[index+I_Triple[j][2]]+I_Triple[j][3],
 IL[index+I_Triple[j][4]]+I_Triple[j][5]) to

Bitstring;

can be converted to
// loop unrolling, only 3 times memory accesses of
// array IL are required for each inner pointer

 append Binary_code(IL[index+3], IL[index+1]+2,
IL[index+5]-2) to Bitstring;

 append Binary_code(IL[index+2], IL[index+1]+1,
IL[index+3]-1) to Bitstring;

 append Binary_code(IL[index+4], IL[index+3]+1,
IL[index+5]-1) to Bitstring;

In another word, once group size g has been determined,
the I_Triple in loop can be replaced with constant values.
So the 5(=8-3) times memory accesses for each document
identifier can be avoided, which in turn accelerate the
whole process.

4. Coding method analysis

To understand the characteristics of unique-order
interpolative code, we made two experiments. We used
the encoding methods such as Golomb code, skew
Golomb code, batched LLRUN code, interpolative code,
unique-order interpolative code 1 (group size g=4;
boundary pointers and residual pointers by Golomb code),
unique-order interpolative code 2 (group size g=4;

 5

boundary pointers and residual pointers by γ code) in
compression. In the first experiment (Table 2(a)), f =
1,000,000 gaps were drawn from a geometric distribution
and compressed using the six methods. The Golomb code
performs the best, since it is a minimum-redundancy code
for geometric distribution [6]. Compared with other
methods, unique-order interpolative code 1 is not suitable
for geometric distribution. But when N/f increases, the
performance of unique-order interpolative code 1
becomes better and better. When N/f ≤ 2, the results of
unique-order interpolative code 2 are satisfied.

In the second experiment, for each value of N/f the
sequence of f = 1,000,000 geometrically distributed gaps
was broken into chunks of 200 contiguous values. The
chunks were then placed in groups of five. In the first
three chunks of each group, each gap was multiplied by a
factor of 0.1; while in the other two chunks each gap was
multiplied by a factor of 2.35. This process created
artificial cluster of gaps much less than the average, and
about 60% of the values are coded into these clusters, but
certain overall average gap are retained. This is relatively
close to the distribution of real collections. Unique-order
interpolative code has good skew geometric distribution
(Table 2(b)). Compared with other methods, the
compression the compression efficiency of Golomb code
is not as good as others which means the compression can
be improved with clustering property. When N/f ≤ 32, we
would better use unique-order interpolative code 2 to
encode; while N/f > 32, we suggest unique-order
interpolative code 1. Same with Table 2(a), while the
value of N/f becomes larger, the unique-order
interpolative code 1 performs better and better. In Table
2(b), the interpolative code can even achieve better

compression than self-entropy. This is due to interpolative
code does not directly use gap value in encoding, which
instead uses minimal binary code to encode after every
gap is converted to triples.

5. Experiments

An experimental information retrieval system was
implemented to compare various coding methods and
techniques. Experiments have been performed on some
real-life document collections, and query processing time
and the storage requirement for each coding method were
measured.

5.1. Document collection and query generation

Three document collections are used in the
experiments. The statistics are listed in Table 3. Collection
FBIS (Foreign Broadcast Information Service) and LAT
(LA Times), are disk 5 of the TREC-6 collection that is
used internationally as a test bed for research in
information retrieval techniques [11]. The final collection
TREC includes the FBIS and LAT collections.

Since the effective coding methods rely on the
clustering, inverted files are developed for each collection
with Greedy-NN algorithm [12]. We followed the method
[13] to evaluate performance with random queries. For
each document collection, 1000 documents are randomly
selected to generate a query set. All experiments
described in the paper are carried out on Intel P4 2.4GHz
machine with 256MB of DDR memory running the Linux

Table 2. Compression results for geometric and skew geometric distributions of f = 1,000,000 gaps: average bits per gap
(a) Geometric distribution

Average gap（N/f）, Geometric Distribution Coding Methods
1 2 4 8 16 32 64 128 256 512 1024 2048

Golomb code 1.00 2.33 3.30 4.39 5.43 6.45 7.46 8.47 9.47 10.47 11.47 12.47
Skew Golomb code 1.00 2.53 3.51 4.60 5.64 6.66 7.67 8.68 9.68 10.68 11.68 12.68
Batched LLRUN code 1.00 2.27 3.46 4.50 5.53 6.52 7.52 8.52 9.52 10.52 11.52 12.53
Interpolative code 0.00 2.15 3.45 4.59 5.66 6.69 7.70 8.71 9.71 10.71 11.71 12.72
Unique-order interpolative code 1 3.00 4.19 5.13 5.97 6.76 7.53 8.29 9.06 9.89 10.77 11.68 12.77
Unique-order interpolative code 2 0.25 2.33 3.91 5.31 6.64 7.92 9.19 10.45 11.70 12.96 14.21 15.46
Self-entropy 0.00 2.00 3.24 4.35 5.40 6.42 7.43 8.44 9.44 10.44 11.43 12.43

(b)Skew geometric distribution
Average gap（N/f）, Skewed Distribution Coding Methods

1 2 4 8 16 32 64 128 256 512 1024 2048
Golomb 1.40 2.60 3.30 4.29 5.33 6.37 7.39 8.40 9.40 10.40 11.40 12.41
Skew Golomb 1.80 2.31 2.92 3.76 4.80 5.79 6.80 7.82 8.82 9.83 10.83 11.83
Batched LLRUN 1.40 2.31 2.86 3.60 4.61 5.66 6.70 7.71 8.71 9.71 10.70 11.71
Interpolative 0.84 1.53 2.07 2.90 3.97 5.07 6.15 7.19 8.21 9.23 10.23 11.24
Unique-order interpolative code 1 3.60 3.96 4.30 4.80 5.51 6.30 7.11 7.94 8.76 9.60 10.51 11.62
Unique-order interpolative code 2 1.25 1.90 2.47 3.33 4.53 5.88 7.21 8.53 9.81 11.07 12.33 13.60
Self-entropy 0.97 1.77 2.30 3.05 4.06 5.10 6.15 7.18 8.19 9.19 10.19 11.20

 6

Table 3. Statistics of document collections
 Collection

 FBIS LAT TREC

Documents N 130471 131896 262367

Number of terms F 72922893 72087460 145010353
Distinct terms n 214310 168251 317393
Number of doc. identifiers f 28628698 32483656 61112354
Average gap size N·n/f 977 683 1363
Total size(MB) 470 475 945

operating system 2.4.12. The size of hard disk is 40GB,
and the data transfer rate is about 25MB/sec. Other
processes and disk activity were minimized during timing
experiments, that is, the machine was under light-load.

5.2. Compression performance of unique-order
interpolative code

In this experiment, Golomb code is used to code
boundary pointers and residual pointers. As the average
gap size in Table 3 is relatively big, Golomb code was
used according to section 4.

The result is shown in Table 4, and the metric is the
average number of bits per document identifier (BPI),
defined as follows:

.
When group size g=4 and g=8, unique-order interpolative
code achieves good compression. Considering about the
convenience of application, we suggest to select group
size g=4. In the following experiments, without specified
indication, encoding of unique-order interpolative code is
facilitated by Golomb code with group size g=4.

Table 4. Compression performance (BPI) of unique-order
interpolative code with different group size g

Group Size g Collection
 FBIS LAT TREC

g=1 5.27 5.31 5.49
g=2 4.84 4.91 4.99
g=3 4.80 4.89 4.94
g=4 4.66 4.74 4.78
g=5 4.71 4.80 4.82
g=6 4.71 4.79 4.81
g=7 4.65 4.74 4.75
g=8 4.59 4.68 4.69
g=9 4.64 4.72 4.73

 g=10 4.67 4.75 4.76

5.3. Compression performance of different coding
methods

We now show the effectiveness of the different coding
methods. The metric is BPI defined in Section 5.2. The
results (Table 5) showed that: 1.Ihe compression
efficiency of γ code and Golomb code is relatively low

because of the simple models they use; 2.The
compression efficiency of batched LLRUN code, skew
Golomb code, interpolative code, unique order
interpolative code is relatively good because they use
clustering to compress; 3.It is confirmed that unique-order
interpolative code can take advantage of clustering
property. Using clustering, the compression efficiency of
unique-order interpolative code is only lower than
interpolative code.

Table 5. Compression performance of different
coding methods

 CollectionCoding Methods
FBIS LAT TREC

γ code 5.38 5.63 5.63
Golomb code 5.27 5.31 5.49
Batched LLRUN code 4.63 4.78 4.84
Skew Golomb code 5.04 5.07 5.10
Interpolative code 4.58 4.65 4.62
Unique-order interpolative code 4.66 4.74 4.78

5.4. Search performance of different coding
methods

The query processing time includes (1) disk access
time, (2) decompression time, and (3) document
identifiers comparison time. According to the
experimental results, disk access time and decompression
time occupy more than 90% of query processing time.
And document identifier comparison time is not affected
by coding method. Therefore performance metric is
defined as

Processing Time (PT) = Disk Access Time (AT) +
Decompression Time (DT).

Based on Execution Time of Golomb code, speed-up (SP)
of each test collection in various coding methods was
calculated.

In this experiment, all decoding mechanisms has
undergone the best process as following: 1.Remove
nested function calls; 2.Replace subroutines with macros;
3.Replace log function with fast bit-shift; 4.Set compiler
optimization flag, such as –O, -O1, -O2; 5.Take advantage
of 32-bit CPU characteristics: use 32-bit long register to
hold and process compressed data.

Except of the above process, the Huffman code of
batched LLRUN code uses canonical prefix codes to
accelerate the process [14]. While interpolative coding
method uses certain well-known technique to convert
recursive process to non-recursive process, but it still
requires an explicit stack in practice [10].
The results are shown in Table 6. Compared with other
traditional encoding methods such as batched LLRUN
code, skew Golomb code, interpolative code, the
processing time of γ code, Golomb code is shorter.
Although the processing time of γ code is shorter than
Golomb code, its compression efficiency in large-scale

.
 identfiersdocument totalThe

file inverted compressed theof size The
f

BPI =

 7

databases such as FBIS, LAT, TREC is worse than Golomb
code. Considering about search performance and
compression ratio in IRS, Golomb code is used to coding
and compression of inverted files. And the query
processing time of unique-order interpolative code is
shortest.

Table 6. Average query processing time of different
coding methods

Collection

Coding Methods

FBIS LAT TREC
γ code PT(us) 2596 2662 4800
 SP 1.07 1.07 1.08
Golomb code PT(us) 2789 2851 5174
 SP 1.00 1.00 1.00
Batched LLRUN code PT(us) 3137 3212 5700
 SP 0.89 0.89 0.91
Skew Golomb code PT(us) 2841 2960 5192
 SP 0.98 0.96 1.00
Interpolative code PT(us) 4214 4362 7687
 SP 0.66 0.65 0.67
Unique-order interpolative code PT(us) 2493 2494 4603
 SP 1.12 1.14 1.12

The results in Table 7 show that the ratio of disk access
time to decompression time occupied is relatively equal
for Golomb code and γ code. Therefore, a good encoding
method must be characterized by high compression
efficiency as well as high decoding velocity. The unique
interpolative code is such kind of good method. So it can
take place of Golomb code in IRS.

Table 7. The ratio of disk access time and
decompression time of different coding methods

Collection

Coding Methods

FBIS LAT TREC
γ code AT(%) 43 44 45
 DT(%) 57 56 55
Golomb code AT(%) 46 46 47
 DT(%) 54 54 53
Batched LLRUN code AT(%) 36 36 37
 DT(%) 64 64 63
Skew Golomb code AT(%) 39 38 40
 DT(%) 61 62 60
Interpolative code AT(%) 24 23 25
 DT(%) 76 77 75
Unique-order interpolative code AT(%) 43 43 44
 DT(%) 57 57 56

6. Conclusion

This paper proposes a novel coding method,
unique-order interpolative code, for compressing inverted
files in IRSes. The new method is much easier to
implement than the interpolative code, however, it is also
suited to situations in which clustering is anticipated, and
experiments with the inverted files of three test databases

show the method to yield superior performance for both
fast querying and space-efficient indexing. This work
shows a feasible way to build a fast and space-economical
IRS.

References

[1] W. B. Frankes and R. Baeza-Yates, Information Retrieval:
Data Structures and Algorithms. Prentice Hall, Englewood
Cliffs, NJ, 1992.

[2] I. H. Witten, A. Moffat, and T. C. Bell, Managing
Gigabytes: Compressing and Indexing on Documents and
Images. Morgan Kaufmann, San Francisco, California,
second edition, 1999.

[3] A. Moffat and J. Zobel, "Parameterised compression for
sparse bitmaps," Proceedings of 15th annual international
ACM-SIGIR Conference on Research and Development in
Information Retrieval, pp. 274-285, Copenhagen, June
1992. ACM Press, New York.

[4] P. Elias, "Universal codeword sets and representations of
the integers," IEEE Transactions on Information Theory,
Vol. IT-21, No. 2, pp. 194-203, 1975.

[5] S. W. Golomb, "Run Length Encoding," IEEE Transactions
on Information Theory, Vol. IT-12, No. 3, pp. 399-401,
1966.

[6] R. G. Gallager and D. C. Van Voorhis, "Optimal source
codes for geometrically distributed alphabets," IEEE
Transactions on Information Theory, Vol. IT-21, No. 2, pp.
228-230, Mar. 1975.

[7] J. Teuhola, "A Compression method for clustered
bit-vectors," Information Processing Letters, Vol. 7, No. 6,
pp.308-311, Oct. 1978.

[8] A. S. Fraenkel and S. T. Klein, "Novel Compression of
sparse bit-string－Preliminary report," in: A. Apostolico
and Z. Galil, editors, Combinatorial Algorithms on Words,
Vol. 12, NATO ASI Serials F, pp. 169-183, Berlin, 1985.
Springer-Verlag.

[9] A. Moffat, and L. Stuiver, "Binary interpolative coding for
effective index compression," Information Retrieval, Vol. 3,
No. 1, pp. 25-47, July 2000.

[10] A. M. Tenenbaum, Y. Langsam, and M. J. Augenstein, Data
structures using C. Englewood CLiffs, N.J. 07632,
Prentice-Hall, 1990.

[11] E. Voorhees, and D. Harman, "Overview of the sixth text
retrieval conference (TREC-6)," Proceedings of the 6th
Text Retrieval Conference, pp. 1-24, 1998. NIST Special
Publication 500-240.

[12] Wann-Yun Shieh, Tien-Fu Chen, Jean Jyh-Jiun Shaun and
Chung-Ping Chung, "Inverted file compression through
document identifier reassignment," Information Processing
and Management, Vol. 39, No. 1, pp. 117-131, 2003.

[13] A. Moffat and J. Zobel, "self-indexing inverted files for fast
text retrieval," ACM Transactions on Information Systems,
Vol. 14, No. 4, pp. 349-379, 1996.

[14] A. Turpin, "Efficient prefix coding," PhD thesis, University
of Melbourne, 1998.

 8

計畫成果自評
 本計畫規劃了一系列的研究，探討如何以最小的資源成本建置符合需求的叢集式資訊檢索
系統，並透過動態的資源管理機制，讓系統在面對各種不同的外界環境時，能夠動態地調整系

統的資源配置，將系統的資源發揮最大的效能，期以最小的資源成本提供使用者一個高效能和

高服務品質的資訊檢索環境。在本年度的研究中，為了能夠有效增進系統效能與儲存空間利用

率，我們發展了一個新的轉置檔案壓縮機制。實驗證明此一壓縮機制的壓縮率好，解碼速度快，

並且可以支援 self-indexing strategy，使得資料查詢的處理速度大幅的提升。此一研究成果已經
在 ITCC2004國際會議上發表，並投稿到 Information processing and management國際期刊等待
審查。未來在此研究基礎上，本計畫將持續探討叢集式資訊檢索系統的負載、快取與資料管理

方法，期能以最小的成本滿足給定的執行效能需求。並發展一資訊檢索雛型系統，實作並驗證

所提各項技術之可行性。

