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Due to tremendous advances in multimedia communication and the aggressive expansion of
Internet in the past a few years, the MPEG standards activity, which aims at establishing a
comprehensive specifications for multimedia object construction, manipulation, editing and
delivery, receives a lot of attentions. Our goals in this project are to (1) investigate the
MPEG-4 Systems and its IPMP extension, and implement the extension on the MPEG-21 Test
Bed, (2) investigate digital watermarking and crypto combined systems, and apply them to the
multi-layer coding structure, and (3) study and design interframe wavelet coding algorithms,
improve its motion estimation part, and propose the scalable motion techniques. The MPEG-4
IPMP system has been included as a part of the MPEG-21 Multimedia Test Bed. Our inter-
frame wavelet scheme has been submitted to the MPEG committee in response to the scalable
video coding Call-for-Proposal. Also, we continue participating in the core experiments and
refinement of the MPEG interframe wavelet reference model.

Keywords: Multimedia communication, MPEG-4, IPMP, MPEG-21, Digital Watermarking,
Crypto, Multi-layer Coding, Interframe Wavelet
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ABSTRACT!

An enhanced entropy coding scheme is incorporated
into the interframe wavelet coding architecture in this
paper. Interframe wavelet coding has the advantage of
SNR, temporal, and spatial scalability, and is a potential
candidate for the on-going MPEG-21 scalable video
coding (SVC) standard. Motion-Compensated Temporal
Filtering (MCTF) and Wavelet Transform Coding are
two most essential components in the interframe wave-
let coding architecture. The arithmetic entropy subsys-
tem is an indispensable element in Wavelet Transform
Coding. It produces the final output bitrate. In this paper,
we modify the entropy coding syntax/scheme originally
specified in the MPEG SVC Core Experiment (CE)
reference software. We observe some bit savings of this
technique in our simulations based on the conditions
specified by the MPEG core experiments; however, the
full potential of this technique is yet to be further ex-
plored.

1. INTRODUCTION

Video compression is an essential element in multime-
dia applications. Conventional video coding systems,
including MPEG-1, MPEG-2, H.261 and H.263 interna-
tional standards, employ the so-called hybrid coding
structure. In these schemes, the reconstructed previous
frame is used to predict the current frame after motion
compensation.

The on-going MPEG-21 Scalable Video Coding
(SVC) standard employs a new approach different from
the hybrid coding structure, Motion-Compensated Tem-
poral Filtering (MCTF) with Wavelet Transform Cod-
ing, to achieve SNR, spatial, and temporal scalability.
Ohm first proposed a motion-compensated t+2D coding
structure [1], as shown in Figure 1 [2]. The major dif-
ference between the hybrid coding and the t+2D coding
is that the latter does not contain the closed-loop (inter-
frame) DPCM. In addition, the t+2D coding scheme
fulfills for the scalable video coding requirements. One

! This work is supported in parts by National Science Council
(Taiwan, ROC) under Grant NSC 92-2219-E-009-003 and
OES, Industrial Technology Research Institute (Taiwan, ROC)
under Grant 93B-05.

of the improved and highly efficient realizations of this
concept is the interframe wavelet video coder proposed
by Woods and his co-workers [2]. This scheme is called
Motion Compensated Temporal Filtering — Embedded
Zero Block Coding (MCTF-EZBC or MC-EZBC). Its
architecture is shown in Figure 2 [4][6]. Essentially, the
same basic structure was adopted by the MPEG com-
mittee in March 2004 as the first reference model of
SVC.

Video
Input “ID N . | Entropy Bitstream
Video . " Q | Encoder
Video
Output Entropy Bitstream
. N - Y le
Video BECI Q N Decoder
Figure 1.  Block diagram of t+2D transform coding system.
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Motion Field
Decoding

The interframe wavelet video coder.

Decoder

Figure 2.

In this paper, we focus on improving the entropy
coding scheme in the aforementioned interframe wave-
let coding structure. As illustrated in Figure 1 and
Figure 2, no matter how the motion compensation is
performed in SVC, entropy coding is a must to further
reduce the bits in the output bitstream.

The motivation behind our scheme is the observation
of clusters of “1”-bits on the wavelet coefficient bit-
planes. Thus, we develop our entropy coding based on
the quadtree concept. At the end, we compare the per-
formance between our proposed scheme and that in [7]
and [8], and show a somewhat better performance of the
proposed scheme.

This paper is organized as follows. In Sec. 2, we out-
line the motivation behind our proposed scheme. The
conventional 3D EBCOT technique is summarized in



Sec. 3. In Sec. 4, we describe the coding process of new
entropy coding scheme by modifying the existing 3D
EBCOT. The changes on CE software for integrating
the proposed algorithm are described in Sec. 5. Simula-
tion results are shown in Sec. 6, in which we compare
the results with the existing scheme. We conclude this
paper in Sec. 7.

2. MOTIVATION

In the SVC core experiment one software, the 3D
EBCOT entropy coding procedure is applied after
MCTF and spatial transform [7][8]. We observe that
high energy wavelet coefficients often cluster together
[10][9]. In order to save coding bits, we propose a
modified coding procedure as described in Section 3.
Essentially we construct another layer that records the
bitplane locations of the Significant Bits (SB) of all
coefficients. We observe bit savings of this technique in
our simulation; however, the full potential of this tech-
nique is yet to be further explored.

3. 3D EMBEDDED BLOCK CODING WITH
OPTIMAL TRUNCATION SCHEME

In the MPEG SVC core experiment reference software
[8], the coefficients are coded by the 3D Embedded
Block Coding with Optimal Truncation (3D EBCOT)

process after the temporal and spatial subband transform.

Each subband, generated by temporal and spatial trans-

forms, is divided into 3D codeblocks, which is coded

independently. Next, the entropy coding module is ap-
plied to these codeblocks. It encodes each bitplane se-
quentially using context-based arithmetic coding.

Three coding operations are employed to encode the
samples in a bitplane: [8] [8]

» Zero Coding (ZC): When a sample is not yet sig-
nificant in the previous bitplane, this primitive op-
eration is utilized to code the new information of the
sample. The definition of “significance” is described
in Sec. 4.

> Sign Coding (SC): Once a sample becomes signifi-
cant in the current bitplane, Sign Coding operation is
performed to encode the sign of the sample. Sign
Coding also utilizes an adaptive context-based
arithmetic coder to compress the sign symbols.

» Magnitude Refinement (MR): Magnitude Refine-
ment is employed to encode the new information of
a sample, which has already become significant in
the previous bitplane.

For each bitplane, the EBCOT coding procedure
consists of three distinct passes, applied in turn. The
three passes are:

» Significant Propagation (SP) pass: In this pass,
samples which are not yet significant but have sig-
nificant neighbor sample(s) are processed.

» Magnitude Refinement (MR) pass: Significant
samples are coded in this pass.

» Normalization pass: During this pass, those sam-
ples which are not yet coded in SP and MR passes
(insignificant samples) are coded. So zero coding
and sign coding primitives are applied in this pass.

4. PROPOSED ENTROPY CODING SCHEME

We propose the so-called SB-reach method in this Sec-
tion. In the 3D EBCOT described in Sec. 3 (also in the
core experiment software [8]), all wavelet coefficients
are initially “insignificant”. A coefficient becomes “sig-
nificant” when its non-zero bit is first found. The first
non-zero bit will thus be called Significant Bit (SB) (of
a coefficient). For each bitplane, we construct another
binary bitplane — so-called SB-reach plane. As shown in
Figure 3, a single sample in the SB-reach plane repre-
sents a square mapping block of n by n coefficients. The
size of the SB-reach plane thus decreases as its repre-
senting mapping block becomes larger. The binary sam-
ple on an SB-reach plane is set to 1, if its square map-
ping block contains one or more significant coefficients.
On the other hand, if the binary sample on the SB-reach
plane is O, it means that all its associated bits in the co-
efficient bit plane are zero.

kit plane
Figure 3.  One binary sample on the SB-reach plane is
associated with 4x4 mapping block bits.

In this modified coding process, we first construct
all the SB-reach bhit planes up to the selected “SB-reach
depth”, as illustrated in Figure 4. Each SB-reach bit-
plane is associated with one bit plane of the original
coefficients. We first encode an SB-reach bit plane be-
fore encoding its associated coefficient bit plane using
the core experiment software (CES) procedure. In en-
coding an SB-reach plane, we perform the Significant
Propagation pass and the Normalization pass following
the scanning order in CES. If a sample is classified sig-
nificant in a previous SB-reach plane, it must be a “1”
bit in the current SB-reach plane and thus is not coded.

After coding one SB-reach plane, we code its asso-
ciated coefficient bitplane. The coefficients on the bit
plane are not coded, if its corresponding SB-reach plane
bit is zero (insignificant). If a bit on the SB-reach plane
is 1, and then its associated coefficient mapping block
bits are coded in the order shown in Figure 5. We per-



form three coding passes as the original CES does on
these coefficient bits. One example is given in Figure 6
to illustrate the procedure in our proposed algorithm.
The “coding bits” in this figure are the bits (samples) to
be coded by the context-based arithmetic coder.
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Figure 4.  Illustration of “SB-reach depth”.

bit plane

Figure 5.  The encoding process of an SB-reach plane and
its associated bitplane.
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Figure 6.  Anexample of coding steps with our algorithm.

With the method described above, we try all combi-
nations of mapping block size and SB-reach depth, and
we then compare the resulting coded bits of all combi-
nations. The best combination of mapping block size
and SB-reach depth is retained and coded.

5. CHANGES ON CE SOFTWARE FOR
INTEGRATING THE PROPOSED ALGORITHM

On the top of the core experiment software, we changed
some syntax and decoding procedure as follows. We
add the SB-reach plane architecture to the original 3D
EBCOT. The information for the mapping block size,
the SB-reach plane depth, and the SB-reach planes is
added to the original syntax as shown in Figure 7.

bit plane(n) it plame(n-1) Yit planei()
e | ) @ Q| DD Q[ e [eXeX©)
it plane(n) hit plane{n-1) it plane(0)

wions (DO OB Q@ DO = [clelels

{1y coding bits enecae by Significance Propagation Pass
@ - coding hits generate by Magnitude Refinernent Pass
{3+ coting bis generae by Hormalizstion Pass

{0y Ifermation kit of the SE-seach plane

{5+ Mapping bock sizeand SB-reach depth

Figure 7.
syntax.

Changes between the original and the proposed

Here are some definitions in the newly added terms.

» Mapping_blk_size: The mapping block size infor-
mation is defined in Figure 8. Bit pattern “00” = size
4x4; “01” = 8x8; “10” = 16x16; and “11” = 32x32.

» SB-reach depth: The depth of SB-reach planes. Bit
pattern “00” = depth 2; “01” = depth 3; “10” = depth
4; and “11” = depth 5.

» SB_plane: Record SB-reach bits of the correspond-
ing bitplane.

acoefficient f MSB_phne 7 [ —
w5
g ok s
\_izmmumm - /
Mapping_block_sizz=1  Mapping_hlock_size=2. Mapping_block size=3

Figure 8.  Square mapping block size.

6. SIMULATION RESULTS

We evaluate the performance of our algorithm by meas-
uring the bitrate savings between the proposed algo-
rithm and the core experiment software. We follow the
core experiment (CE) specifications to conduct a series



of experiments and to test the effectiveness of the pro-
posed algorithm. Eight sequences are tested, namely,
CREW, HARBOR, SOCCER, CITY, BUS,
FOOTBALL, FOREMAN, and MOBILE, under differ-
ent spatial, temporal and bitrate test points. Spatial reso-
lutions are QCIF, CIF, and 4CIF, temporal resolutions
are 15, 30 and 60 frame/sec, and bitrates vary from 96
kbit/sec to 3 Mbit/sec. The objective image quality, or
the PSNR values, are almost the same between our re-
sults and the results from the core experiment software.
Besides, the subjective qualities are almost identical.
Therefore, we compare the resulting bits generated by
our algorithm and those by the CE reference software.
Some savings in bits with our algorithm are observed.

In Table | to Table Ill, the bitrate savings are ex-
pressed in percentage. In these tables, each entry is the
total bitrate saving accumulated from the 1% bitplane to
the current one. For example, the cumulative biplane 2
means the total bits saved for the 1%, 2" and 3" bit-
planes together. The positive numbers denote bitrate
savings, while the negative numbers mean bitrate loss.
The LL, LH, HL, and HH bands in these tables are the
spatial subbands of all spatial resolutions accumulated.

Table I. Bitrate savings (in percentage) for the
FOREMAN and BUS sequences of the H frames at tem-
poral levels 1 and 2.

Cumulative] FOREMAN BUS

bitplane 1| JLH [HL [HH JLL JLH [HL [HH
2 0.22% | 0.17% | 0.27% | 0.18% |[-1.86% | -0.63% | -0.59% | -0.17%
3 0.67% | 0.45% | 0.51% | 0.37% || 0.36% | 0.51% | 0.30% | 0.45%
4 0.46% | 0.25% | 0.28% | 0.23% || 0.18% | 0.23% | 0.17% | 0.22%

Table Il.  Bitrate savings (in percentage) of the H

frames at temporal levels 3 and 4.

Cumulative| FOREMAN BUS

bitplane 1 JLH [HL [HH JLL JLH [HL [HH
2 1.04% | 1.04% | 1.11% | 0.91% (|-0.71% | -0.32% | -0.49% | 0.10%
3 1.47% | 1.26% | 1.21% | 1.20% [ 0.53% | 0.61% | 0.29% | 0.68%
4 0.81% | 0.66% | 0.59% | 0.83% || 0.27% | 0.30% | 0.14% | 0.37%

Table I11.  Bitrate savings (in percentage) at the bot-

tommost temporal level.

Cumulative|FOREMAN BUS

bitplane 1| JLH [HL [HH JLL JLH [HL [HH
2 -0.05% | 0.91% | 0.39% | 0.97% | 0.31% | 0.28% |-0.06% | 0.05%
3 0.13% | 0.13% | 0.99% | 1.03% || 0.24% | 0.47% | 0.24% | 0.61%
4 0.14% | 0.80% | 0.67% | 0.68% || 0.15% | 0.25% | 0.10% | 0.30%

As shown in the simulation results regarding to the
output bitrates, our algorithm performs somewhat better
than the CE software. In general, we gain more at the
cumulative biplane 3. Particularly, the HH bands at
higher temporal levels perform better. Even better re-
sults may be obtained by selecting good context and
probability models for arithmetic coding. Also, we
should tune carefully the parameter values in our algo-
rithm.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an enhanced entropy coding
scheme to further increase the compression efficiency of
the interframe wavelet coding algorithm. We modify the
entropy coding unit by adding an extra SB-reach layer.
Several test conditions specified by the core experiment
are tested. So far, our proposed algorithm has somewhat
better performance at low- to mid-bitrates comparing to
the MPEG Core Experiment (CE) reference software.
Further parameter tuning should provide better results,
and the full potential of this technique is yet to be fur-
ther explored.
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ABSTJBACT

An enhanced motion estimation scheme is incorporated
into the interframe wavelet coding architecture in this pa-
per. Interframe wavelet coding has the advantage of SNR,
temporal, and spatial scalability, and is a potential candi-
date for the on-going MPEG-21 scalable video coding
standard. Motion-compensated temporal filtering (MCTF)
is one of its essential components. Therefore, motion es-
timation plays an important role in deciding the coding
performance. In this paper, we modified the motion esti-
mation syntax/scheme originally specified in the MPEG
Advanced Video Coding (AVC) and use it in the inter-
frame wavelet structure. Besides, the techniques of I-block,
bi-directional motion estimation, A-value adjustment and
motion information partitioning are employed. Simulation
results show very promising performance particularly on
subjective quality.

1. INTRODUCTION

Video compression is an essential element in multime-
dia applications. Conventional video coding systems, in-
cluding MPEG-1, MPEG-2, H.261 and H.263 interna-
tional standards, employ the so-called hybrid coding
structure. In these schemes, the reconstructed previous
frame is used to predict the current frame after motion
compensation.

Different from the aforementioned schemes, Ohm
proposed a motion-compensated t+2D frequency coding
structure [1]. The major difference between the hybrid
coding and the t+2-D coding is that in the latter case, it
does not contain the closed DPCM loop. In addition, the
t+2-D coding is suitable for scalable video coding. One of
the successful example of this concept is the interframe
wavelet video coder proposed by Woods and his
co-workers [2][3][4]. This scheme is called Motion Com-

¥ This work is partially supported by National Science Council
(Taiwan, ROC) under Grant NSC 92-2219-E-009-008 and OES,
Industrial Technology Research Institute (Taiwan, ROC) under
Grant C92144.

pensated Temporal Filtering — Embedded Zero Block
Coding (MCTF-EZBC or MC-EZBC). The architecture of
the interframe wavelet video coder is shown in Figure 1.

In this paper, we focus on improving the motion esti-
mation scheme in the described interframe wavelet coding
structure. At the end, we compare the performance be-
tween our proposed scheme and that in [3], and show the
effectiveness of the proposed scheme.*

This paper is organized as follows. In Section 2, we
outline the motion estimation syntax/scheme in AVC. In
Section 3, we incorporate the motion estimation scheme
described in Section 2 into the interframe wavelet coding
structure. Various techniques have been used to improve
the subjective image quality such as I-block, bi-directional
motion estimation and A-value adjustment. Motion infor-
mation partitioning is described in Section 4. Simulation
results are shown in Section 5, in which we compare the
results with the existing scheme.

MCTF Spatial S I
Inﬁ (analysis) H Analysis H EZBC H Packetlzer’—'
Video
Motion Motion Field Encoder
Estimation Encoding
Output
Video i i
yUaeo | MCTF Spatlal_ EZBC Depacketi
(synthe- Synthesis zer
i
Motion Eield Decoder
Decoding

The interframe wavelet video coder.

Figure 1.
2. MOTION ESTIMATION IN AVC

Motion estimation plays an important role in interframe
wavelet coding. In this paper, we replace the hierarchical
motion estimation algorithm in [3] by a modified version
of the motion estimation scheme in the advanced video
coding (AVC) standard [5].

¥ We would like to thank Woods and Chen for providing us the
source codes of their MC-EZBC algorithm. The experiments in
this paper are based on our modified version of these codes.



The motivation is to improve the motion compensated
filter in [3]. This is because in the interframe wavelet
coding structure, the error between the original and recon-
struction frames accumulate due to inaccurate motion es-
timation. In addition, the motion-compensated temporal
filtered frames are reference pictures in temporal scalabil-
ity. They are decoded pictures shown in the temporally
down-sampled playback.

The motion estimation scheme in AVC has three main
parts: (i) tree structured motion compensation, (ii) sub-pel
motion vectors, and (iii) motion vector prediction. They
are outlined below.

2.1. Tree structured motion compensation

The basic unit in AVC motion estimation is the 16x16

macroblock structure. The luminance part of each mac-
roblock can be divided into four types of sub-macroblocks,
namely, 16x16, 16x8, 8x16, and 8x8 .Besides, the
8x8 sub-macroblocks can further be partitioned into
8x8, 8x4, 4x8,and 4x4 blocks.

2.2. Sub-pel motion vectors

After completing motion search, the border of the refer-
ence picture is used for padding, and the full-pel motion
estimation finds the best-matched motion vector and the
mode with the least cost. After the full-pel search, the in-
terpolated picture is used for }; -pel and ), -pel motion

search.

2.3. Motion vector prediction

The motion vector of one block is highly correlated with
those of its neighboring blocks. This phenomenon be-
comes more apparent when the block sizes get smaller.
Thus, we can make use of the left, upper-left, upper, and
upper-right blocks to reduce the correlation among
near-by motion vectors.

3. ENHANCED MOTION ESTIMATION FOR
MCTF

We adopt the afore-mentioned motion estimation
scheme for the MCTF component [6][7] in MC-EZBC [3].
Temporal subband decomposition is achieved by applying
high-pass and low-pass filtering along the temporal axis.
Motion compensated techniques are necessary to produce
better compression performance by effectively removing
the temporal redundancy.

3.1 MCTF structure

The MC-EZBC coder processes one group of picture
(GOP) at a time. Each GOP contains 2" frames, where n
equals to the levels of temporal subband decompositions
in one GOP. The temporal subband decomposition proc-
ess is performed by first constructing the motion vector

map between two consecutive frames, and then the motion
compensated temporal filtering (MCTF) is applied to
these two frames to generate the temporal high- and
low-pass frames. The temporal low-pass frames are
grouped as another sub-set of GOP, and these frames are
further temporally decomposed again. Decomposition
process, illustrated in Figure 2 [8], is iterated until there is
only one temporal low-pass frame, and a temporal filter-
ing pyramid is thus constructed.

vctr € HL‘H‘ﬁHL‘*‘ﬁf“ﬁf“ﬁf“ﬁf“ﬂ\Gop
Temporal (Group of Pictures)

Level 1 Corresponding to

temporal level=4
G G = = =

decomposition
Temporal
Level 2
vcte € P— —
Temporal
Level 3

mcTF €

D Temporal Low-pass frame
- Temporal High-pass frame

—_— -

= 1 = Frames that remain after

Temporal 1 1 1 temporal decomposition
J -

Level 4 1

I~

Figure 2. Temporal filtering pyramid

3.2 Lifting scheme temporal filtering

The temporal filtering operation in interframe wavelet
coding is the so-called lifting scheme [9], which can
achieve perfect reconstruction even when sub-pel motion
estimation is used. Before temporal filtering, we find the
connection relationship of pixels between the reference
and the predicted frames. Then we follow the motion tra-
jectory to generate temporal low-pass ( L[m,n]) and
high-pass ( H[m,n]) frames. Figure 3 [3] shows the state
of each pixel defined in MCTF as specified by Eqs.(1)-(5).

After the detection of the connection state of each
pixel, Eq. (1) is used to generate the high-pass frame and
Eq. (2) to generate the low-pass frame for connected pix-
els, and Eq. (3) is used for unconnected pixels [4].

H[m,n]:(A[m,n]—g[m—dm,n—d,,])/ﬁ (1)
L[m,n]zI-NI[m+dm,n+dn]+\/§B[m,n] (2)
L[m,n]: \/EB[m,n] ©))

At the decoder, we can do the same interpolation on A and
reconstruct 4 exactly by using Eq. (4) for connected pixels
and the inverse process in Eq. (3) for unconnected ones if
there is no quantization error.

B[mm,n]=(L[m,nn]—ﬁ[m+dm,n+dn])/ﬁ (4)
Then, 4 can be reconstructed by Eq. (5).
A[m,n]=«/§H[m,n]+§[m—dm,n—d"] (5)

The interpolator we use is the one for generating }; -pel
accuracy reference frame in AVC motion estimation.
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3.3 I-block and bi-directional motion estimation

The concepts of I-block and bi-directional motion es-
timation for MCTF were described in [3]. We adopted
these concepts with some modifications in our MCTF
scheme.

The temporal low-pass frame is generated by Eqgs. (2)
and (3) based on the state of connection of each pixel.
Typically, motion compensation works well on the con-
nected pixels. However, it is possible to have connected
blocks with a poor match after motion estimation. These
blocks tend to produce artifacts in the temporal low-pass
frame, which lead to poor visual quality for temporal
scalability. These blocks are forced to be unconnected as
proposed in [3][4].

Our I-block size is 16x16. As shown in Figure 3, let
A[m,n] be the block with connected state at the location
(m,n) of the A frame and B[m-d,, n-d,] be the mo-
tion-compensated block with motion vector (d,,,d,) in the
B frame. We compute the variance of these two blocks,
and choose the minimum as V., If the mean squared
prediction error between these two blocks is larger the
threshold F*V i, this block is declared as an unconnected
block, where F is an adjusting parameter. Based on our
experiments, F is taken around 0.7. Figure 4 shows the
subjective improvement (left upper corner, for sample)
using the I-blocks.

Furthermore, an A frame block may find a better
match (motion compensation) from the previous B frame.
Thus, frame A has both forward and backward motion
vectors. The use of bi-directional motion estimation re-
duces high-pass frame magnitude and thus increases cod-
ing efficiency.

3.4 Motion cost function adjustment

The rate-distortion cost function, J=D+AR, is used to
decide the best motion vectors in the AVC motion estima-
tion, in which D is the frame difference, and R is the esti-
mated motion vector coding bits. However, as the tempo-
ral level increases in MCTF, the energy of temporal

low-pass frame is also increased. Therefore, the A value
should be increased to maintain a constant rate-distortion
relation at the higher temporal levels. Therefore, the 4
value is increased by a factor of /2 for each additional
temporal level.

(a) (b)
Figure4. The 2™ temporal low-pass frame:
I-block (b) with I-block.

(a) without

4. MOTION INFORMATION PARTITIONING

In [8], Hang and Tsai proposed the concept of motion
information scalability for MC- EZBC. In this paper, we
adopted this concept with some modifications to partition
the motion information generated by the AVC inter-
frame-prediction in MCTF. If the required bitrate is very
slow, the extractor may fail to extract the bitstream be-
cause the motion information bits are larger than the
specified bits. Also, at low rates, we may want to save
some bits from motion information and use these bits for
wavelet coefficients to achieve acceptable quality. There-
fore, we partition motion information after motion estima-
tion according to the steps below.

Step I: Do 16x16 block size motion search with inte-
ger-pixel accuracy. The generated motion vec-
tors are the base layer motion vectors.

Step 2: Do 16x16 and 8x8 block size motion search with
1/2-pixel accuracy. The difference between
these motion vectors and the base-layer is the
first enhancement layer motion vectors.

Step 3: Do all sub-block size motion search with 1/4-
pixel accuracy. The difference between these
motion vectors and the base-layer plus the
first-enhancement-layer is the second enhance-
ment layer motion vectors.

Step 4: Encode the above three layers motion information
using CABAC separately.

If the required bitrate is too small, the extractor will
drop one or two enhancement layers according to the
given conditions. Furthermore, if one likes to extract the
spatially down-sampled bitstream, the extractor can also
drop proper the enhancement layers. When the codec
scalability range is small, we can reduce the enhancement
layers to one to save bits in encoding motion vectors.

The proposed algorithm can provide an acceptable
video quality at very low bit rates, especially for



high-motion cases. However, if not all the motion vectors
are used in reconstruction, the “mismatch errors” would
occur. That is, the residual image data calculated at the
encoder are based on the complete set of motion vectors
but only “partial” motion vectors are available at the de-
coder if they are truncated. This problem will be further
studied.

Original Proposed
Base layer
Original
Y4 pixel accuracy
Proposed + 1stenh. layer

Base layer: integer pixel accuracy
1stenh. layer: ¥2 pixel accuracy
2nd enh. layer: ¥, pixel accuracy

2nd enh. layer
Figure 5.  The base and enhancement layer motion vectors.
4. SIMULATION RESULTS

We perform two sets of simulations to show the effec-
tiveness of the algorithm proposed in this paper. In our
MCTF, we adopt both the motion vector (MV) syntax and
the arithmetic coding for MV in AVC. We compare the
results with those in [3]. We found improvements both
objectively and subjectively but the subjective perform-
ance is more important because the final judgment of an
image processing algorithm is the subjective picture qual-
ity.

In the MPEG scalable video coding call-for-proposal
[10], the MPEG committee specifies three main test con-
ditions. For the test sequence Bus_CIF, one test point in
Test 2b is 30 frames per second (fps) at 512kbps [10].
The subjective quality of these two coding schemes at this
test point is compared. AVC has a very complicated inter-
frame prediction scheme, and the motion block size could
be one of seven block types. Therefore, the motion esti-
mation is very accurate. As we can see from Figure 6, the
proposed coding scheme has a better subjective quality.
But the PSNR value is not much changed.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose an enhanced motion estima-
tion scheme to improve the existing interframe wavelet
coding algorithm (MC-EZBC). We modify the motion
estimation syntax/scheme specified in AVC to fit into the
motion compensated temporal filtering (MCTF) structure.
Various additional techniques such as I-block,
bi-directional motion estimation and A-value adjustment
are incorporated. Also, we propose the motion information
partitioning technique for AVC interframe-prediction to
improve coding performance at low rates. Preliminary
simulation results indicate that this new motion estimation

algorithm has improved the subjective image quality.
Further parameter tuning should provide even better re-
sults.
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(a) (b)
Figure 6.  Subjective quality of the 2™ frame of Bus_CIF.yuv

sequence at 512kbps with GOP=4: (a) proposed scheme,
(b) MC_EZBC [3].
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Abstract. Intellectual Property (IP) protection is a critical element in
a multimedia transmission system. Conventional IP protection schemes
can be categorized into two major branches: encryption and watermark-
ing. In this paper, a structure to perform layered access protection by
combining encryption and robust watermarking is proposed and imple-
mented. By taking advantage of the nature of cryptographic schemes
and digital watermarking, the copyright of multimedia contents can be
well protected. We employ scalable transmission over the broadcasting
environment, and the embedded watermark can be extracted with cer-
tain confidence measure, while the next-layer secrets can be perfectly
decrypted and derived. This proves the effectiveness of the proposed
structure.

1 Introduction

With the widespread use of multimedia broadcasting, the digital media, includ-
ing images, audio and video clips, are easily acquired in our daily life. The current
network environments make scalable coding of multimedia a necessary require-
ment when multiple users try to access the same information through different
communication links [1,2]. Scalability means that a multimedia data bitstream
is partitioned into layers in such a way that the base layer is independently de-
codable into a content with reduced quality. The reduction may be in spatial
resolution, temporal resolution, or signal-to-noise ratio (SNR). To reproduce the
original content, enhancement layers provide additional data to restore the orig-
inal quality from the base layer. Enhancement layers represent the scalability
of the content coding, namely, spatial, temporal, or SNR scalability. Therefore,
scalable coding of multimedia is suitable to deliver digital contents to different
uses and devices with various capabilities [3].

In many cases, it requires to deliver multimedia content securely. However,
the channel for multimedia broadcasting is an open environment, thus, if the user
data and information are not protected, it might be illegally used and altered
by hackers even if partial information is received by them. To protect privacy
and intellectual property (IP) right, people often use cryptographic techniques
to encrypt data, and thus the contents protected by encryption are expected to
be securely transmitted over the Internet [4, 5].



In cryptography, the contents to be encrypted are called plaintext, while the
encrypted contents are called ciphertext. Although cryptographic schemes pro-
vide secure data exchange among peers, it implies that the ciphertext cannot
be altered during transmission [6]. If any one bit is received erroneously, the
plaintext cannot be decrypted correctly. This is not a good property when we
deliver protected contents in a broadcasting environment. Moreover, if we do
not partition the protected content well, a one-bit error may cause a totally
useless content. To meet this deficiency for multimedia broadcasting, we apply
watermarking to aid encryption, because it allows the watermarked contents to
experience some kinds of attacks, including signal processing, geometric distor-
tion, and transmission errors. In this paper, we combine both the cryptographic
and watermarking schemes for layered content protection. On the one hand, the
message for protection of multimedia contents can be perfectly decrypted by
cryptography, while on the other hand, the encrypted message can be further
protected by robust watermarking algorithms to resist transmission errors.

This paper is organized as follows. Sec. 2 describes the concepts and issues of
layered content protection. In Sec. 3, we propose a layered protection structure
with combined cryptographic and watermarking schemes. We give an example
application and some simulations in Sec. 4. And Sec. 5 concludes this paper.

2 Layered Protection Concepts

As mentioned in Sec. 1, scalable coding is a solution to broadcast contents to
devices with various playback capabilities. With the nature of layered coding,
the whole media can be treated as partitions of data. Thus, it is straightforward
to group receivers of different playback capabilities by sending different combi-
nations of data partitions. However, the conditional access problem is dealt with
a different way in a broadcast environment. To distinguish different groups of
users, a common solution is to encrypt data by a certain group-shared key. Thus,
this issue can be solved by encrypting data partitions, and a granted user has
the corresponding decryption keys to the assigned data partitions.

The next issue is how to distribute the keys. Depending on the delivery in-
frastructure, two problems may arise. One is how to protect keys from malicious
listeners. There are methods to protect keys from malicious listeners, such as the
one proposed in the DVB standard [7]. The other problem is how to synchronize
a key with the content having a proper key delivery method. For example, to
broadcast a protected content on Internet, we may send the key to users via a
reliable channel (such as RTSP connection [8]), while the content goes through
an unreliable channel (such as RTP sessions [9]). A reliable channel guarantees
information correctness by sacrificing delivery speed, and it is very likely that
the key information is out-of-sync to the corresponding content.

A possible solution to eliminate synchronization problem is to transmit the
key information with the content, such as inserting it into the optional header
fields of the coded stream. However, it is sensible to transmission errors or
transcoding. Our proposed method has better resistance to this kind of problem:



we embed the key information into the content with robust watermarking tech-
niques. Since the key information is available at the same time as we reconstruct
the content, the synchronization problem is implicitly resolved. The drawback is
that if packet loss or transcoding occurs, the reconstructed content is different
from the original one, and the key information may not be extracted accurately.
To reduce the impact of unreliable or distorted delivery, we incorporate robust
digital watermarking methods [10] to make the embedded key information more
robust.

An overall description of the layered protection is organizing secrets (keys and
necessary parameters) into a watermark, robustly watermarking the base layer,
and encrypting the enhancement layer. A granted user receives the base layer,
extracts and derives the decryption key, decrypts the enhancement layer, and
compose the layers to produce the contents with better quality. In the following
sections, we will describe our proposed method in detail.

3 Proposed Method

In this section, we describe the layered decryption and decoding operations on
the receiver side. Because the corresponding encryption and encoding opera-
tions vary depending on the scalable coding, we provide a possible scheme at
the end of this section. We first demonstrate the receiver architecture in our
proposed method, then we describe the corresponding transmitter architecture
in the following paragraphs.

3.1 Receiver Architecture

Scalable coding is composed of one base layer and several enhancement layers
to adapt with the network environment for transmission. The enhancement op-
eration is illustrated in Fig. 1. Assuming that the initial base layer By has been
received, the subsequent composing operations can be expressed by

B; = compose (B;_1, E;), (1)
where
E; = decrypt, (X, K;). (2)

In Eq. (1), B;—1 is the available base layer, and F; is the enhancement layer
to improve quality from B;_; to B;. During transmission, F; is protected by a
cryptic algorithm with K; as the key, and the transmitted data is X; in Eq. (2).
There are some secret information to be obtained prior to decrypting F;, and
the operations can be expressed as follows:
W,; = extract (B;—1, P;—1)
F; = decrypty (Wi, G;)
P, = param (F;)
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Fig. 1. Decryption and decoding of layer-protected content

W; is the digital watermark extracted from the constructed base layer B; 1 with
extraction parameter P;_;. As described in Sec. 2, W; represents the protected
secret information. Thus, we have the secret information F; by decrypting the
watermark using user-specific key G;. After parsing F;, we obtain the decryption
key K; and the next watermark extraction parameter P;.

As Fig. 1 illustrates, the decryption and composition blocks are iterative pro-
cesses. There are several initial parameters required to activate these processes.
We will discuss how to obtain the initial parameters in the following paragraphs.

— When the whole content is protected, namely, By is encrypted, we need Ky
to decrypt Xg. In this case, Ky should be obtained in a separate channel. A
possible way is to obtain it through the channel, and we get {G;}.

— Some scenario provides By as the “preview” layer, i.e., By is not encrypted,
we simply bypass the block of decrypt, ().

— Depending on the watermarking algorithm, the extraction process may re-
quires specific parameters. If it does, the first watermark extraction param-
eter Py should be obtained in a separate channel to activate subsequent
extraction process.

— All the key-protection keys {G;} should be obtained before receiving the
media, for instance, by manually or automatically update after subscription.

3.2 Transmitter Architecture

Depending on the scalable coding algorithm, the design of transmitter side varies
with different situations. Fig. 2 shows one of the possible designs. The architec-
ture is almost the inverse of the receiver architecture in Fig. 1. The watermark
W; is the encrypted version of the key K; and the embedding parameter P;. The
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Fig. 2. Encryption and encoding of layer-protected content

B]_, is the un-watermarked base layer with lower quality. After embedding W;
into B]_;, we have the transmitting base layer B;_;. The enhancement layers
are generated as the differences between B; and B;_q. All the {K;}, {P;}, and
{G;} are known in advance.

4 Simulation Results

In this paper, we use the test image Lena with size 1024 x 1024 to conduct
the simulations in this section. The original Lena is first converted into 512 x
512 base layer. The secret for representing the original image is the 8-byte (or
64-bit) message NCTU-DEE, shown in Fig. 3(a), to represent the authors’
affiliation. The secret can be any message with 8-byte length. The 8-byte message
is repeated for 32 times, and we employ DES [11] to encrypt the repeated message
into ciphertext. Next, the ciphertext is converted into a binary watermark, shown
in Fig. 3(b).

NCTU-DEE =

(a) (b)

Fig. 3. Plaintext encryption and watermark generation. (a) The 8-byte plain-text. (b)
The converted binary watermark with size 128 x 128.

Fig. 4 presents the data in transmitted base layer and the enhancement
layers. Before transmission, the watermarked base layer has acceptable visual
quality, with the PSNR of 39.24 dB in Fig. 4(a). We can extract the watermark



from the base layer picture, derive the decryption key, decrypt the transmitted
enhancement data in the next layer, and finally reconstruct the original 1024 x
1024 picture.

Fig. 4. (a) 512 x 512 base layer. (b) 1024 x 1024 enhancement layer.

We then perform packet loss on the base layer over the random packet loss
channel [12]. The packet loss rate in our simulations is set to 10%. The ex-
tracted watermark is shown in Fig. 5(a). The distortion is within the tolerance
range of the extracted watermark, with the bit-correct ratio of 92.74%. We then
use majority vote technique to produce the 8-byte, extracted ciphertext, and
decrypt the extracted ciphertext. Finally, we can recover the original key infor-
mation correctly in Fig. 5(b). In addition, the 1024 x 1024 picture thus can be
reconstructed to a certain extent as shown in Fig. 6.

= NCTU-DEE
(a) (b)

Fig. 5. Watermark extraction and cipher-text decryption. (a) The extracted water-
mark, with the bit-correct ratio of 92.74% to compare with Fig. 3(b). (b) The decrypted
cipher-text, which is identical to that in Fig. 3(a).



Fig.6. The encrypted and watermarked image after transmission, with best-effort
reconstruction.

5 Conclusion

In this paper, we proposed a structure to protect the layered (scalable) content
in a broadcast environment. By combining cryptographic schemes and robust
watermarking techniques, the secret for decrypting enhancement data streams
can be safely embedded in each base layer. Watermarking allows to embed some
bits of information directly in some multimedia content, and the embedded bits
can be extracted even after the watermarked media experiencing attacks during
transmission. In contrast, cryptography provides confidentiality, but even when
one bit is altered in the encrypted media, the secret message therein cannot be
correctly decrypted. The contribution in this paper is to build a link in the two
main categories, and employ the advantages of both for intellectual property
protection.

In the proposed scheme, the encryption concept guarantees the access con-
trol, keeping away malicious eavesdroppers. Also, the embedding concept solves
the key-content synchronization problem, and the robust watermarking concept
raise the resistant ability to transmission errors and distortions. Comparing with
conventional cipher-block chaining encryption, our method not only provides a
way to guarantee access controls, but also synchronously transmits decryption in-
formation. Moreover, robust watermarking implicitly gives higher data integrity
protection for keys than that of contents. Although the protection is not as good
as a reliable channel, it is a trade-off solution in a broadcast environment. The



scalable image application and the simulation results prove the effectiveness of
the proposed structure.

In our future work, we will modify our structure with scalable video coding.

We will also integrate our proposed structure with MPEG IPMP (Intellectual
Property Management and Protection) [13, 14].
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